
MLG 2006

Proceedings of the
International Workshop on
Mining and Learning with Graphs

in conjunction with ECML/PKDD 2006

Thomas Gärtner
Gemma C. Garriga
Thorsten Meinl
(Eds.)

Berlin, Germany, 18th September 2006

II

Preface

At a time where the amount of data collected day by day far exceeds the human
capabilities to extract the knowledge hidden in it, it becomes more and more
important to automate the process of learning. Typical data collections have two
things in common: They are huge and the information stored in them is highly
structured.

Graphs are one of the most popular data representations in mathematics,
computer science, engineering disciplines, and other natural sciences. This work-
shop on “Mining and Learning with Graphs” (MLG) thus concentrated on learn-
ing from graphs and its subclasses such as — but not limited to — trees, se-
quences (GTS). The primary goal of MLG was to bring together researchers
working on various aspects of mining and learning with graphs. It is hence in
the tradition of previous ECML/PKDD workshops on “Mining Graphs, Trees,
and Sequences” (MGTS) but extends its scope to include other areas of machine
learning and data mining also concerned with graphs and their subclasses such
as:

• Algorithmic aspects of
• Theoretical aspects of
• Open problems in
• Novel applications of
• Evaluative studies of

the following — non-exclusive — list of topics

• Kernels and Distances for graphs.
• GTS-structured output spaces.
• Frequent GTS mining.
• Learning with generative GTS models and compact (e.g., intensional) rep-

resentations like GTS transformations, grammars, or matchings.
• Theoretical aspects of learning from GTS.
• Probabilistic modelling of GTS.
• GTS-based approaches to transductive and semi-supervised learning.

Compared to previous workshops on MGTS, MLG was able to attract a
record number of submissions (28 full and 6 short papers). For time and space
restrictions, we could only accept 9 full papers and 15 short papers (most of
which were originally submitted as full papers).

For the first time, the workshop received the support of the PASCAL Network
of Excellence that sponsored the invited talk and the best paper award. We
most sincerely thank the PASCAL network for this sponsoring; the program
committee and additional reviewers for their reviews; as well as the authors for
their high quality submissions.

Thomas Gärtner, Gemma C. Garriga, Thorsten Meinl

IV

Workshop Co-Chairs

Thomas Gärtner
Fraunhofer IAIS, Sankt Augustin, Germany
thomas.gaertner@ais.fraunhofer.de

Gemma C. Garriga
Univeristat Politècnica de Catalunya, Barcelona, Spain
garriga@lsi.upc.edu

Thorsten Meinl
University of Konstanz, Germany
Thorsten.Meinl@uni-konstanz.de

Program Commitee

Yasemin Altun, Toyota Technological Institute at Chicago, USA

José Balcázar, Universitat Politècnica de Catalunya, Spain

Hendrik Blockeel, Katholieke Universiteit Leuven, Belgium

Christian Borgelt, University of Magdeburg, Germany

Horst Bunke, University of Bern, Switzerland

Tiberio Caetano, National ICT, Australia

Ingrid Fischer, University of Konstanz, Germany

Peter Flach, University of Bristol, UK

Paolo Frasconi, Università degli Studi di Firenze, Italy

Thore Graepel, Microsoft Research Cambridge, UK

Thomas Hofmann, TU Darmstadt, Germany

Thorsten Joachims, Cornell University, USA

Roni Khardon, Tufts University, USA

Kristian Kersting, University of Freiburg, Germany

Stefan Kramer, Technical University Munich, Germany

Jure Leskovec, Carnegie Mellon University, USA

Brian Milch, University of California in Berkeley, USA

Siegfried Nijssen, University of Freiburg, Germany

Alex J. Smola, National ICT, Australia

György Turán, University of Illinois at Chicago, USA

V

Takeaki Uno, National Institute of Informatics, Japan

Jean-Philippe Vert, Ecole des Mines de Paris, France

Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany

Xiaojin ”Jerry” Zhu, University of Wisconsin-Madison, USA

Additional Reviewers

Mario Boley

Bart Goethals

Tamás Horváth

Christine Körner

James Kwok

Quoc V. Le

Lukas Molzberger

Andrea Passerini

Simon Price

Jan Ramon

Antonio Robles-Kelly

Ajit Singh

Hendrik Stange

Marc Wörlein

Table of Contents

Full Papers

Intersection Algorithms and a Closure Operator on Unordered Trees 1
José L. Balcázar, Albert Bifet, Antoni Lozano

Discriminative Identification of Duplicates . 13
Peter Haider, Ulf Brefeld, and Tobias Scheffer

Frequent Hypergraph Mining . 25
Tamás Horváth, Björn Bringmann, and Luc De Raedt

Frequent Subgraph Mining in Outerplanar Graphs . 37
Tamás Horváth, Jan Ramon, and Stefan Wrobel

Type Extension Trees: a Unified Framework for Relational Feature
Construction . 49
Manfred Jaeger

Flexible Tree Kernels based on Counting the Number of Tree Mappings . . 61
Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

Mining Interpretable Subgraphs . 73
Siegfried Nijssen

A Linear Programming Approach for Molecular QSAR analysis 85
Hiroto Saigo, Tadashi Kadowaki, and Koji Tsuda

Matching Based Kernels for Labeled Graphs . 97
Adam Woznica, Alexandros Kalousis, Melanie Hilario

Short Papers

Combining Ring Extensions and Canonical Form Pruning 109
Christian Borgelt

Structured Kernels for the Automatic Detection of Protein Active Sites . . 117
Elisa Cilia, Alessandro Moschitti, Sergio Ammendola, and Roberto
Basili

Learning Structured Outputs via Kernel Dependency Estimation and
Stochastic Grammars . 129
Fabrizio Costa, Andrea Passerini, and Paolo Frasconi

VII

Distance-Based Generalisation Operators for Graphs 133
Vicent Estruch, César Ferri, José Hernández-Orallo, and Maŕıa José
Ramı́rez-Quintana

Conditional Random Fields for XML Trees . 141
Florent Jousse, Rémi Gilleron, Isabelle Tellier, and Marc Tommasi

Relational Sequences Alignment . 149
Andreas Karwath and Kristian Kersting

Unbiased Conjugate Direction Boosting for Conditional Random Fields . . 157
Kristian Kersting and Bernd Gutmann

Tree Kernel Engineering for Proposition Reranking . 165
Alessandro Moschitti, Daniele Pighin, and Roberto Basili

Frequent Subgraph Miners: Runtimes Don’t Say Everything 173
Siegfried Nijssen and Joost N. Kok

Graph Kernels versus Graph Representations: a Case Study in Parse
Ranking . 181
Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio
Slakoski

The Kingdom-Capacity of a Graph: On the Difficulty of Learning a
Graph Labeling . 189
Kristiaan Pelckmans, Johan A.K. Suykens, and Bart De Moor

Wrapper Induction: Learning (k,l)-Contextual Tree Languages Directly
as Unranked Tree Automata . 197
Stefan Raeymaekers and Maurice Bruynooghe

Mining Discriminative Patterns from Graph Structured Data with
Constrained Search . 205
Kiyoto Takabayashi, Phu Chien Nguyen, Kouzou Ohara, Hiroshi
Motoda, and Takashi Washio

Two Connectionists models for graph processing: an experimental
comparison on relational data . 213
Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Franco
Scarselli, and Marco Gori

Edgar: the Embedding-baseD GrAph MineR . 221
Marc Wörlein, Alexander Dreweke, Thorsten Meinl, Ingrid Fischer,
and Michael Philippsen

Author Index . 229

VIII

Intersection Algorithms and a Closure Operator
on Unordered Trees

José L. Balcázar, Albert Bifet and Antoni Lozano

Universitat Politècnica de Catalunya,
{balqui,abifet,antoni}@lsi.upc.edu

Abstract. Link-based data may be studied formally by means of un-
ordered trees. On a dataset formed by such link-based data, a natural
notion of support-based closure can be immediately defined. Abstract-
ing information from subsets of such data requires, first, a formal notion
of intersection; second, deeper understanding of the notion of closure;
and, third, efficient algorithms for computing intersections on unordered
trees. We provide answers to these three questions.

1 Introduction

Closure-based mining is well-established by now as one of the various approaches
to summarize subsets of a large dataset. Sharing some of the attractive features
of frequency-based summarization of subsets, it offers an alternative view with
both downsides and advantages; among the latter, there are the facts that, first,
by imposing closure, the number of frequent sets is heavily reduced and, sec-
ond, the possibility appears of developing a mathematical foundation that con-
nects closure-based mining with lattice-theoretic approaches like Formal Concept
Analysis.

Closure-based mining on itemsets is, by now, well understood, and there
are interesting algorithmic developments; thus, there have been subsequent ef-
forts in moving towards closure-based mining on structured data, particularly
sequences, trees and graphs; see the survey [4] and the references there. One
of the differences with closed itemset mining stems from the fact that the set
theoretic intersection no longer applies, and whereas the intersection of sets is
a set, the intersection of two sequences or two trees is not one sequence or one
tree. This makes it nontrivial to justify the word “closed” in terms of a standard
closure operator. Many papers resort to a support-based notion of closedness
of a tree or sequence ([5], see below); others (like [1]) choose a variant of trees
where a closure operator between trees can be actually defined (via least general
generalization). In some cases, the trees are labeled, and strong conditions are
imposed on the label patterns (such as nonrepeated labels in tree siblings [10]
or nonrepeated labels at all in sequences [8]).

Here we attempt at formalizing a closure operator for substantiating the
work on closed trees, with no resort to the labelings: we focus on the case where
the given dataset consists of unordered, unlabeled, rooted trees; thus, our only

2 José L. Balcázar, Albert Bifet and Antoni Lozano

relevant information is the root and the link structure (so that the appropri-
ate notion of subtree, so-called top-down subtree, preserves root and links), and
solving the intersection problem along the same lines as in [3]. Thus, we only
focus on the basic operations needed to phrase closure-based mining on such
structures, but with a mathematically very demanding approach. We first for-
malize our structures and the notion of a tree being contained in another. We
also evaluate the quantity of such combinatorial structures. We then move on
to start our study of closure-based mining. Following the same path as in [7],
we first need a notion of intersection: we will see that a natural notion of in-
tersection of trees gives rise to intersection sets of trees, rather than individual
trees, as with the sequences in [7]. We study the cardinality of such intersection
sets, which we prove can be exponential in the worst case, although preliminary
experiments suggest that intersection sets of cardinality beyond 1 hardly ever
arise unless looked for.

We then propose a notion of Galois connection with the associated closure
operator, in such a way that we can characterize support-based notions of clo-
sure with a mathematical operator. We complete this paper with preliminary
algorithmic studies. We propose a natural recursive algorithm to compute in-
tersections, and a more sophisticated method following a dynamic programming
scheme; preliminary comparisons suggest that the dynamic programming algo-
rithm is several orders of magnitude faster.

2 Preliminaries

2.1 Definitions

We will deal with rooted undirected trees with nodes of unbounded arity. This
kind of trees will be referred throughout the paper simply as trees. The set of
all trees will be denoted with T . Additionally, we call binary tree a tree whose
nodes have a maximum of two children. The letter D ⊂ T will represent a finite
list of data trees, sometimes treated as a set.

A tree t′ is a subtree of a tree t (written t′ � t) if t′ is a connected subgraph
of t which contains the root of t (this is also known as top-down subtree). We
say that t1, . . . , tk are the components of tree t if t is made of a node (the root)
joined to the roots of all the ti’s. The components form a set, not a sequence;
therefore, permuting them does not give a different tree. In our drawings, we
follow the convention that larger trees are drawn at the left of smaller trees. In
the algorithms we will identify trees by strings in the following way, which will
allow us to order trees lexicographically (the drawing convention corresponds to
using the lexicographically least identification).

Definition 1. We define the injective total function 〈·〉 : T → {0, 1}∗ recur-
sively as follows. If t is a single node, then 〈t〉 = 01. Otherwise, suppose that
t1, . . . , tk are the components of t enumerated so that 〈t1〉 ≤ 〈t2〉 ≤ . . . ≤ 〈tk〉 (in
lexicographical order). Then 〈t〉 = 0〈t1〉 . . . 〈tk〉1. We also define [·] : {0, 1}∗ → T
such that for any tree t, [〈t〉] = t, and is undefined for strings not in the image
of 〈·〉.

Intersection and Closure on Unordered Trees 3

The one-node tree [01] will be represented with the symbol , and the two-
node tree [0011] by .

Definition 2. Given two trees, a common subtree is a tree that is subtree of
both; it is a maximal common subtree if it is not a subtree of any other common
subtree; it is a maximum common subtree if there is no common subtree of larger
size.

Two trees have always some maximal common subtree but, as is shown in
Figure 1, this common subtree does not need to be unique.

A: B: X: Y:X: Y:

Fig. 1. Trees X and Y are maximal common subtrees of A and B.

In fact, trees X and Y have the maximum number of nodes among the
common subtrees of A and B. As is shown in Figure 2, just a slight modification
of A and B gives two maximal common subtrees of different sizes, showing that
the concepts of maximal and maximum common subtree do not coincide in
general.

A’: B’: X’: Y:

Fig. 2. Both X ′ and Y are maximal common subtrees of A′ and B′, but only X ′ is
maximum.

2.2 Number of trees

The number of trees with n nodes is known to be Θ(ρnn−3/2), where ρ =
0.3383218569 ([9]). We provide a more modest lower bound based on an easy
way to count the number of binary trees; this will be enough to show in a few
lines an exponential lower bound on the number of trees with n nodes.

Define Bn as the number of binary trees with n nodes, and set B0 = 1 for
convenience. Clearly, a root without children is the only binary tree with one

4 José L. Balcázar, Albert Bifet and Antoni Lozano

node, so B1 = 1. Now, Bn is the sum of all products BiBj for every way to
express n − 1 as i + j (meaning that the n − 1 nodes other than the root are
distributed into two subtrees having i and j nodes). So, we have

Bn =
∑

i + j = n − 1
i ≤ j

BiBj =
bn−1

2 c∑
i=0

BiBn−i−1.

The second summation can be rewritten as

Bn = B0Bn−1 +
bn−1

2 c−1∑
i=0

Bi+1Bn−i−2 = Bn−1 +
bn−3

2 c∑
i=0

Bi+1B(n−2)−(i+1)−1

which implies that Bn ≥ Bn−1 + Bn−2, thus showing that Bn is bigger than the
n-th Fibonacci number Fn (note that the initial values also satisfy the inequality,
since F0 = 0 and F1 = F2 = 1). Since it is well-known that Fn+2 ≥ φn, where
φ > 1.618 is the golden number, we have the lower bound

φn−2 ≤ Fn ≤ Bn.

which is also a lower bound for the total number of trees with n nodes.

2.3 Number of subtrees

We can easily observe, using the trees A, B, X, and Y of Section 2.1, that two
trees can have an exponential number of maximal common subtrees.

Recall that the aforementioned trees have the property that X and Y are
two maximal common subtrees of A and B. Now, consider the pair of trees
constructed in the following way using copies of A and B. First, take a path of
length n − 1 (thus having n nodes which include the root and the unique leaf)
and “attach” to each node a whole copy of A. Call this tree TA. Then, do the
same with a fresh path of the same length, with copies of B hanging from their
nodes, and call this tree TB . Graphically:

A

n

A

A

A n

B

B

B

B

TA TB

All the trees constructed similarly with copies of X or Y attached to each
node of the main path (instead of A or B) are maximal common subtrees of TA

Intersection and Closure on Unordered Trees 5

and TB . The fact that the copies are at different depths assures that all the 2n

possibilities correspond to different subtrees. Therefore, the number of different
maximal common subtrees of TA and TB is at least 2n (which is exponential in
the input since the sum of the sizes of TA and TB is 15n). Any algorithm for
computing maximal common subtrees has, therefore, a worst case exponential
cost due to the size of the output.

3 Closure operator and mining closed trees

Once a proper notion of intersection is available, we move on to build a notion
of closed sets of trees, with a view towards a data mining framework operating
on tree-structured data.

For a notion of closed (sets of) trees to make sense, we expect to be given
as data a finite set (actually, a list) of transactions, each of which consisting of
its transaction identifier (tid) and an unordered tree. Transaction identifiers are
assumed to run sequentially from 1 to N , the size of the dataset. We denote
D ⊂ T the dataset.

The support of a tree t in D is the number of transactions where t is a subtree
of the tree in the transaction. General usage would lead to the following notion
of closed tree:

Definition 3. A tree t is closed for D if no tree t′ 6= t exists with the same
support such that t � t′.

Note that t � t′ implies that t is a subtree of all the transactions where t′ is
a subtree, so that the support of t is, at least, that of t′. Existence of a larger
t′ with the same support would mean that t does not gather all the possible
information about the transactions in which it appears, since t′ also appears in
the same transactions and gives more information (is more specific). A closed
tree is maximally specific for the transactions in which it appears. However, note
that the example of the trees A and B given above provides two trees X and Y
with the same support, and yet mutually incomparable.

We aim at clarifying the properties of closed trees, providing a more detailed
justification of the term “closed” through a closure operator obtained from a
Galois connection, along the lines of [6], [3], [7], or [2] for unstructured or oth-
erwise structured datasets. However, given that the intersection of a set of trees
is not a single tree but yet another set of trees, we will find that the notion of
“closed” is to be applied to subsets of the transaction list, and that the notion
of a “closed tree” t is not exactly coincident with the singleton {t} being closed.

3.1 Galois Connection

A Galois connection is provided by two functions, relating two lattices in a certain
way. Here our lattices are plain power sets of the transactions, on the one hand,
and of the corresponding subtrees, in the other. On the basis of the binary
relation t � t′, the following definition and proposition are rather standard.

6 José L. Balcázar, Albert Bifet and Antoni Lozano

Definition 4. The Galois connection pair:

– For finite A ⊆ D, σ(A) = {t ∈ T
∣∣ ∀ t′ ∈ A (t � t′)}

– For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈ D
∣∣ ∀ t ∈ B (t � t′)}

There are many ways to argue that such a pair is a Galois connection. One
of the most useful ones is as follows.

Proposition 1. For all finite A ⊆ D and B ⊂ T , the following holds:

A ⊆ τD(B) ⇐⇒ B ⊆ σ(A)

Proof. By definition, each of the two sides is equivalent to

∀ t ∈ B ∀ t′ ∈ A (t � t′) 2

It is well-known that the compositions (in either order) of the two functions
that define a Galois connection constitute a closure operator, that is, are mono-
tonic, extensive, and idempotent (with respect, in our case, to set inclusion).

Corollary 1. ΓD = τD ◦ σ is a closure operator on the subsets of D.

Thus, we have now a concept of closed sets of trees; however, the notion of
closure based on support as previously defined corresponds to single trees, and
it is worth clarifying the connection between them, naturally considering the
closure of the singleton set containing a given tree, ΓD({t}). We point out the
following easy-to-check properties:

1. t ∈ ΓD({t})
2. t′ ∈ ΓD({t}) if and only if ∀s ∈ D(t � s ⇒ t′ � s)
3. t is maximal in ΓD({t}) (that is, ∀t′ ∈ ΓD({t})[t � t′ ⇒ t = t′]) if and only

if ∀t′(∀s ∈ D[t � s ⇒ t′ � s] ∧ t � t′ ⇒ t = t′)

The definition of closed tree can be phrased in a similar manner as follows:
t is closed for D if and only if: ∀t′(t � t′ ∧ supp(t) = supp(t′) ⇒ t = t′).

Theorem 1. A tree t is closed for D if and only if it is maximal in ΓD({t}).

Proof. Suppose t is maximal in ΓD({t}), and let t � t′ with supp(t) = supp(t′).
The data trees s that count for the support of t′ must count as well for the
support of t, because t′ � s implies t � t′ � s. The equality of the supports then
implies that they are the same set, that is, ∀s ∈ D(t � s ⇐⇒ t′ � s), and then,
by the third property above, maximality implies t = t′. Thus t is closed.

Conversely, suppose t closed and let t′ ∈ ΓD({t}) with t � t′. Again, then
supp(t′) ≤ supp(t); but, from t′ ∈ ΓD({t}) we have, as in the second property
above, (t � s ⇒ t′ � s) for all s ∈ D, that is, supp(t) ≤ supp(t′). Hence, equality
holds, and from the fact that t is closed, with t � t′ and supp(t) = supp(t′), we
infer t = t′. Thus, t is maximal in ΓD({t}). 2

Intersection and Closure on Unordered Trees 7

Now we can continue the argument as follows. Suppose t is maximal in some
closed set of trees B. From t ∈ B, by monotonicity and idempotency, together
with aforementioned properties, we obtain t ∈ ΓD({t}) ⊆ ΓD(B) = B; being
maximal in the larger set implies being maximal in the smaller one, so that t
is maximal in ΓD({t}) as well. Hence, we have argued the following alternative,
somewhat simpler, characterization:

Theorem 2. A tree is closed for D if and only if it is maximal in some closed
set of ΓD.

Yet another simpler observation is that each closed set is uniquely defined
through its maximal elements. In fact, our implementations chose to avoid du-
plicate calculations and redundant information by just storing the maximal trees
of each closed set. We could have defined the Galois connection so that it would
provide us “irredundant” sets of trees by keeping only maximal ones; the prop-
erty of maximality would be then simplified into t ∈ ΓD({t}), which would not
be guaranteed anymore (cf. the notion of stable sequences in [3]). The formal de-
tails of the validation of the Galois connection property would differ slightly (in
particular, the ordering would not be simply a mere subset relationship) but the
essentials would be identical, so that we refrain from developing that approach
here; we would obtain a development somewhat closer to [3] than our current
development is. But there would be no indisputable advantages.

4 Intersection algorithms

Computing a potentially large intersection of a set of trees is not a trivial task,
given that there is no ordering among the components: a maximal element of
the intersection may arise through mapping smaller components of one of the
trees into larger ones of the other. Therefore, the degree of branching along the
exploration is high.

4.1 Finding the intersection recursively

We start with a straightforward algorithm for finding all maximal common sub-
trees of two trees in a recursive way. The basic idea is to exploit the recursive
structure of the problem by considering all the ways to match the components of
the two input trees. Suppose we are given the trees t and r, whose components are
t1, . . . , tk and r1, . . . , rn, respectively. If k ≤ n, then clearly (t1, r1), . . . , (tk, rk)
is one of those matchings. Then, we recursively compute the maximal common
subtrees of each pair (ti, ri) and “cross” them with the subtrees of the previously
computed pairs, thus giving a set of maximal common subtrees of t and r for
this particular identity matching. The algorithm explores all the (exponentially
many) matchings and, finally, eliminates repetitions and trees which are not
maximal (by using recursion again).

We do not specify the data structure used to represent the trees. The only
condition needed is that every component t′ of a tree t can be accessed with

8 José L. Balcázar, Albert Bifet and Antoni Lozano

Recursive Intersection(r, t)

1 if (r =) or (t =)
2 then S ← { }
3 elseif (r =) or (t =)
4 then S ← { }
5 else S ← {}
6 nr ← #Components(r)
7 nt ← #Components(t)
8 for each m in Matchings(nr ,nt)
9 do mTrees ← { }

10 for each (i, j) in m
11 do cr ← Component(r, i)
12 ct ← Component(t, j)
13 cTrees ← Recursive Intersection(cr, ct)
14 mTrees ← Cross(mTrees, cTrees)
15 S ←Max Subtrees(S ,mTrees)
16 return S

Fig. 3. Algorithm Recursive Intersection

an index which indicates the lexicographical position of its encoding 〈t′〉 with
respect to the encodings of the other components; this will be Component(t, i).
The other procedures are as follows:

– #Components(t) computes the number of components of t, this is, the
arity of the root of t.

– Matchings(n1, n2) computes the set of perfect matchings of the graph
Kn1,n2 , this is, of the complete bipartite graph with partition classes {1, . . . ,
n1} and {1, . . . , n2} (each class represents the components of one of the
trees). For example,
Matchings(2, 3) = {{(1, 1), (2, 2)}, {(1, 1), (2, 3)}, {(1, 2), (2, 1)}, {(1, 2),
(2, 3)}, {(1, 3), (2, 1)}, {(1, 3), (2, 2)}.

– Cross(l1, l2) returns a list of trees constructed in the following way: for each
tree t1 in l1 and for each tree t2 in l2 make a copy of t1 and add t2 to it as
a new component.

– Max Subtrees(S1, S2) returns the list of trees containing every tree in S1

and every tree in S2 that is not a subtree of another tree in S1, thus leaving
only the maximal subtrees. There is a further analysis of this procedure in
the next subsection.

The fact that, as has been shown, two trees may have an exponential number
of maximal common subtrees necessarily makes any algorithm for computing all
maximal subtrees inefficient. However, there is still space for some improvement.

Intersection and Closure on Unordered Trees 9

4.2 Finding the intersection by dynamic programming

In the above algorithm, recursion can be replaced by a table of precomputed
answers for the components of the input trees. This way we avoid repeated
recursive calls for the same trees, and speed up the computation. Suppose we
are given two trees r and t. In the first place, we compute all the trees that can
appear in the recursive queries of Recursive Intersection(r, t). This is done
in the following procedure:

– Subcomponents(t) returns a list containing t if t = ; otherwise, if t has
the components t1, . . . , tk, then, it returns a list containing t and the trees in
Subcomponents(ti) for every ti, ordered increasingly by number of nodes.

The new algorithm shown in Figure 4 constructs a dictionary D accessed
by pairs of trees (t1, t2) (or, more precisely, by their codes (〈t1〉, 〈t2〉)), when
the input trees are nontrival (different from and). Inside the main loops,
the trees which are used as keys for accessing the dictionary are taken from the
lists Subcomponents(r) and Subcomponents(t), where r and t are the input
trees.

Dynamic Programming Intersection(r, t)

1 for each sr in Subcomponents(r)
2 do for each st in Subcomponents(t)
3 do if (sr =) or (st =)
4 then D [sr , st]← { }
5 elseif (sr =) or (st =)
6 then D [sr , st]← { }
7 else D [sr , st]← {}
8 nsr ← #Components(sr)
9 nst ← #Components(st)

10 for each m in Matchings(nsr ,nst)
11 do mTrees ← { }
12 for each (i, j) in m
13 do csr ← Component(sr, i)
14 cst ← Component(st, j)
15 cTrees ← D [csr , cst]
16 mTrees ← Cross(mTrees, cTrees)
17 D [sr , st]←Max Subtrees(D [sr , st],mTrees)
18 return D [r , t]

Fig. 4. Algorithm Dynamic Programming Intersection

Note that the fact that the number of trees in Subcomponents(t) is linear
in the number of nodes of t assures a quadratic size for D. The entries of the
dictionary are computed by increasing order of the number of nodes; this way, the

10 José L. Balcázar, Albert Bifet and Antoni Lozano

Max Subtrees(S1, S2)

1 for each r in S1

2 do for each t in S2

3 if r is a subtree of t
4 then mark r
5 elseif t is a subtree of r
6 then mark t
7 return sublist of nonmarked trees in S1 ∪ S2

Fig. 5. Algorithm Max Subtrees

information needed to compute an entry has already been computed in previous
steps.

The procedure Max Subtrees, which appears in the penultimate step of the
two intersection algorithms presented, is shown in Figure 5. The key point in the
procedure Max Subtrees is the identification of subtrees made in steps 3 and
5. By standard algorithms, it can be decided whether t1 � t2 in time O(n1n

1.5
2)

([11]), where n1 and n2 are the number of nodes of t1 and t2, respectively.
Finally, the table in Figure 6 shows an example of the intersections stored in

the dictionary by the algorithm Dynamic Programming Intersection with
trees A and B of Figure 1 as input.

Fig. 6. Table with all partial results computed

5 Conclusion

Closure-based structures have been proposed in several references in a context
of data mining. They may allow for summarizing the (huge) lattice of all the

Intersection and Closure on Unordered Trees 11

subsets of a dataset by reducing it to only closure sets: these may add up to a
much lesser quantity, and each closed subset of the dataset may offer some sort
of actionable interpretation. We have studied such an approach to tree-like link
structures.

Whereas we do not attempt at the design of specific algorithms here for
computing closures yet, we have pointed out that the notion of closure given in
the previous section does provide the appropriate framework for a closure-based
data mining task on tree-structured data. Moreover, the properties established
here suggest that it is possible to construct the lattice of closed sets of trees by
mining first the closed trees and, then, organizing them into the desired lattice.

We describe a toy example of the closure lattice for a simple dataset con-
sisting of six trees, thus providing additional hints on our notion of intersection;
these were not made up for the example, but were instead obtained through six
different (rather arbitrary) random seeds of the synthetic tree mining generator
of Zaki [12].

Fig. 7. Lattice of closed trees for the six input trees in the top row

12 José L. Balcázar, Albert Bifet and Antoni Lozano

The figure depicts the closed sets obtained. It is interesting to note that all the
intersections came up to a single tree, a fact that suggests that the exponential
blow-up of the intersections sets, which is possible as explained in a previous
section, appears infrequently enough. Of course, the common intersection of the
whole dataset is (at least) a “pole” whose length is the minimal height of the
data trees.

The study of algorithmics for the construction of this lattice, or of a fragment
thereof (e.g. through frequency thresholds) since it will be usually quite large, will
be subject of further work, as well as the corresponding notions of implications
or association rules for the framework of unordered trees.

References

1. Hiroki Arimura and Takeaki Uno. An output-polyunomial time algorithm for
mining frequent closed attribute trees. In ILP, pages 1–19, 2005.

2. Jaume Baixeries and José L. Balcázar. Discrete deterministic data mining as
knowledge compilation. In Workshop on Discrete Math. and Data Mining at SIAM
DM Conference, 2003.

3. José L. Balcázar and Gemma C. Garriga. On Horn axiomatizations for sequen-
tial data. In ICDT, pages 215–229 (extended version to appear in Theoretical
Computer Science), 2005.

4. Yun Chi, Richard Muntz, Siegfried Nijssen, and Joost Kok. Frequent subtree
mining – an overview. Fundamenta Informaticae, XXI:1001–1038, 2001.

5. Yun Chi, Yi Xia, Yirong Yang, and Richard Muntz. Mining closed and maximal
frequent subtrees from databases of labeled rooted trees. IEEE Trans. Knowl.
Data Eng., 17(2):190–202, 2005.

6. B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, 1999.
7. Gemma C. Garriga. Formal methods for mining structured objects. PhD Thesis,

2006.
8. Gemma C. Garriga and José L. Balcázar. Coproduct transformations on lattices

of closed partial orders. In ICGT, pages 336–352, 2004.
9. J. M. Plotkin and John W. Rosenthal. How to obtain an asymptotic expansion of a

sequence from an analytic identity satisfied by its generating function. J. Austral.
Math. Soc. (Series A), 56:131–143, 1994.

10. Alexandre Termier, Marie-Christine Rousset, and Michele Sebag. DRYADE: a new
approach for discovering closed frequent trees in heterogeneous tree databases. In
ICDM, pages 543–546, 2004.

11. Gabriel Valiente. Algorithms on Trees and Graphs. Springer-Verlag, Berlin, 2002.
12. Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,
2002.

Discriminative Identification of Duplicates

Peter Haider, Ulf Brefeld, and Tobias Scheffer

Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

{haider,brefeld,scheffer}@informatik.hu-berlin.de

Abstract. The problem of finding duplicates in data is ubiquitous in
data mining. We cast the problem of finding duplicates in sequential data
into a poly-cut problem on a fully connected graph. The edge weights can
be identified with parameterized pairwise similarities between objects
that are optimized by structural support vector machines on labeled
training sets. Our approach adapts the similarity measure to the data and
is independent of the number of clusters. We present three large margin
approximations of learning the pairwise similarities: an integrated QP-
formulation, a sequential multi-class approach and a pairwise classifier.
We report on experimental results.

1 Introduction

The problem of identifying duplicates has applications ranging from recognizing
objects from different perspectives and angles to the identification of objects
that are intentionally altered to obfuscate their true identity, origin, or purpose.
This occurs, for instance, in the context of email spam and virus detection.

Spam and virus senders avoid mailing identical copies of their messages be-
cause it would be an easy giveaway. Identifying a batch of messages would allow
email service providers to hold back the entire batch, and to identify hijacked
servers that are being used to disseminate spam or viruses. Therefore, spam
senders generate messages according to templates. Table 1 shows an example
of two spam messages that have been generated with a spamming tool. Slots
of a common template are filled according to a grammar; the tool also applies
obfuscation techniques such as random insertions of spaces.

In the database community, the “database deduping problem” is another
popular instance of the duplicate identification problem. Other occurrences of
the problem include named entity resolution, and the grouping of images that
show, for instance, the same person.

A natural approach to identifying duplicates is to group similar objects to-
gether by a cluster algorithm. However, prominent algorithms like k-means or
Expectation Maximization require the number of clusters beforehand. Moreover,
given a problem at hand, it is often ambiguous to decide whether two objects
are similar or not.

Correlation clustering [3] meets our requirements by accounting for poten-
tially infinitely many clusters. Its solution is equivalent to a maximum poly-cut

14 Peter Haider, Ulf Brefeld, and Tobias Scheffer

Hello,
This is Terry Hagan.We are accepting your mo rtgage application.
Our company confirms you are legible for a $250.000 loan
for a $380.00/month. Approval process will take 1 minute, so please
fill out the form on our website:
http://www.competentagent.com/application/
Best Regards, Terry Hagan;
Senior Account Director
Trades/Fin ance Department North Office

Dear Mr/Mrs,
This is Brenda Dunn.We are accepting your mortga ge application.
Our office confirms you can get a $228.000 lo an for a $371.00
per month payment. Follow the link to our website and submit
your contact information. Easy as 1,2,3.
http://www.competentagent.com/application/
Best Regards, Brenda Dunn;
Accounts Manager
Trades/Fin ance Department East Office

Table 1. Two spam mails from the same batch.

in a fully connected graph spanned by the objects and their pairwise similarities
[11].

We address the problem of learning a duplicate detection hypothesis from
labeled data. That is, we start from data in which all elements that are duplicates
of one another have been tagged as such. This allows us to learn the similarity
function that parameterizes the clustering model such that it correctly groups
the duplicates in the training data. The similarity measure can be learned by
structural SVMs in a discriminative way.

We firstly derive a loss augmented optimization problem that can be solved
directly. Due to a cubic number of variables, solving this initial problem is hardly
tractable for large data sets. Secondly, we present an approach that makes use
of the sequential nature of the objects and thirdly, we approximate the optimal
solution by a pairwise classifier. Experiments detail characteristics of all three
methods.

The rest of our paper is structured as follows. We report on related work in
Section 2 and introduce our problem setting together with the decoding strategy
in Section 3. We present support vector algorithms for identifying duplicates in
Section 4 and report on experimental results in Section 5. Section 6 concludes.

2 Related Work

The identification of duplicates has been studied with fixed similarity measures,
such as the fraction of matching words [9, 8] and sentences [6]. Other applications

Discriminative Identification of Duplicates 15

include the identification of duplicates in data bases [5], and in centralized [14]
and decentralized networks [23].

Correlation clustering on fully connected graphs is introduced in [2, 3]. A gen-
eralization to arbitrary graphs is presented in [7] and [11] shows the equivalence
to a poly-cut problem. Approximation strategies to the NP-complete decoding
are presented in [10, 17]. Finley and Joachims [13] investigated supervised clus-
tering with structural support vector machines.

Prior information about the cluster structure of a data set allows for en-
hancements to classical clustering algorithms such as k-means. E.g., Wagstaff
et al. [21] incorporate the background knowledge as must-link and cannot-link
constraints into the clustering process, while [4, 22] learn a metric over the data
space that incorporates the prior knowledge.

Several discriminative algorithms have been studied that utilize joint spaces
of input and output variables; these include max-margin Markov models [18],
kernel conditional random fields [15], hidden Markov support vector machines
[1], and support vector machines for structured output spaces [20]. These meth-
ods utilize kernels to compute the inner product in input output space. This
approach allows to capture arbitrary dependencies between inputs and outputs.
An application-specific learning method is constructed by defining appropri-
ate features, and choosing a decoding procedure that efficiently calculates the
argmax, exploiting the dependency structure of the features.

3 Preliminaries

The task is to find a model f such that given a set of instances x the true
partitioning y given as an adjacency matrix yields the highest score

y = argmax
ȳ∈Y

f(x, ȳ). (1)

We measure the quality of f by an appropriate, symmetric, nonnegative loss
function ∆ : Y ×Y → R+

0 that details the distance between the true partition y
and the prediction ŷ = argmaxȳ f(x, ȳ). A natural measure for two clusterings
is the Rand index [16]. The corresponding loss function ∆Rand is given by

∆Rand(y, ŷ) = 1−QRand(y, ŷ)

= 1−
∑

j,k<j [[yjk = ŷjk]]
|y|

=
∑

j,k<j

[[yjk 6= ŷjk]]
|y| ,

where [[σ]] is the indicator function which yields 1 if the proposition σ is true
and 0 otherwise. We can restate the optimization problem as finding a function
f that minimizes the expected risk

R(f) =
∫

X×Y
∆Rand(y, argmaxȳ f(x, ȳ))dP (x,y) (2)

16 Peter Haider, Ulf Brefeld, and Tobias Scheffer

where P (x,y) is the (unknown) distribution of sets of objects and their cluster-
ings. As in the classical setting we address this problem by searching a minimizer
of the empirical risk given by

RS(f) =
1
n

n∑

i=1

∆Rand(y(i), argmaxȳ f(x, ȳ)), (3)

regularized by ‖f‖2.
Correlation clustering [3] maintains a symmetric similarity matrix whose el-

ements denote pairwise similarities between objects. This representation allows
to recast the problem as a poly-cut problem in a fully connected graph, where
objects are identified with nodes and edges are weighted with the respective pair-
wise similarities. The optimal partitioning can either be found by minimizing
the edge weights between clusters of objects or by maximizing the edge weights
within clusters of objects. Following the latter leads to the integer optimization
problem

ŷ = argmax
y∈Y

f(x,y) = argmax
y∈Y

|x|∑

j=1

j−1∑

k=1

yjksim(xj , xk) (4)

where yjk indicates wether xj and xk belong to the same cluster. The set Y
contains all equivalence relations over x given as an adjacency matrix, that is,
all y which satisfy the triangle inequality (1− yjk) + (1− ykl) ≥ (1− yjl) where
yjk ∈ {0, 1}. The maximum is attained by the partitioning y that maximizes
the within-cluster similarities. We follow [13] and use a parameterized similarity
measure between two objects xj and xk given by

sim(xj , xk) =
T∑

t=1

wtφt(xj , xk) = w>Φ(xj , xk), (5)

where Φ(xj , xk) = (..., φt(xj , xk), ...)> is the similarity vector of xj and xk; e.g.,
in our running example φ234(xj , xk) might be an indicator function that equals
1 if both mails are of the same mime-type. Substituting 5 into 4 shows that we
can rewrite f as a generalized linear model in joint input output space

f(x,y) =
|x|∑

j=1

j−1∑

k=1

yjksim(xj , xk) (6)

=
|x|∑

j=1

j−1∑

k=1

yjkw>Φ(xj , xk) (7)

= w>

|x|∑

j=1

j−1∑

k=1

yjkΦ(xj , xk)

︸ ︷︷ ︸
=:Ψ(x,y)

(8)

= w>Ψ(x,y). (9)

Discriminative Identification of Duplicates 17

In the following we will refer to a sample S of n input output pairs
(x(1),y(1)), . . . , (x(n),y(n)), drawn i.i.d. according to P (x,y). The i-th pair con-
tains |x(i)| = mi instances x

(i)
1 , . . . , x

(i)
mi with adjacency matrix y(i) such that

y
(i)
jk = 1 if x

(i)
j and x

(i)
k are in the same partition. We denote the set of all

adjacency matrices of possible partitionings of the i-th set by Y(i).

4 Discriminative Identification of Duplicates

In this section we present three discriminative approaches to the identification
of duplicates: an integrated QP-formulation, a sequential multi-class approach,
and a pairwise classifier.

4.1 Integrated Optimization Problem

Bansal et al. [3] show that exact inference is NP-complete. However, the optimal
solution can be approximated by substituting real valued edge weights zjk ∈
[0, 1] for the integer valued edge weights yjk ∈ {0, 1}. The decoding problem in
Equation 4 can be solved approximately by the following decoding strategy.

Decoding Strategy 1 Given m instances x1, . . . , xm ∈ X and a similar-
ity measure simw : X × X → R. Over all values z ∈ Rm maximize∑m

j=1

∑j−1
k=1 zjksim(xj , xk) subject to the constraints ∀j,k,l (1− zjk)+ (1− zkl) ≥

(1− zjl) and ∀j,k 0 ≤ zjk ≤ 1.

The substitution of the approximate labels, gives rise to the loss function
∆Rand(y, z) =

∑
j,k<j(|yjk − zjk|)/|y|. The optimization problem of the struc-

tural support vector machine in terms of approximate labels z can be stated as
follows.

Optimization Problem 1 Given n labeled clusterings, loss function ∆Rand,
C > 0; over all w and ξi minimize ||w||2 + C

∑n
i=1 ξi subject to the con-

straints ∀n
i=1w

>Ψ(x(i),y(i)) + ξi ≥ maxz∈Z(i)

[
w>Ψ(x(i), z) + ∆Rand(y(i), z)

]

and ∀n
i=1ξi ≥ 0, where Z(i) consists of all possible approximate labelings of x(i)

which satisfy the triangle inequality.

Similar to [19] the loss can be integrated into the decoding of the top scoring
clustering. This gives us

max
zi

d(i) +
∑

j,k<j

zi,jk(w>Φ(x(i)
j , x

(i)
k)− e

(i)
jk)

s.t. ∀j,k,l (1− zi,jk) + (1− zi,kl) ≥ (1− zi,jl),
∀j, k 0 ≤ zi,jk ≤ 1,

where d(i) =
P

j,k<j y
(i)
jk

|y(i)| and e
(i)
jk =

2y
(i)
jk−1

|y(i)| . Integrating the constraint into the
objective function leads to the corresponding Lagrangian

L(zi, λi, νi, κi) = d(i) + ν>i 1 + λ>i 1 +
h
w>Φ(x(i))− e(i) −A(i)λ>i − νi + κi

i>
zi

18 Peter Haider, Ulf Brefeld, and Tobias Scheffer

where the coefficient matrix A(i) is defined as

A
(i)
jkl,j′k′ :=

+1 : if (j′ = j ∧ k′ = k) ∨ (j′ = k ∧ k′ = l)
−1 : if j′ = j ∧ k′ = l

0 : otherwise

The substitution of the derivatives with respect to zi into the Lagrangian and
elimination of κi removes its dependence on the primal variables and we resolve
the corresponding dual that is given by

min
λi,νi

d(i) + ν>i 1 + λ>i 1

s.t. w>Φ(x(i))− e(i) −A(i)λi − νi ≤ 0

λi, νi ≥ 0.

Strong duality holds and the minimization over λ and ν can be combined with
the minimization over w. The reintegration into optimization problem 1 leads
to the integrated Optimization Problem 2 that can be solved directly.

Optimization Problem 2 Given n labeled clusterings, C > 0; over all w, ξi,
λi, and νi, minimize ||w||2 + C

∑n
i=1 ξi subject to the constraints 10-12.

∀n
i=1 w>Ψ(x(i),y(i)) + ξi ≥ d(i) + ν>i 1 + λ>i 1, (10)
∀n

i=1 w>Φ(x(i))− e(i) ≤ A(i)λi + νi, (11)
∀n

i=1 λi, νi ≥ 0, (12)

The number of Lagrange multipliers λi in Optimization Problem 2 is cubic in
the number of instances mi; i.e., its solution becomes intractable for large data
sets. In the following two sections we present two approaches that overcome this
drawback.

4.2 Sequential Clustering

Our second approach accounts for the sequential nature of the data. In the server-
sided batch detection scenario incoming mails have to be classified immediately
upon arrival. In our running example each incoming email is either grouped to
an existing batch or it becomes its own singelton batch.

Therefore, it suffices to maintain a window that contains the last m incoming
mails. As soon as a new mail arrives it is substituted for the oldest mail in the
window and a new clustering is computed. The latter step can be approximated
by finding a cluster or opening a new batch only for the latest mail, respectively.
Algorithm 1 details this approach.

The adjacency matrix y can be obtained from the clustering C by yjk(C) =
[[∃c ∈ C : xj ∈ c∧xk ∈ c]]. Given a fixed clustering of x1, . . . , xm−1, the decoding

Discriminative Identification of Duplicates 19

Algorithm 1 Sequential Clustering
1 C ← {}
2 for j = 1 . . . |x|
3 cj = argmaxc∈C

P
xk∈c w>Φ(xk, xj)

4 if
P

xk∈cj
w>Φ(xk, xj) < 0

5 C ← C ∪ {{xj}}
6 else
7 C ← C \ {cj} ∪ {cj ∪ {xj}}
8 endif
9 endfor
10 return C

problem in 4 reduces to

max
y∈Y

m∑

j=1

j−1∑

k=1

yjksimw(xj , xk) = (13)

max
y∈Y

m−1∑

j=1

j−1∑

k=1

yjksimw(xj , xk) +
m−1∑

k=1

ymksimw(xm, xk). (14)

The first summand of Equation 14 is constant; thus finding a cluster for xm

reduces to the Decoding Strategy 2, where the additional cluster c̄ accounts for
xm being dissimilar to its predecessors in the window.

Decoding Strategy 2 Given m instances x1, . . . , xm ∈ X , similarity measure
simw : X ×X → R, and a clustering C of instances x1, . . . , xm−1; over all values
c ∈ {C⋃

c̄} maximize
∑

xk∈c simw(xm, xk).

If we denote the set of all possible clusterings in which xj is reassigned to any
cluster by Cj we derive the following minimization problem.

Optimization Problem 3 Given n labeled clusterings, C > 0; over all w and
ξij, minimize 1

2‖w‖2 + C
∑

i,j ξij subject to the constraints ∀N
i=1, ∀mi

j=1, ∀Ĉ ∈
C(i)

j w>Ψ(x(i),y(i)) + ξij ≥ [w>Ψ(x(i),y(Ĉ)) + ∆(y(i),y(Ĉ))]
Since the number of clusters is upper bounded by the window size, |C| ≤ m,
Optimization Problem 3 has at most n ·∑n

i=1 m2
i constraints and can be solved

by standard techniques. This approach is equivalent to single-vector multi-class
classification [12]. Also note that the obtained solution for the weight vector w
is independent of the used decoding strategy, and can thus be used with every
other approximation of correlation clustering as well.

4.3 Pairwise Classification

The multi-class approach can be further approximated by a binary classifier that
outputs class +1 if two instances are similar and class −1 otherwise. Therefore,

20 Peter Haider, Ulf Brefeld, and Tobias Scheffer

we use all pairs of instances (x(i)
j , x

(i)
k) within the training tuple (x(i),y(i)) as

inputs and define the labels υ
(i)
jk = +1 if y

(i)
jk = 1, and υ

(i)
jk = −1 if y

(i)
jk = 0.

This leads us to the standard formulation of a binary support vector machine in
Optimization Problem 4.

Optimization Problem 4 Given n labeled clusterings, C > 0; over all
w and ξijk, minimize 1

2‖w‖2 + C
∑

i,j,k ξijk subject to the constraints

∀N
i=1, ∀mi

j=1, ∀j−1
k=1υ

(i)
jk (w>Φ(x(i)

j , x
(i)
k) + b) ≥ 1− ξijk.

The weight vector w can directly be used as parameter of the similarity mea-
sure, i.e. the decision function of the binary classifier is equivalent to the pairwise
similarity function. Analogously to the sequential clustering, the pairwise clas-
sification allows the use of any decoding strategy.

However, this approach suffers several drawbacks compared to the two pre-
viously devised solutions. Firstly, an application-specific loss function cannot be
incorporated into the learning problem that implicitly minimizes the 0/1 error.
Secondly, transitive dependencies within the training tuples are ignored, that is
the training instances are not i.i.d.

5 Empirical Evaluation

We investigate our approaches by applying them to an email batch identification
task. We compare the presented training methods with the iterative learning
procedure for support vector machines with structured outputs by Finley and
Joachims [13]. We explore the benefit of each approach and perform an error
analysis.

In our experiments we use a slightly modified variant of the loss function
based on the Rand index. Instead of normalizing over the number of all mails as
in Equation 2 we use the number of emails in the current batch as normalization.
That is, each wrong edge is weighted by the inverse size of its batch. The loss
function 15 is linear in z and independent of the size of the batches, and thus
better reflects the intuition about the quality of a batch detection method.

∆N (y∗,y, j) =
∑

k 6=j

[[[[y∗j = y∗k]] 6= [[yj = yk]]]]∑
k′ 6=j [[y

∗
k′ = y∗k]]

. (15)

The feature functions are simple pairwise indicators or measures, such as equality
of sender or mimetype, difference of message length, edit-distance of the subject
lines, cosine distance of TFIDF-vectors, or differences in letter-bigram-counts.
Each wrong edge gets weighted by the inverse of the number of members of its
corresponding batch, to even out the influences of large and small batches.

We evaluate our proposed methods on a set of 3000 emails, consisting of
2000 spam mails collected by an email service provider, 1000 non-spam mails
from the public Enron corpus, and 500 newsletters. These mails were manually

Discriminative Identification of Duplicates 21

grouped into batches, resulting in 136 batches with at average 17.7 emails and
598 remaining single mails. Our results are obtained through a cross validation
procedure, where each test set contains a non-singular batch and is filled up with
randomly drawn emails to a total size of 100 emails. The training data consist
of nine sets of 100 emails each, sampled randomly from the remaining emails.

Each of the obtained models is applied to the test sets, using either the ap-
proximative clustering based on the linear program, the sequential clustering
algorithm, or the greedy clustering algorithm by [13]. Figure 1 shows the experi-
mental results of three of the training methods. The integrated learning problem
is not tractable for this amount of training data.

In a second experiment, we split each training and each test set in two halves,
resulting in 18 sets of 50 emails each for training. That is, the total number of
training emails remains the same but the integrated learning problem becomes
tractable. Figure 2 shows the results for this setting.

In both experiments, the LP-decoding strategy and the greedy clustering
algorithm perform equally well. By contrast, the sequential clustering performs
significantly worse in most of the cases according to a paired t-Test on a 5%
confidence level. However, this loss in performance comes with a gain in execution
time that is linear in the number of examples (see Table 2).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

N
or

m
al

iz
ed

 lo
ss

 p
er

 m
ai

l

LP-Clustering
Greedy Clustering

Sequential Clustering

Iterative Multi-Class Pairwise

Fig. 1. Average loss and standard errors for m = 100.

Figure 3 details which fraction of the error is caused by the decoding and
which by the learning algorithm. The dashed area indicates the error caused by
the training method. We quantify this error by counting the number of different
edges in the true and the predicted similarity matrix, respectively. The additional
error of the subsequent decoding is indicated for all three decoding strategies.

22 Peter Haider, Ulf Brefeld, and Tobias Scheffer

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

N
or

m
al

iz
ed

 lo
ss

 p
er

 m
ai

l

LP-Clustering
Greedy Clustering

Sequential Clustering

Integrated Iterative Multi-Class Pairwise

Fig. 2. Average loss and standard errors for m = 50.

Except for the sequential decoding, the multi-class optimization leads to cor-
rect clusterings that fulfill the transitivity constraints between triples of nodes.
On the contrary, the solution of the pairwise optimization has the lowest error
but fails to satisfy these transitivity constraints. Neither decoding strategy can
compensate the errors.

Table 2. Execution time of the decoding strategies in seconds.

Window size m 25 50 100 200

LP-Clustering 2.3 · 10−1 6.4 · 100 4.0 · 102

Greedy Clustering 6.4 · 10−4 2.5 · 10−3 9.9 · 10−3 4.0 · 10−2

Sequential Clustering 1.5 · 10−5 2.9 · 10−5 5.6 · 10−5 1.1 · 10−4

6 Conclusion

We devised three large margin approaches to supervised clustering of sequen-
tial data. The integrated approach has at least cubic execution time and can be
solved directly for small training sets. Treating the problem as multi-class clas-
sification allowed us to use larger data sets. The pairwise classification approach
is a rough but fast approximation of the original problem.

Experimental results were carried out on all combinations of learning algo-
rithms and decoding strategies in our discourse area. The results showed that
the LP-decoding performs equally well as the greedy algorithm presented in [13].

Discriminative Identification of Duplicates 23

 0

 1

 2

 3

 4

 5

 6

 7

 8

V
io

la
te

d
ed

ge
s

co
m

pa
re

d
to

 tr
ue

 p
ar

tit
io

n

LP−Clustering
Greedy Clustering

Sequential Clustering
Similarity Matrix

Integrated Iterative Multi−Class Pairwise

Fig. 3. Fraction of the loss induced by the learning algorithm (similarity matrix) and
the decoding.

However, both methods are computationally expensive. The sequential decoding
makes use of the sequential nature of the data and leads to slightly increased
losses.

References

1. Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector
machines. In Proceedings of the International Conference on Machine Learning,
2003.

2. Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In Pro-
ceedings of the 43rd Symposium on Foundations of Computer Science, 2002.

3. Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine
Learning, 56(1-3):89–113, 2004.

4. Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning
distance functions using equivalence relations. In ICML ’03: Proceedings of the
Twentieth International Conference on Machine Learning, 2003.

5. Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using
learnable string similarity measures. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining, 2003.

6. Sergey Brin, James Davis, and Hector Garćıa-Molina. Copy detection mechanisms
for digital documents. In Proceedings of the International Conference on Manage-
ment of Data, 1995.

24 Peter Haider, Ulf Brefeld, and Tobias Scheffer

7. Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with
qualitative information. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, 2003.

8. J. Cooper, A. Coden, and E. Brown. Detecting similar documents using salient
terms. In Proceedings of the International Conference on Information and Knowl-
edge Management, 2002.

9. J. Cooper, A. Coden, and E. Brown. A novel method for detecting similar doc-
uments. In Proceedings of the 35th Annual Hawaii International Conference on
System Sciences, 2002.

10. Erik D. Demaine and Nicole Immorlica. Correlation clustering with partial infor-
mation. In Proceedings of the 6th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems and 7th International Workshop
on Randomization and Approximation Techniques in Computer Science, 2003.

11. Dotan Emanuel and Amos Fiat. Correlation clustering – minimizing disagreements
on arbitrary weighted graphs. Lecture Notes in Computer Science, 2832:208–220,
2003.

12. Michael Fink, Shai Shalev-Shwartz, Yoram Singer, and Shimon Ullman. Online
multiclass learning by interclass hypothesis sharing. In ICML ’06: Proceedings of
the 23nd international conference on Machine learning, 2006.

13. Thomas Finley and Thorsten Joachims. Supervised clustering with support vector
machines. In Proceedings of the International Conference on Machine Learning,
2005.

14. Aleksander Kolcz, Abdur Chowdhury, and Joshua Alspector. The impact of feature
selection on signature-driven spam detection. In Proceedings of the First Confer-
ence on Email and Anti-Spam, 2004.

15. J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: representation
and clique selection. In Proc. of the International Conference on Machine Learning,
2004.

16. W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66:622–626, 1971.

17. Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite
programming. In Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, 2004.

18. B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances
in Neural Information Processing Systems, 2004.

19. Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learn-
ing structured prediction models: a large margin approach. In Proceedings of the
International Conference on Machine Learning, 2005.

20. I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

21. Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained
k-means clustering with background knowledge. In ICML ’01: Proceedings of the
Eighteenth International Conference on Machine Learning, pages 577–584, San
Francisco, CA, USA, 2001.

22. Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance
metric learning, with application to clustering with side-information. In Advances
in Neural Information Processing Systems. The MIT Press, 2002.

23. Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D. Joseph, and John
Kubiatowicz. Approximate object location and spam filtering on peer-to-peer sys-
tems. In Middleware, 2003.

Frequent Hypergraph Mining

Tamás Horváth1,2, Björn Bringmann3, and Luc De Raedt3

1 Department of Computer Science III, University of Bonn, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

3 Institute for Computer Science, Machine Learning Lab, University of Freiburg, Germany

Abstract. The class of frequent hypergraph mining problems is introduced which
includes the frequent graph mining problem class and contains also the frequent
itemset mining problem. We study the computational properties of different prob-
lems belonging to this class. In particular, besides negative results, we present
practically relevant problems that can be solved in incremental-polynomial time.
Some of our practical algorithms are obtained by reductions to frequent graph
mining and itemset mining problems. Our experimental results in the domain of
citation analysis show the potential of the framework on problems that have no
natural representation as an ordinary graph.

1 Introduction

The field of data mining has studied increasingly expressive representations in the past
few years. Whereas the original formulation of frequent pattern mining still employed
itemsets [1], researchers have soon studied more expressive representations such as
sequences and episodes (e.g., [11]), trees (e.g., [4]), and more recently, graph mining
has become an important focus of research (e.g., [12, 13]). These developments have
been motivated and accompanied by new and challenging application areas. Indeed,
itemsets apply to basket-analysis, sequences and episodes to alarm monitoring, trees to
document mining, and graph mining to applications in computational chemistry.

In this paper, we introduce the next natural step in this evolution: the mining of la-
beled hypergraphs. In a similar way that tree mining generalizes sequence mining, and
graph mining generalizes tree mining, hypergraph mining is a natural generalization of
graph mining. The presented framework is especially applicable to problem domains
which do not have a natural representation as ordinary graphs. One such application
is used in the experimental section of this paper. It is concerned with citation analysis,
more specifically, with analyzing bibliographies of a set of papers. The bibliography of
a paper can be viewed as a hypergraph, in which each author corresponds to a vertex
and each paper to the hyperedge containing all authors of the paper. By mining for fre-
quent subhypergraphs in the bibliographies of a set of papers (e.g. past KDD conference
papers), one should be able to discover common citation patterns in a particular domain
(such as SIGKDD). These patterns might then be employed in a recommender sys-
tem that assists scientists while making bibliographies. A similar approach in a basket-
analysis context allows one to represent the transactions over a specific period of time
of one family as a hypergraph, where the products correspond to the vertices and the

26 Tamás Horváth, Björn Bringmann, and Luc De Raedt

transactions to the hyperedges. Mining such data could provide insight into the overall
purchasing behavior of families.

The main contribution of this paper is the introduction of a general framework of
mining frequent hypergraphs. The framework can be specialized in a number of dif-
ferent ways, according to the notion of the generalization relation employed as well as
the type of hypergraphs considered. We consider different problems where the gener-
alization relation is defined by subhypergraph isomorphism, study their computational
properties, and present positive and negative results. More specifically, we show that
there is no output-polynomial time algorithm for the frequent hypergraph mining prob-
lem even in the case of strong structural assumptions on the hyperedges. On the other
hand, by restricting the functions labeling the vertices, we get positive results. Some
of the results are obtained by employing reductions from frequent hypergraph min-
ing problems to ordinary graph mining and itemset mining problems. We present also
experiments in the above sketched citation analysis domain which indicate that these
reductions can effectively be applied in practice. Essentially, we gathered the bibliogra-
phies of 5 SIGKDD, 30 SIGMOD, and 30 SIGGRAPH conferences and searched for
frequent hypergraphs in each conference.

The rest of the paper is organized as follows: in Section 2, we introduce the neces-
sary notions concerning hypergraphs and in Section 3, we define the problem class of
frequent hypergraph mining. In Section 4, we study the frequent subhypergraph mining
problem. In Section 5, we present some experiments using the citation analysis prob-
lem, and finally, in Section 6, we conclude and list some problems for future work. Due
to space limitations, proofs are only sketched or even omitted in this short version.

2 Notions and Notations

We recall some basic notions and notations related to graphs and hypergraphs (see, e.g.,
[2, 5] for detailed introductions into these fields). For a set S and non-negative integer
k, [S]k denotes the family of k-subsets of S, i.e., [S]k = {S′ ⊆ S : |S′| = k}.
Graphs and Hypergraphs An (undirected) graph G consists of a finite set V of ver-
tices and a set E ⊆ [V]2 of edges. G is bipartite if G has a vertex 2-coloring, i.e., if
V admits a partition into V1 and V2 such that E /∈ [V1]2 ∪ [V2]2 for every E ∈ E . A
hypergraph H is a pair (V, E), where V is a finite set and E is a family of nonempty
subsets of V such that

⋃
E∈E E = V . The elements of V and E are called vertices and

edges (or hyperedges), respectively. H is r-uniform for some integer r > 0 if E ⊆ [V]r.
The rank of H , denoted r(H), is the cardinality of its largest hyperedge and the size of
H , denoted size(H), is the number of hyperedges of H .

Note that ordinary undirected graphs without isolated vertices form a special case
of hypergraphs, i.e., the class of 2-uniform hypergraphs. We note that every hypergraph
H = (V, E) can be represented by a bipartite incidence graph B(H) = (V ∪ E , E ′),
where E ′ = {{v, E} : v ∈ V,E ∈ E , and v ∈ E}.
Labeled Hypergraphs A labeled hypergraph is a triple H = (V, E , λ), where (V, E)
is a hypergraph, and λ, called labeling function, is a function mapping V to N.4 Unless

4 We will only consider labeling functions defined on the vertex set because any hypergraph
H = (V, E , λ) with λ : V ∪ E → N satisfying λ(v) 6= λ(E) for every v ∈ V and E ∈ E

Frequent Hypergraph Mining 27

otherwise stated, by hypergraphs (resp. graphs) we always mean labeled hypergraphs
(resp. labeled graphs), and denote the set of vertices, the set of edges, and the labeling
function of a hypergraph (resp. graph) H by VH , EH , and λH , respectively. The set of all
hypergraphs is denoted by H and Hr denotes the set of all r-uniform hypergraphs. For
a hypergraph H ∈ H and subset V ′ ⊆ VH , we denote the multiset5 {λH(v) : v ∈ V ′}
by λH(V ′). A path connecting the vertices u, v ∈ VH is a sequence E1, . . . , Ek of
edges of H such that u ∈ E1, v ∈ Ek, and Ei ∩ Ei+1 6= ∅ for every i = 1, . . . , k − 1.
A hypergraph is connected if there is a path between any pair of its vertices. The set of
connected hypergraphs is denoted by Hc. Clearly, Hc ⊂ H.
Injective Hypergraphs Depending on the labeling functions, in this paper we will
consider two special classes of hypergraphs. A hypergraph H ∈ H is node injective
if λH is injective, and it is edge injective whenever λH(E) = λH(E′) if and only if
E = E′ for every E, E′ ∈ EH . The sets of node and edge injective hypergraphs will be
denoted by Hni and Hei, respectively. Clearly, Hni ⊆ Hei ⊆ H.
Hypergraph Isomorphism Let H1,H2 ∈ H be hypergraphs. H1 and H2 are called
isomorphic, denoted by H1 ' H2, if there is a bijection ϕ : VH1 → VH2 such that ϕ
preserves the labels, i.e., λH1(v) = λH2(ϕ(v)) for every v ∈ VH1 , and ϕ preserves the
hyperedges in both directions, i.e., for every E ⊆ VH1 it holds that E ∈ EH1 if and
only if {ϕ(v) : v ∈ E} ∈ EH2 . Throughout this paper, two hypergraphs H1 and H2 are
considered to be the same if H1 ' H2.
Subhypergraphs A subhypergraph of a hypergraph H ∈ H is a hypergraph H ′ ∈ H
satisfying VH′ ⊆ VH , EH′ ⊆ EH , and λH′(v) = λH(v) for every v ∈ VH′ .

3 Frequent Hypergraph Mining

Many problems in data mining can be viewed as a special case of the problem of enu-
merating the elements of a quasiordered set6, which satisfy some monotone property
(see, e.g., [3, 9]). In this section, we define a new class of subproblems of this enumera-
tion problem, the class of frequent hypergraph mining problems. In the next section, we
then discuss the computational aspects of some problems belonging to this class. We
start with the definition of a more general problem class.

The Frequent Pattern Mining Problem Class (CFPM): Each problem belonging to this
class is given by a fixed triple (LD,LP , 4), where LD is a transaction language,
LP is a pattern language, and 4, called the generalization relation, is a quasi-order
on LD ∪ LP . For such a triple, the (LD,LP ,4)-FREQUENT-PATTERN-MINING
problem is defined as follows: Given a finite set D ⊆ LD of transactions and an
integer t > 0, called frequency threshold, compute the set F(LD,LP ,4)(D, t) of
frequent patterns defined by

F(LD,LP ,4)(D, t) = {ϕ ∈ LP : |{τ ∈ D : ϕ 4 τ}| ≥ t} .

can be transformed into a hypergraph H ′ = (V ′, E ′, λ′) with V ′ = V ∪ {vE : E ∈ E},
E ′ = {E ∪ {vE} : E ∈ E}, and with λ′ : V ′ → N mapping every new vertex vE ∈ V ′ \ V
to λ(E) and every v ∈ V to λ(v).

5 A multiset M is a pair (S, f), where S is a set and f defines the multiplicity of the elements
of S in M , i.e., f is a function mapping S to the cardinal numbers greater than 0.

6 A binary relation is a quasiorder (or preorder), if it is reflexive and transitive.

28 Tamás Horváth, Björn Bringmann, and Luc De Raedt

The transitivity of 4 implies that frequency is a monotone property, i.e., for every ϕ, θ ∈
LP it holds that θ ∈ F(LD,LP ,4)(D, t) whenever ϕ ∈ F(LD,LP ,4)(D, t) and θ 4 ϕ.

We now define two subclasses of CFPM by restricting the transaction and pattern
languages to hypergraphs and graphs, respectively.

The Frequent Hypergraph Mining Problem Class (CFHM): It consists of the set of
(LD,LP , 4)-FREQUENT-PATTERN-MINING problems satisfying LD,LP ⊆ H.

The Frequent Graph Mining Problem Class (CFGM): It is the set of (LD,LP ,4)-
FREQUENT-PATTERN-MINING problems satisfying LD,LP ⊆ H2 (i.e., they are
sets of labeled graphs).

Clearly, CFGM (CFHM (CFPM. Furthermore, the frequent itemset mining prob-
lem [1] belongs to CFPM; for this problem we have LD = LP = {X ⊂ N : |X| < ∞}
and 4 is the subset relation. In fact, the frequent itemset mining problem is contained
by CFHM. Indeed, this problem can be considered as the (Hni

1 ,Hni
1 ,4)-FREQUENT-

HYPERGRAPH-MINING problem, where 4 is the subhypergraph relation and the trans-
action and pattern languages are the set of 1-uniform node injective hypergraphs.

To sketch the relation among frequent pattern mining problems, we need the no-
tion of polynomial reduction. More precisely, let P1 = (LD,1,LP,1, 41) and P2 =
(LD,2,LP,2,42) be frequent pattern mining problems, and I1 = (D1, t1) and I2 =
(D2, t2) be instances of P1 and P2, respectively. Then I1 is polynomially equivalent to
I2 if there is a function f : LP,1 → LP,2 such that

(i) f is a bijection between F(LD,1,LP,1,41)(D1, t1) and F(LD,2,LP,2,42)(D2, t2) and
(ii) the inverse of f on F(LD,2,LP,2,42)(D2, t2) can be computed in polynomial time.

The definition implies that ϕ ∈ LP,1 is frequent for I1 if and only if f(ϕ) ∈ LP,2 is
frequent for I2. Using the notion of polynomial equivalence, we say that P1 is polyno-
mially reducible to P2 if there is a function g from the set of instances of P1 to the set
of instances of P2 such that

(i) I is polynomially equivalent to g(I) for every I ∈ P1 and
(ii) g can be computed in polynomial time.

Thus, if P1 is polynomial-time reducible to P2 then any enumeration algorithm solving
P2 can be used to solve P1.

The parameter of a (LD,LP , 4)-FREQUENT-HYPERGRAPH-MINING problem for-
mulated above is the size of D defined by

size(D) = max

{ ∑

H∈D
size(H), max

H∈D
r(H)

}
.

Note that the size of the output, i.e. the set to be enumerated, can be exponential in the
size of the input. Because in such cases, it is impossible to compute them in time poly-
nomial only in the size of the input, we investigate whether the enumeration problems
can be solved in incremental polynomial time or at least in output-polynomial time (or
polynomial total time) (see, e.g., [10]). In the first, more restrictive case, the algorithm

Frequent Hypergraph Mining 29

is required to list the first N elements of the output in time polynomial in the combined
size of the input and the set of these N elements. In the second, more liberal case, the
algorithm has to solve the problem in time polynomial in the combined size of the in-
put and the entire set to be enumerated. Note that the class of output-polynomial time
algorithms properly entails the class of incremental polynomial time algorithms.

To close this section, we note that several frequent hypergraph mining problems,
even frequent graph mining problems, cannot be solved in output-polynomial time. In
Theorem 1 below we present such a hard problem.

Theorem 1 Let LD ⊆ H2 and let LP ⊆ H2 be the set of complete graphs such that
every vertex of every graph in LD ∪ LP is labeled by the same symbol, say 1, and
let 4 be the homomorphism 4h between labeled graphs7. Then, unless P = NP, the
(LD,LP , 4h)-FREQUENT-GRAPH-MINING problem cannot be solved in output poly-
nomial time.

Proof (sketch). Let G = (V, E) be an unlabeled graph and let G′ be the labeled graph
obtained from G by assigning 1 to each vertex of G. Then, forD = {G′} and t = 1, we
have that G has a clique of size k if and only if there is a C ∈ F(LD,LP ,4h)(D, t) with
k vertices. Since |F(LD,LP ,4h)(D, t)| ≤ |V |, the (LD,LP , 4h)-FREQUENT-GRAPH-
MINING problem cannot be computed in output polynomial time (unless P = NP, of
course), as otherwise the NP-complete maximum clique problem [8] could be decided
in polynomial time by computing the largest pattern in |F(LD,LP ,4h)(D, t)|.

4 Frequent Subhypergraph Mining

By Theorem 1, the class CFGM, and thus the more general class CFHM as well, contains
problems that cannot be solved in output polynomial time (unless P = NP, of course).
This negative result raises the challenge of identifying practically relevant and tractable
problems belonging to CFHM. In this section, we take a first step towards this direction
by considering the problem of frequent hypergraph mining w.r.t. subhypergraph iso-
morphism. This problem, called frequent subhypergraph mining, is a natural problem
of the frequent hypergraph mining problem class CFHM and can be applied to many
practical problems. In Section 5, we will employ this setting to tackle the citation anal-
ysis problem sketched in the introduction.

We start with the definition of the generalization relation used in this section. Let
H1, H2 ∈ H. H1 can be embedded into H2 by subhypergraph isomorphism, denoted
by H1 4i H2, if H2 has a subhypergraph isomorphic to H1. Note that 4i generalizes
the notion of subgraph isomorphism between ordinary labeled graphs to hypergraphs.
Since 4i is a partial order on H, it is a generalization relation on every subset of H.
Using 4i, we consider the following two problems of CFHM:

(i) The (H,H, 4i)-FREQUENT-HYPERGRAPH-MINING problem called the frequent
subhypergraph mining problem and

(ii) the (H,Hc, 4i)-FREQUENT-HYPERGRAPH-MINING problem called the frequent
connected subhypergraph mining problem.

7 A homomorphism from a hypergraph H1 ∈ H to a hypergraph H2 ∈ H, denoted H1 4h H2,
is a function ϕ : VH1 → VH2 preserving the labels and edges.

30 Tamás Horváth, Björn Bringmann, and Luc De Raedt

Algorithm 1 FREQUENT SUBHYPERGRAPH MINING

Require: instance (D, t)
Ensure: F(H,H,4i)(D, t)

1: F := ∅
2: BD := {LB(H) : H ∈ D}
3: Compute a next t-frequent bipartite subgraph B of the set BD if it exists;

otherwise return F
4: if B corresponds to some hypergraph HB then

F := F ∪ {HB}
5: goto 3

4.1 A Naı̈ve Algorithm

Using the bipartite graph representation of hypergraphs, in this section we present a
naı̈ve algorithm solving the frequent subhypergraph mining problem. For an instance
(D, t) of this problem, let n ∈ N be an upper bound on the labels occurring in the
hypergraphs of D and let µ be an injection assigning an integer greater than n to every
finite multiset of N.

For a hypergraph H ∈ H, let LB(H) ∈ H2 be the (labeled) bipartite graph such
that

(i) (VLB(H), ELB(H)) is the unlabeled bipartite incidence graph of the unlabeled hy-
pergraph (VH , EH), and

(ii) for every v ∈ VLB(H) = VH ∪ EH ,

λLB(H)(v) =

{
λH(v) if v ∈ VH

µ(λH(v)) otherwise (i.e., v ∈ EH) .

Clearly, a subgraph G of LB(H) represents a subhypergraph of H if and only if each
vertex of G corresponding to a hyperedge E ∈ EH is connected with exactly |E| ver-
tices in G. Using the above transformation and considerations, the set F(H,H,4i)(D, t)
of t-frequent subhypergraphs for the instance (D, t) can be computed by Algorithm 1.

Due to space limitations, we omit a detailed analysis of Algorithm 1 that does not
work in output polynomial time in the worst case. We note, however, that even this naı̈ve
algorithm proved to be effective in time on the citation analysis domain (cf. Section 5).

4.2 Negative Results

In this section we investigate further problems obtained by structural restrictions hoping
to identify tractable fragments of the frequent subhypergraph mining problem. Unfor-
tunately, we have not been able to find any interesting positive result in this way. This is
because, as indicate the negative results of this section, the problem remains hard even
for very restricted hypergraph classes. Without proof, in Theorem 2 below we state that
even for 2-uniform hypergraphs (i.e., ordinary graphs), the frequent connected subhy-
pergraph mining problem is intractable in output-polynomial time. Since this is one

Frequent Hypergraph Mining 31

of the most frequently considered frequent graph mining problems, the negative result
below may be of interest in itself.

Theorem 2 If P 6= NP, there is no output-polynomial time algorithm solving the fre-
quent connected subhypergraph mining problem even in the case of 2-unary hyper-
graphs (i.e., ordinary graphs).

As a further restriction, we consider the frequent subhypergraph mining problem
restricted to acyclic hypergraphs [7] because several NP-hard problems on hypergraphs
become polynomial for acyclic hypergraphs. A hypergraph H ∈ H is α-acyclic if
one can remove all of its vertices and edges by deleting repeatedly either an edge
that is empty or is contained by another edge, or a vertex contained by at most one
edge [14]. Note that α-acyclicity is not a hereditary property, that is, α-acyclic hy-
pergraphs may have subhypergraphs that are not α-acyclic. Consider for example the
hypergraph H ∈ H such that EH = {{a, b}, {b, c}, {a, c}, {a, b, c}}. While H is α-
acyclic, its subhypergraph obtained by removing the edge {a, b, c} is not α-acyclic. To
overcome this anomaly, the following proper subclass of α-acyclic hypergraphs is in-
troduced in [7]: An α-acyclic hypergraph is β-acyclic, if each of its subhypergraphs is
also α-acyclic. Note that forests are 2-uniform β-acyclic hypergraphs.

Even for connected subhypergraphs of 3-uniform β-acyclic hypergraphs, we have a
negative result. Let B3 denote the set of 3-uniform β-acyclic hypergraphs.

Proposition 3 Given a finite set D ⊆ B3 and integer t > 0, deciding whether H ∈
F(B3,Hc,4i)(D, t) is NP-hard.

Proof (sketch). Using a polynomial reduction from the subforest isomorphism prob-
lem8, one can show that deciding subhypergraph isomorphism between 3-uniform, con-
nected, β-acyclic hypergraphs is NP-hard. This implies the statement.

Proposition 3 above indicates that for the frequent subhypergraph mining problem,
the usual frequent pattern mining approaches (such as the level-wise one) will not work
in incremental polynomial time (unless P = NP) because they repeatedly test whether
candidate patterns satisfy the frequency threshold (see, e.g., [9]).

4.3 Tractable Cases

In contrast to the approach discussed in Section 4.2 above, in this section we consider
further special cases of the frequent subhypergraph mining problem that are obtained by
making assumptions on the labeling functions of the transaction hypergraphs. We first
consider the problem for node injective hypergraphs, i.e., where the labeling functions
are injective. We show that for this case, the frequent subhypergraph mining problem
is polynomially reducible to the frequent itemset mining problem and hence, it can
be solved in incremental-polynomial time [1]. We then generalize this positive result to
edge injective hypergraphs, i.e., to hypergraphs not containing two different hyperedges
that are mapped to the same multiset by the labeling function. Although node injective

8 Given a forest F and a tree T , decide whether T has a subgraph isomorphic to F . This problem
is known to be NP-complete [8].

32 Tamás Horváth, Björn Bringmann, and Luc De Raedt

hypergraphs are a special case of edge injective hypergraphs, we discuss the two cases
separately because node injective hypergraphs can be used to model many practical
problems and they permit a simplified algorithmic approach.

Node Injective Hypergraphs As mentioned above, many practical data mining prob-
lems can be modeled by node injective hypergraphs, i.e., by hypergraphs fromHni. Such
applications include problem domains consisting of a finite set of objects (vertices) with
a unique identifier. For node injective hypergraphs, we consider the (Hni,Hni, 4i)-
FREQUENT-HYPERGRAPH-MINING problem which is a special case of the frequent
subhypergraph mining problem.

As an example of a practical application of this problem, we consider the citation
analysis task mentioned in the introduction (cf. also Section 5): Given a setD of articles
and a frequency threshold t > 0, print each family F of groups of authors satisfying the
following property: there exists a subsetD′ ⊆ D of articles of cardinality at least t such
that for every group F ∈ F of authors and for every article D ∈ D′ it holds that D cites
some article written by (exactly) the authors belonging to F . In this enumeration prob-
lem, we can assign a unique non-negative integer to each author, whose papers are cited
by at least one article in D. We can use the node injective hypergraph representation of
a paper’s bibliography defined as follows. For each author cited in the bibliography, in-
troduce a vertex and label it by the integer assigned to the author. Furthermore, for each
cited work add a hyperedge E to the set of hyperedges, where E consists of the vertices
representing the cited work’s authors. Clearly, the hypergraph obtained in this way is
always node injective. Our database D is a set of such node injective hypergraphs.

Theorem 4 below states that for node injective hypergraphs, the frequent subhyper-
graph mining problem is polynomially reducible to the frequent itemset mining prob-
lem. We recall that the frequent itemset mining problem can be considered as a problem
belonging to the class CFHM (cf. Section 3). Notice that in the theorem below, subhy-
pergraphs may be non-connected. The theorem is based on the fact that for every node
injective hypergraphs H1,H2 ∈ Hni, H1 4i H2 if and only if for every E1 ∈ EH1 ,
there is a hyperedge E2 ∈ EH2 such that λH1(E1) = λH2(E2), i.e.,

H1 4i H2 ⇐⇒ {λH1(E) : E ∈ EH1} ⊆ {λH2(E) : E ∈ EH2} .

Note that the above equivalence implies that 4i can be decided efficiently for node
injective hypergraphs.

Theorem 4 The frequent subhypergraph mining problem for node injective hypergraphs
is polynomially reducible to the frequent itemset mining problem.

Due to space limitation, we omit the proof of the theorem which is based on considering
the set of vertex labels of a hyperedge as an item for every hyperedge occurring in the
transaction hypergraphs. Combining the above theorem with the results of [1], we have
the following result on listing frequent subhypergraphs for node injective hypergraphs.

Corollary 5 The frequent subhypergraph mining problem for node injective hyper-
graphs can be solved in incremental polynomial time.

Frequent Hypergraph Mining 33

Algorithm 2 MINING EDGE INJECTIVE HYPERGRAPHS

Require: finite set D ⊆ Hei and integer t > 0
Ensure: F(Hei,Hei,4i)

(D, t)

1: X :=
S

H∈D{λH(E) : E ∈ EH}
2: F := ∅
3: k := 0
4: while k = 0 ∨ Lk 6= ∅ do
5: k := k + 1

6: Ck :=

(
X if k = 1

{Y1 ∪ Y2 ∈ [X]k : Y1, Y2 ∈ Lk−1} otherwise
7: Lk := ∅
8: forall X ′ ∈ Ck do
9: Q := ∅

10: forall H ∈ D do
11: if ∃H ′ ∈ H s.t. X ′ = {λH′(E) : E ∈ EH′} then
12: if ∃(H ′′, f) ∈ Q s.t. H ′′ ' H ′ then
13: change (H ′′, f) in Q to (H ′′, f + 1)
14: else Q := Q ∪ {(H ′, 1)}
15: endfor
16: flag := TRUE
17: forall (H, f) ∈ Q s.t. f ≥ t do
18: F := F ∪ {H}
19: if flag then
20: Lk := Lk ∪ {X ′}
21: flag := FALSE
22: endif
23: endfor
24: endfor
25: endwhile
26: return F

Edge Injective Hypergraphs We now generalize the previous positive result to edge
injective hypergraphs. Since a hypergraph now may contain two vertices with the same
label, a family of multisets of labels doesn’t define a hypergraph uniquely. Hence, a
reduction to frequent itemset mining is not applicable to this case.

Theorem 6 The frequent subhypergraph mining problem for edge injective hypergraphs
can be solved in incremental polynomial time.

Proof (sketch). Due to space limitations, we only sketch the proof. We first note that
subhypergraph isomorphism between edge injective hypergraphs can be decided in
polynomial time. To compute the set of t-frequent hypergraphs, we use an Apriori-like
algorithm given in Algorithm 2.

In line 1 of the algorithm, X is initialized as the set of multisets corresponding to the
edges in the transaction hypergraphs. In Ck (line 6), we compute a family of candidate
sets of multisets. Each set in Ck consists of k multisets. For a set X’ in Ck (see the

34 Tamás Horváth, Björn Bringmann, and Luc De Raedt

Table 1. Datasets used. We list the total number of papers in the proceedings and the number of
authors occurring in the reference lists of the corresponding papers.

dataset years papers authors
KDD 99-04 499 6966

SIGMOD 74-04 1404 11984
SIGGRAPH 74-04 1519 13192

loop starting at line 8), we check for every H ∈ D whether H has a subhypergraph
H ′ such that the set of multisets defined by the edges of H ′ is equal to X ′. Since
edges are invectively labeled, H ′ must contain exactly k hyperedges. If H has such a
subhypergraph H ′ then we check whether we have already found another hypergraph
in the database which has a subhypergraph isomorphic to H ′. If yes, we increment the
counter of this subhypergraph (line 13); otherwise we add H ′ with frequency 1 to the
set Q (line 14). In the loop (17–23) we update the set of frequent hypergraphs and Lk.
One can show that this algorithm works in incremental polynomial time.

5 Experimental Evaluation

In this section, we evaluate our methods on the citation analysis problem discussed ear-
lier. Three bibliographic datasets, the KDD, SIGMOD, and SIGGRAPH, were con-
structed from the ACM Digital Library9. They correspond to the set of all reference lists
of papers found in the proceedings of the respective conferences. The characteristics of
the datasets are listed in Table 1.

Each paper was represented as a hypergraph, as described in Section 4.3. The result-
ing hypergraphs are node injective, and in almost all cases, also disconnected. Because
most existing graph miners only consider connected graphs, we added one special hy-
peredge to each paper, which connects all authors cited in that paper.

We performed experiments with the naı̈ve algorithm based on reduction to frequent
bipartite graph mining (cf. Section 4.1), as well as with the reduction to frequent item-
set mining (cf. Section 4.3). All experiments were run on a workstation, running Suse
Linux 9.2, 3.2 GHz, 2GB of RAM. As graph miner, we employed Siegfried Nijssens’
GASTON [12] and as itemset miner, Bart Goethals’ implementation10 of Apriori. Be-
cause we did not employ a specialized hypergraph or graph miner, the data had to be
pre- and post-processed. We used several perl-scripts to realize this. The pre- and
post-processing steps run in time linear in the number of hypergraphs.

5.1 Experimental Results

The number of frequent patterns for different frequency thresholds for the three datasets
is given in Figure 1. The runtime of the itemset miner was always below 0.1 seconds.
Different from that, the naı̈ve algorithm required much higher runtimes; 833.5, 16.8,

9 http://www.acm.org/
10 http://www.cs.helsinki.fi/u/goethals/software/

Frequent Hypergraph Mining 35

Fig. 1. Number of frequent patterns for different frequency thresholds.

and 9.9 seconds for KDD, SIGGRAPH, and SIGMOD, respectively. These higher
runtimes are essentially due to the problem that only a fraction of the frequent bipartite
graphs correspond in fact to subhypergraphs.

Despite the difference between the runtimes of the two approaches, our experiments
clearly indicate that both reductions can be quite effective in practice.

6 Conclusion and Further Research

The problem class CFHM of frequent hypergraph mining was introduced. It forms a nat-
ural extension of traditional frequent itemset and graph mining. Several problems of
CFHM were studied and positive and negative complexity results were obtained. Cen-
tral to our results is the use of reductions from hypergraph mining problems to itemset
and graph mining problems. These reductions are not only of theoretical interest, but
allow us to set up a number of frequent hypergraph mining experiments even though
we have not implemented a frequent hypergraph mining system. To our knowledge, the
use of such reductions in data mining is new. Indeed, it is much more common in data
mining to spend a lot of time and effort to develop new systems, even though they are
sometimes only variants of existing ones. In our first step of studying some problems
of CFHM, we deliberately did not follow this common methodology, because there are
many problems of CFHM that are interesting (which implies the need for implementing
many variants and optimizations), and also, because we wanted to see how far the re-
ductions would bring us. The experiments clearly indicate that - at least for the citation
analysis problems studied - reductions can be quite effective in practice. In addition,
these experiments provide evidence that frequent hypergraph mining is indeed a useful
generalization of frequent itemset and graph mining and is likely to yield many inter-
esting applications. Finally we list some open questions.

(i) One of the challenges is to identify further problems of CFHM that are enumerable
in incremental or at least in output-polynomial time.

(ii) Besides subhypergraph isomorphism, it would be interesting to investigate frequent
hypergraph mining problems, where the generalization relation is defined by (con-
strained) homomorphisms.

36 Tamás Horváth, Björn Bringmann, and Luc De Raedt

(iii) Since many problems of CFHM can be reduced to frequent graph mining in bipartite
graphs, it would be interesting to develop frequent graph mining algorithms specific
to bipartite graphs.

(iv) The work on frequent hypergraph mining can be related to multi-relational data
mining [6], where each instance consists of multiple tuples over multiple tables in
a relational database. Multi-relational data mining techniques have been applied to
graph mining problems. Hence, the question arises if they are also applicable to
hypergraph mining, and vice versa.

Acknowledgments

The authors thank Mario Boley and Stefan Wrobel for useful comments. Tamás Horváth
was partially supported by the DFG project (WR 40/2-2) Hybride Methoden und Sys-
temarchitekturen für heterogene Informationsräume.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast Discovery of
Association Rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328.
AAAI/MIT Press, Cambridge, MA, 1996.

2. C. Berge. Hypergraphs. North Holland Mathematical Library, Vol. 445. Elsevier, Amster-
dam, 1989.

3. E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino. Dual Bounded Hy-
pergraphs: A Survey. In Proc. of the 2nd SIAM Conference on Data Mining, pages 87–98,
2002.

4. Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent Subtree Mining - An Overview.
Fundamenta Informaticae, 66(1-2):161–198, 2005.

5. R. Diestel. Graph Theory. Springer, New York, 2nd edition, 2000.
6. S. Dzeroski and N. Lavrac, editors. Relational Data Mining. Springer, New York, 2002.
7. R. Fagin. Degrees of Acyclicity for Hypergraphs and Relational Database Schemes. Journal

of the ACM, 30(3):514–550, 1983.
8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to NP-Completeness.

Freeman, San Francisco, CA, 1979.
9. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharm. Discover-

ing All Most Specific Sentences. ACM Trans. on Database Systems, 28(2):140–174, 2003.
10. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On Generating All Maximal Inde-

pendent Sets. Information Processing Letters, 27(3):119–123, 1988.
11. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in Event

Sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.
12. S. Nijssen and J. N. Kok. A Quickstart in Frequent Structure Mining Can Make a Difference.

In Proc. of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 647–652. ACM Press, New York, NY, 2004.

13. X. Yan and J. Han. Gspan: Graph-based Substructure Pattern Mining. In Proc. of the 2002
IEEE International Conference on Data Mining, pages 721–724. IEEE Computer Society,
2002.

14. C. T. Yu and M. Z. Ozsoyoglu. An Algorithm for Tree-Query Membership of a Distributed
Query. In Proc. of Computer Software and Applications Conference, pages 306–312. IEEE
Computer Society, 1979.

Frequent Subgraph Mining in Outerplanar Graphs?

Tamás Horváth1,2, Jan Ramon3, and Stefan Wrobel2,1

1 Dept. of Computer Science III, University of Bonn, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

3 Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium

Abstract. In recent years there has been an increased interest in frequent pattern
discovery in large databases of graph structured objects. While the frequent con-
nected subgraph mining problem for tree datasets can be solved in incremental
polynomial time, it becomes intractable for arbitrary graph databases. Existing
approaches have therefore resorted to various heuristic strategies and restrictions
of the search space, but have not identified a practically relevant tractable graph
class beyond trees. In this paper, we define the class of so called tenuous outerpla-
nar graphs, a strict generalization of trees, develop a frequent subgraph mining
algorithm for tenuous outerplanar graphs that works in incremental polynomial
time, and evaluate the algorithm empirically on the NCI molecular graph dataset.

1 Introduction

The discovery of frequent patterns in a database is one of the central tasks considered in
data mining. In addition to be interesting in their own right, frequent patterns can also
be used as features for predictive data mining tasks (see, e.g., [5]). For a long time, work
on frequent pattern discovery has concentrated on relatively simple notions of patterns
and elements in the database as they are typically used for the discovery of association
rules (simple sets of atomic items). In recent years, however, due to the significance
of application areas such as the analysis of chemical molecules or graph structures in
the WWW, there has been an increased interest in algorithms that can perform frequent
pattern discovery in databases of structured objects such as trees or arbitrary graphs.

While the frequent pattern problem for trees can be solved in incremental poly-
nomial time, i.e., in time polynomial in the combined size of the input and the set of
frequent tree patterns so far computed, the frequent pattern problem for graph struc-
tured databases in the general case cannot be solved in output polynomial time, i.e., in
time polynomial in the combined size of the input and the set of all frequent patterns.
Existing approaches to frequent pattern discovery for graphs have therefore resorted to
various heuristic strategies and restrictions of the search space (see, e.g., [4, 5, 8, 17]),
but have not identified a practically relevant tractable graph class beyond trees.

In this paper, we define the class of so called tenuous outerplanar graphs, which is
the class of planar graphs that can be embedded in the plane in such a way that all of its
vertices lie on the outer boundary, i.e. can be reached from the outside without crossing
any edges, and which have a fixed limit on the number of inside diagonal edges. This

? A longer version of this paper has been accepted to ACM SIGKDD’06.

38 Tamás Horváth, Jan Ramon, and Stefan Wrobel

class of graphs is a strict generalization of trees, and is motivated by the kinds of graphs
actually found in practical applications. In fact, in one of the popular graph mining
data sets, the NCI data set4, 94.3% of all elements are tenuous outerplanar graphs. We
develop an incremental polynomial time algorithm for enumerating frequent tenuous
outerplanar graph patterns.

Our approach is based on a canonical string representation of outerplanar graphs
which may be of interest in itself, and further algorithmic components for mining fre-
quent biconnected outerplanar graphs and candidate generation in an Apriori style al-
gorithm. To map a pattern to graphs in the database, we define a special notion of block
and bridge preserving (BBP) subgraph isomorphism, which is motivated by applica-
tion and complexity considerations, and show that it is decidable in polynomial time
for outerplanar graphs. We note that for trees, which form a special class of outerpla-
nar graphs, BBP subgraph isomorphism is equivalent to subtree isomorphism. Thus,
BBP subgraph isomorphism generalizes subtree isomorphism to graphs, but is at the
same time more specific than subgraph isomorphism. Since in many applications, sub-
graph isomorphism is a non-adequate matching operator (e.g., when pattern matching
is required to preserve certain type of fragments in molecules), by considering BBP
subgraph isomorphism we take a first step towards studying the frequent graph mining
problem w.r.t. non-standard matching operators as well. Beside complexity results, we
present also empirical results which show that the favorable theoretical properties of the
algorithm and pattern class also translate into efficient practical performance.

The paper is organized as follows. In Sections 2 and 3, we define the necessary
notions and the problem setting for this work, respectively. Section 4 describes our al-
gorithm for mining frequent tenuous outerplanar graphs. Section 5 contains our experi-
mental evaluation and finally, Section 6 concludes and discusses some open problems.
Due to space limitations, proofs are omitted in this short version.

2 Preliminaries

We recall some notions related to graphs [7]. An undirected graph is a pair (V, E),
where V 6= ∅ is a finite set of vertices and E ⊆ {e ⊆ V : |e| = 2} is a set of edges.
A labeled undirected graph is a quadruple (V, E,Σ, λ), where (V, E) is an undirected
graph, Σ 6= ∅ is a finite set of labels associated with some total order, and λ : V ∪E →
Σ is a function assigning a label to each element of V ∪E. Unless otherwise stated, in
this paper by graphs we always mean labeled undirected graphs and denote the set of
vertices, the set of edges, and the labeling function of a graph G by V (G), E(G), and
λG, respectively. Let G and G′ be graphs. G′ is a subgraph of G, if V (G′) ⊆ V (G),
E(G′) ⊆ E(G), and λG′(x) = λG(x) for every x ∈ V (G′) ∪ E(G′). For a vertex
v ∈ V (G), N(v) denotes the set of vertices of G connected by an edge with v.

A graph G is connected if there is a path between any pair of its vertices; it is
biconnected if for any two vertices u and v of G, there is a simple cycle containing u
and v. A block (or biconnected component) of a graph is a maximal subgraph that is
biconnected. Edges not belonging to blocks are called bridges. The definitions imply

4 http://cactus.nci.nih.gov/

Frequent Subgraph Mining in Outerplanar Graphs 39

that the blocks of a graph are pairwise edge disjoint and that the set of bridges forms
a forest. For the set of blocks and the forest formed by the bridges of a graph G it
holds that their cardinalities are bounded by |V (G)| and they can be enumerated in
time O (|V (G)|+ |E(G)|) [16].

Let G1 and G2 be graphs. G1 and G2 are isomorphic, denoted G1 ' G2, if there
is a bijection ϕ : V (G1) → V (G2) such that (i) {u, v} ∈ E(G1) iff {ϕ(u), ϕ(v)} ∈
E(G2), (ii) λG1(u) = λG2(ϕ(u)), (iii) and if {u, v} ∈ E(G1) then λG1({u, v}) =
λG2({ϕ(u), ϕ(v)}) hold for every u, v ∈ V (G1). In this paper, two graphs are consid-
ered to be the same if they are isomorphic. G1 is subgraph isomorphic to G2 if G1 is
isomorphic to a subgraph of G2. Deciding whether a graph is subgraph isomorphic to
another graph is NP-complete, as it generalizes e.g. the Hamiltonian path problem.

Outerplanar Graphs Informally, a graph is planar if it can be drawn in the plane in such
a way that no two edges intersect except at a vertex in common. An outerplanar graph is
a planar graph which can be embedded in the plane in such a way that all of its vertices
lie on the boundary of the outer face. Throughout this work we consider connected
outerplanar graphs and denote the set of connected outerplanar graphs over an alphabet
Σ byOΣ . Clearly, trees are outerplanar graphs and hence, a graph is outerplanar iff each
of its blocks is outerplanar [7]. Furthermore, as the blocks of a graph can be computed
in linear time [16] and outerplanarity of a block can be decided also in linear time [10,
12], one can decide in linear time whether a graph is outerplanar.

A biconnected outerplanar graph G with n vertices contains at most 2n − 3 edges
and has a unique Hamiltonian cycle which bounds the outer face of a planar embedding
of G [7]. This unique Hamiltonian cycle can be computed efficiently [10]. Thus, G can
be considered as an n-polygon with at most n − 3 non-crossing diagonals. Below we
state a bound for the number of cycles of G. Due to space limitation, we omit the proof.

Proposition 1 A biconnected outerplanar graph with d diagonals has at most 2d+1

cycles.

Given outerplanar graphs G and H , deciding whether H is subgraph isomorphic
to G is an NP-complete problem. This follows from the fact that outerplanar graphs
generalize forests and deciding whether a forest is subgraph isomorphic to a tree is
NP-complete [6]. The following stronger negative result is shown in [15].

Theorem 2 Deciding whether a connected outerplanar graph H is subgraph isomor-
phic to a biconnected outerplanar graph G is NP-complete.

If, however, H is also biconnected, the following positive result holds [10].

Theorem 3 Let G,H be biconnected outerplanar graphs. Then one can decide in time
O

(|V (H)| · |V (G)|2) whether H is subgraph isomorphic to G.

For the special case of trees, the following positive result holds [11].5

Theorem 4 The problem whether a tree H is subgraph isomorphic to a tree G can be
decided in time O

(|V (H)|1.5 · |V (G)|).

5 The bound in Theorem 4 is improved by a log factor in [14]. For the sake of simplicity, we
generalize the algorithm in [11] to outerplanar graphs in the long version of this paper. We
note that the complexity of our algorithm can also be improved using the idea of [14].

40 Tamás Horváth, Jan Ramon, and Stefan Wrobel

3 The Problem Setting

In this section we define the frequent subgraph mining problem for a practically relevant
class of outerplanar graphs with respect to a matching operator that preserves the pattern
graph’s bridge and block structure. To define the mining problem, we need the notions
of tenuous outerplanar graphs and BBP subgraph isomorphism.

Tenuous Outerplanar Graphs Let d ≥ 0 be some integer. A d-tenuous outerplanar
graph G is an outerplanar graph such that each block of G has at most d diagonals.
For an alphabet Σ and integer d ≥ 0, Od

Σ denotes the set of connected d-tenuous
outerplanar graphs labeled by the elements of Σ. The class of d-tenuous outerplanar
graphs forms a practically relevant graph class e.g. in chemoinformatics. As an example,
out of the 250251 pharmacological molecules in the NCI dataset, 236180 (i.e., 94.3%)
compounds have an outerplanar molecular graph. Furthermore, among the outerplanar
compounds, there is no molecular graph having a block with more than 11 diagonals.
In fact, there is only one compound containing a block with 11 diagonals; 236083 (i.e.,
99.99%) compounds among the outerplanar graphs have at most 5 diagonals per block.

BBP Subgraph Isomorphism We continue our problem definition by introducing a
matching operator between outerplanar graphs. Let G,H ∈ OΣ . A bridge and block
preserving (BBP) subgraph isomorphism from H to G, denoted H 4BBP G, is a sub-
graph isomorphism from H to G mapping (i) the set of bridges of H to the set of bridges
of G and (ii) different blocks of H to different blocks of G. Notice that for trees, which
are special outerplanar graphs (i.e., block-free), BBP subgraph isomorphism is equiv-
alent to the ordinary subtree isomorphism. Thus, BBP subgraph isomorphism can be
considered as a generalization of subtree isomorphism to outerplanar graphs which is
more specific than ordinary subgraph isomorphism.

Besides complexity reasons raised by Theorem 2, the use of BBP subgraph isomor-
phism as matching operator is motivated by recent results in chemoinformatics which
indicate that more powerful predictors can be obtained by considering matching opera-
tors that map certain fragments of the pattern molecule to certain fragments of the target
molecule. One natural step towards this direction is to require that only ring structures
(i.e., blocks) can be mapped to ring structures and that edge disjoint ring structures are
mapped to edge disjoint ring structures.

The FTOSM Problem Using the above notions, we define the frequent d-tenuous out-
erplanar subgraph mining problem (FTOSM) as follows: Given (i) an alphabet Σ, (ii)
a finite set D ⊆ Od

Σ of transactions for some integer d ≥ 0, and (iii) an integer thresh-
old t > 0, enumerate the set of all connected d-tenuous outerplanar graphs in Od

Σ that
match at least t graphs in D w.r.t. BBP subgraph isomorphism, i.e., enumerate the set

F t
Σ,d(D) = {H ∈ Od

Σ : Πt(D,H)} , (1)

where Πt(D,H) is the frequency property defined by

Πt(D,H) = |{G ∈ D : H 4BBP G}| ≥ t . (2)

Frequent Subgraph Mining in Outerplanar Graphs 41

By definition, F t
Σ,d(D) does not contain isomorphic graphs. Furthermore, it is closed

downwards w.r.t. BBP subgraph isomorphism, i.e., G1 ∈ F t
Σ,d(D) whenever G2 ∈

F t
Σ,d(D) and G1 4BBP G2. GivenD and t, we call a graph H satisfying (2) t-frequent.

The parameters of the FTOSM problem are the cardinality of the transaction dataset
(i.e., |D|) and the size of the largest graph in D (i.e., max{|V (G)| : G ∈ D}). Since
d is usually small, it is assumed to be a constant. Note that the cardinality of F t

Σ,d(D)
can be exponential in the above parameters of D. Clearly, in such cases it is impossible
to enumerate F t

Σ,d(D) in time polynomial in the parameters of D. We therefore ask
whether the FTOSM problem can be solved in incremental polynomial time (see, e.g.,
[9]), that is, whether there exists an enumeration algorithm listing the first k elements of
F t

Σ,d(D) in time polynomial in the combined size of D and the set of these k elements
for every k = 1, . . . , |F t

Σ,d(D)|.
We note that in the literature (see, e.g., [9]) one usually considers also the notion

of output polynomial time (or polynomial total time) complexity for enumeration algo-
rithms. Algorithms in this more liberal class are required to enumerate a set S in the
combined size of the input and the entire set S. Thus, in contrast to incremental poly-
nomial time, an output polynomial time algorithm may have in worst-case a delay time
exponential in the size of the input before printing the kth element for some k ≥ 1.

Although several algorithms mining frequent connected subgraphs from datasets
of arbitrary graphs w.r.t. subgraph isomorphism have demonstrated their performance
empirically, we note that this general problem cannot be solved in output polynomial
time, unless P = NP. On the other hand, the frequent graph mining problem is solvable
in incremental polynomial time when the graphs in the dataset are restricted to forests
and the patterns to trees. This follows e.g. from the results in [3]. Since tenuous outer-
planar graphs form a practically relevant graph class that naturally generalizes trees, by
considering the FTOSM problem we take a step towards going beyond trees in frequent
subgraph mining.

4 The Mining Algorithm

In this section we present Algorithm 1, an Apriori-like [1] algorithm, that solves
the FTOSM problem in incremental polynomial time. For a set D ⊆ Od

Σ and integer
t ≥ 0, the algorithm computes iteratively the set of t-frequent k-patterns from the set
of t-frequent (k− 1)-patterns. A k-pattern is a graph G ∈ Od

Σ such that the sum of the
number of blocks of G and the number of vertices of G not belonging to any block is k.

In step 1 of the algorithm, we first compute the set of t-frequent 1-patterns, that
is, the set of t-frequent graphs consisting of either a single vertex or a single block.
The first set, denoted by Fv in step 1, can be computed in linear time. The second set,
denoted Fb, can be computed in time polynomial in the parameters of D; an efficient
Apriori-based algorithm for this problem is presented in Section 4.2.

In step 2 of the algorithm, we then compute the set of t-frequent 2-patterns, i.e., the
set of graphs in Od

Σ consisting of either (1) a single edge or (2) two blocks having a
common vertex or (3) a block and a bridge edge having a common vertex. We denote the
corresponding three sets in step 2 by Fe, Fbb, and Fbe, respectively. In the definitions
of Fbb and Fbe, G1 1 G2 denotes the set of graphs that can be obtained from the

42 Tamás Horváth, Jan Ramon, and Stefan Wrobel

Algorithm 1 FREQUENTOUTERPLANARGRAPHS

Require: D ⊆ Od
Σ for some alphabet Σ and integer d ≥ 0, and integer t > 0

Ensure: F t
Σ,d(D) defined in Eq. (1)

1: L1 = Fv ∪ Fb, where

Fv = {H ∈ OΣ : |V (H)| = 1 ∧Πt(D, H)}
Fb = {H ∈ Od

Σ : H is biconnected ∧Πt(D, H)}

2: L2 = Fe ∪ Fbb ∪ Fbe, where

Fe = {H ∈ OΣ : |E(H)| = 1 ∧Πt(D, H)}
Fbb = {H ∈ G1 1 G2 : G1, G2 ∈ Fb ∧Πt(D, H)}
Fbe = {H ∈ G1 1 G2 : G1 ∈ Fb ∧G2 ∈ Fe ∧Πt(D, H)}

3: k = 2
4: while Lk 6= ∅ do
5: k = k + 1
6: Ck = GENERATECANDIDATES(Lk−1)
7: Lk = {H ∈ Ck : Πt(D, H)}
8: endwhile
9: return ∪k

i=1Li

union of G1 and G2 by contracting6 a vertex from G1 with a vertex from G2 that have
the same label. Clearly, G1 1 G2 ⊆ Od

Σ for every G1, G2 ∈ Od
Σ . The set Fe of t-

frequent edges can be computed in linear time. Since the cardinalities of both Fbb and
Fbe are polynomial in the parameters of D, and BBP subgraph isomorphism between
outerplanar graphs can be decided in polynomial time by the result of Section 4.4 below,
it follows that both Fbb and Fbe and hence, the set L2 of t-frequent 2-patterns can be
computed in time polynomial in the parameters of D.

In the loop 4–8, we compute the set of t-frequent k-patterns for k ≥ 3 in a way
similar to the Apriori algorithm [1]. The crucial steps of the loop are the generation
of candidate k-patterns from the set of t-frequent (k − 1)-patterns (step 6) and the
decision of t-frequency of the candidate patterns (step 7). In Sections 4.3 and 4.4 below
we describe these steps in detail.

Putting together the results given in Theorems 7 – 10 stated in Sections 4.1 – 4.4,
respectively, we can formulate the main result of this paper:

Theorem 5 Algorithm 1 is correct and solves the FTOSM problem in incremental poly-
nomial time.

Before going into the technical details in Sections 4.1 – 4.4, we first describe a trans-
formation on outerplanar graphs by means of block contraction that is used in different
steps of the mining algorithm. More precisely, for a graph G ∈ OΣ , let G̃ denote the

6 The contraction of the vertices u and v of a graph G is the graph obtained from G by intro-
ducing a new vertex w, connecting w with every vertex in N(u)∪N(v), and removing u and
v, as well as the edges adjacent to them.

Frequent Subgraph Mining in Outerplanar Graphs 43

graph over the alphabet Σ ∪ {#} derived from G by the following transformation: For
each block B in G, (i) introduce a new vertex vB and label it by #, (ii) remove each
edge belonging to B, and (iii) for every vertex v of B, connect v with vB by an edge
labeled by #, if v is adjacent to a bridge or to another block of G; otherwise remove v.
In the following proposition we state some basic properties of G̃.

Proposition 6 Let G ∈ OΣ . Then

(i) |V (G̃)| = 1 iff |V (G)| = 1 or G is biconnected,
(ii) for every e ∈ E(G̃), at most one vertex of e is labeled by #, and

(iii) G̃ is a free tree.

Since G̃ is a tree, we call it the block and bridge tree (BB-tree) of G.

4.1 Canonical String Representation

One time consuming step of mining frequent d-tenuous outerplanar graphs is to test
whether a particular graph H ∈ Od

Σ belongs to some subset S of Od
Σ . To apply ad-

vanced data structures that allow fast search in large subsets of Od
Σ , we need to define

a total order on Od
Σ . Similarly to many other frequent graph mining algorithms, we

solve this problem by assigning a canonical string to each element of OΣ such that
(i) two graphs have the same canonical string iff they are isomorphic and (ii) for every
G ∈ OΣ , the canonical string of G can be computed efficiently. Using some canoni-
cal string representation satisfying the above properties, a total order on OΣ and thus,
on Od

Σ as well, can be defined by some total order (e.g. lexicographic) on the set of
strings assigned to the elements of OΣ . Furthermore, property (i) allows one to decide
isomorphism between two outerplanar graphs by comparing their canonical strings.

Although the canonical string representation for outerplanar graphs may be of some
interest in itself, due to space limitations we omit its definition which is based on the
BB-tree G̃ of G. By (iii) of Proposition 6, G̃ is a free tree. Utilizing this property, we
can generalize the depth-first canonical representation for free trees (see, e.g., [2]) to
outerplanar graphs, and state the following result:

Theorem 7 A canonical string representation of a graph in OΣ with n vertices can be
computed in time O

(
n2 log n

)
.

4.2 Mining Frequent Biconnected Graphs

In this section we present Algorithm 2, an Apriori-like algorithm, that computes the
set Fb of t-frequent d-tenuous biconnected graphs used in step 1 of Algorithm 1. Since
d is constant, Algorithm 2 runs in time polynomial in the parameters of D.

In step 1 of Algorithm 2, we first compute the set L0 of t-frequent cycles as follows:
We list the cycles of G for every G ∈ D and count their frequencies. Proposition 1
in Section 2 implies that the number of cycles of a d-tenuous outerplanar graph G is
bounded by O (|V (G)|) if d is assumed to be constant. Furthermore, from [13, 16] it
follows that the cycles of a graph can be listed with linear delay. Since isomorphism

44 Tamás Horváth, Jan Ramon, and Stefan Wrobel

Algorithm 2 FREQUENTBICONNECTEDGRAPHS

Require: D ⊆ Od
Σ for some alphabet Σ and integer d ≥ 0, and integer t > 0

Ensure: Fb defined in step 1 of Algorithm 1

1: let L0 ⊆ O0
Σ be the set of t-frequent cycles in D

2: for k = 1 to d do
3: let Ck ⊆ Ok

Σ \ Ok−1
Σ be the set of biconnected graphs H such that

H ª∆ ∈ Lk−1 for every diagonal ∆ of H
4: Lk = {H ∈ Ck : Πt(D, H)}
5: endfor
6: return

Sd
k=0 Lk

between cycles can be decided efficiently, these results together imply that L0 can be
computed in time polynomial in the parameters of D.

In loop 2–5 of Algorithm 2, we compute the sets of t-frequent biconnected graphs
containing k diagonals for every k = 1, . . . , d. In particular, in step 3 we compute the
set Ck of candidate biconnected graphs H ∈ Ok

Σ satisfying the following conditions:
H has exactly k diagonals and the removal of any diagonal from H , denoted by ª in
step 3, results in a t-frequent biconnected graph. Putting the above results together, we
can state the following theorem. (We omit the proof in this short version.)

Theorem 8 Algorithm 2 is correct and computes the set of t-frequent d-tenuous bicon-
nected outerplanar graphs in time polynomial in the parameters of D.

4.3 Candidate Generation

In step 6 of Algorithm 1, we generate the set of candidate k-patterns. In this section
we give Algorithm 3, a generalization of the candidate generation algorithm for free
trees described in [3], that computes the set of candidate k-patterns from the set of
frequent (k − 1)-patterns. Applying the candidate generation principle of the Apriori
algorithm [1], each candidate is obtained by joining two frequent (k − 1)-patterns that
have an isomorphic (k − 2)-pattern core.

In the outer loop 2–12 of the algorithm, we consider each possible pair G1, G2 of
frequent (k − 1)-patterns, and in loop 3–11, each pair g1 and g2 of leaf subgraphs of
G1 and G2, respectively. By a leaf subgraph of a k-pattern H for k ≥ 2 we mean the
subgraph of H represented by a leaf of the BB-tree H̃ . If G1 and G2 are the same graphs
then, for completeness, we consider also the case when g1 and g2 are isomorphic leaf
subgraphs. We remove g1 and g2 from G1 and G2, respectively, denoted by ª in the
algorithm, and check whether the obtained graphs G′1 and G′2 are isomorphic (step 4).
The removal of a biconnected component means the deletion of each of its edges and
vertices except the distinguished vertex which is adjacent to a bridge or to another block.

If G′1 and G′2 are isomorphic then we consider every leaf subgraph g′1 of G′1 (loop 5–
10) and check whether g2 can be attached to g′1 in G1 consistently with G2 (step 6).
More precisely, let g′2 be a block or a vertex not belonging to a block in G2 such that g2

is hanging from g′2, i.e., the only edge adjacent to g2 is adjacent also to g′2. We say that
g2 can be attached to g′1 in G1 consistently with G2 if g′1 is isomorphic to g′2. Thus, if

Frequent Subgraph Mining in Outerplanar Graphs 45

Algorithm 3 GENERATECANDIDATES

Require: set Lk−1 of frequent k − 1-patterns for some k > 2
Ensure: set Ck of candidate k-patterns

1: Ck = ∅
2: forall G1, G2 ∈ Lk−1 do
3: forall g1 ∈ Leaf(G1) and g2 ∈ Leaf(G2) do
4: if G1 ª g1 ' G2 ª g2 then
5: forall g′1 ∈ Leaf(G1 ª g1) do
6: if g2 is attachable to g′1 consistently with G2 then
7: attach g2 in G1 to g′1 consistently with G2 and denote the obtained graph by C
8: if g1, g2 have the top two string encodings in C, C 6∈ Ck, and

C ª g ∈ Lk−1 for every g ∈ Leaf(C)
9: then add C to Ck

10: endfor
11: endfor
12: endfor
13: return Ck

the condition in step 6 holds then we attach g2 to g′1 consistently with G2 and denote
the obtained graph by C (step 7).

Notice that C can be generated in many different ways, depending on the particular
choice of g1 and g2. To reduce the amount of unnecessary computation, we consider
only those pairs which are among the top leaf subgraphs of C, i.e., which have the top
two string encodings w.r.t. a center of C̃. By definition, a vertex representing a leaf
subgraph of C is always a leaf in C̃. If this condition holds then we add C to the set of
candidates in step 9 if for every leaf subgraph g of C, the (k− 1)-pattern obtained from
C by removing g is frequent (see step 8). We omit the proof of the following theorem.

Theorem 9 Let Ck be the output of Algorithm 3 and Lk the set of frequent k-patterns
for any k > 2. Then Lk ⊆ Ck, the cardinality of Ck is polynomial in the cardinality of
Lk−1, and Ck can be computed in time polynomial in the size of Lk−1.

4.4 BBP Subgraph Isomorphism

Algorithms 1 and 2 contain the steps of deciding whether a candidate pattern H ∈ Od
Σ is

t-frequent, i.e., whether it is BBP subgraph isomorphic to at least t graphs in D. While
subgraph isomorphism between outerplanar graphs is NP-complete even for very re-
stricted cases (see Theorem 2), Theorem 10, the main result of this section, states that
BBP subgraph isomorphism can be decided efficiently between outerplanar graphs if
the pattern graph H is connected. The connectivity is necessary, as otherwise the prob-
lem would generalize the NP-complete subforest isomorphism problem [6]. We note
that the result of Theorem 10 generalizes the positive result on subtree isomorphism
given in Theorem 4 and may thus be of some interest in itself.

Theorem 10 Let G,H ∈ OΣ such that H is connected. Then H 4BBP G can be
decided in polynomial time.

46 Tamás Horváth, Jan Ramon, and Stefan Wrobel

Table 1. Number of patterns (#C), number of frequent patterns (#FP), and runtime in seconds for
candidate generation and evaluation (T) with frequency thresholds 10%, 5%, 2%, and 1%

size 10% 5% 2% 1%
(k) #C #FP T #C #FP T #C #FP T #C #FP T

1 86 7 107 144 11 169 582 25 380 2196 55 824
2 74 16 446 216 24 570 1332 61 1118 6208 174 2554
3 139 41 1133 234 74 1393 510 170 2123 1516 659 5653
4 133 77 1232 266 154 2038 642 356 4079 2554 1776 11899
5 139 91 1071 319 222 2268 909 644 5603 4550 3886 20411
6 107 72 754 332 252 1847 1212 918 6105 7314 6490 28811
7 61 41 472 295 195 1168 1266 990 4964 10165 9058 34967
8 37 25 354 182 137 741 1086 893 3384 11479 10396 36391
9 20 13 205 137 116 602 956 803 2282 11129 10194 31721

10 8 5 130 131 119 594 828 700 1635 9370 8623 23412
11 0 0 0 131 117 565 697 604 1360 7276 6818 15530
12 0 0 0 115 107 536 707 665 1483 5533 5184 9345
13 0 0 0 78 64 412 1027 1022 2017 4395 4145 5252
14 0 0 0 27 21 250 1702 1700 2858 4303 4194 3707
15 0 0 0 4 3 89 2725 2715 3957 5422 5376 4089

Due to space limitations, we omit the proof of the above theorem. We only note
that the algorithm first computes the BB-trees of the input graphs G and H , and then
combines the subgraph isomorphism algorithms between labeled trees (generalization
of [11]) and labeled biconnected outerplanar graphs (generalization of [10]).

5 Experimental Evaluation

In our experiments, we used the NCI dataset consisting of 250251 chemical compounds.
For our work, it was important to recognize that 236180 (i.e., 94.3%) of these com-
pounds have outerplanar molecular graph. Thus, outerplanar graphs form a practically
relevant class of graphs. Among the outerplanar molecular graphs, there are 21963
trees (i.e., 8.8% of the outerplanar subset). In the experiments, we have removed the
non-outerplanar graphs from the dataset. Altogether, the outerplanar molecules contain
423378 blocks, with up to 11 diagonals per block. However, 236083 (i.e., 99.99%) of
the outerplanar molecular graphs have at most 5 diagonals per block. This empirical
observation validates our approach to assume the number of diagonals to be constant.

The database contains a wide variety of structures, and a low relative frequency
threshold is needed to mine a significant number of patterns. E.g. though there are
15426 pairwise non-isomorphic cycles in the database, only a few of them are really
frequent; the only one above 10% is the benzene ring with frequency 66%.

Our results are given in Table 1. It shows the number of candidate (#C) and frequent
(#FP) k-patterns discovered for k = 1, . . . , 15, as well as the runtime (T) in seconds
for the computation and evaluation of the candidates using the frequency thresholds
10%, 5%, 2% and 1%. As expected, the number and the size of the discovered patterns
is much larger when the frequency threshold is lower. Even though the embeddings of

Frequent Subgraph Mining in Outerplanar Graphs 47

(k − 1) patterns are computed (again) in level k, the time needed to complete one level
does not necessarily increase with k. It is interesting to note that after the number of fre-
quent k-patterns drops a bit when k gets larger then 8, this number again increases when
k exceeds 12, and the number of frequent patterns gets close to the number of candidate
patterns. This is because this particular dataset contains large subsets with molecules
sharing large biconnected structures (such as the HIV active substance dataset). The
time needed for candidate generation is always smaller than 1% of the total time. The
time needed for coverage testing per pattern depends on how much structure these pat-
terns share. If the number of patterns is large, the time needed per pattern is usually
lower.

One can make several conclusions. First, our algorithm can mine an expressive class
of molecular patterns from a relatively large database. Although the presented experi-
ments happened entirely in memory (taking about 600Mb), our approach does not de-
pend on storing intermediate results in memory between the different passes over the
database. This means that we could also perform this algorithm with a database on
disk. In our application e.g., this would bring an overhead of about 15 seconds per pass
over the database. Second, we can conclude that the complexity of the coverage testing
scales well as the pattern size grows, as predicted by theory. In this application, due
to the implementation exploiting shared structure among patterns, the time needed for
evaluation per pattern does not even depend in a clear systematic way on the pattern
size.

6 Conclusion and Open Problems

We have defined the FTOSM problem motivated by chemical datasets and presented an
Apriori-based algorithm solving this enumeration problem in incremental-polynomial
time. To the best of our knowledge, no fragment of the frequent subgraph mining prob-
lem beyond trees has so far been identified, for which the problem can be solved in
incremental polynomial time. Our algorithm is based on a canonical string represen-
tation of outerplanar graphs and further algorithmic components for mining frequent
biconnected outerplanar graphs and candidate generation in an Apriori style algorithm.
Motivated by application and complexity considerations, we introduced a special kind
of subgraph isomorphism which generalizes subtree isomorphism but is at the same
time more specific than ordinary subgraph isomorphism, and which is decidable in
polynomial time for outerplanar graphs. We presented also empirical results with a
large dataset indicating the effective practical performance of our algorithm. We be-
lieve that the identification of tractable practical fragments of the frequent subgraph
mining problem is an important challenge for the data mining community.

Besides working on optimization of the algorithm, e.g., on improving the time com-
plexity of the coverage testing, it is natural to ask whether the positive result of this
paper can be generalized to arbitrary outerplanar graphs. Notice that our algorithm ex-
ploits the constant bound on the number of diagonals only in the computation of the set
Fb of frequent biconnected graphs in step 1 of Algorithm 1. Therefore, to generalize the
result of this paper to arbitrary outerplanar graphs, it is sufficient to consider the follow-
ing special problem: Given a finite setD ⊆ OΣ of biconnected outerplanar graphs and a

48 Tamás Horváth, Jan Ramon, and Stefan Wrobel

non-negative integer t, compute the set of t-frequent patterns in D w.r.t. BBP subgraph
isomorphism. Notice that this problem definition implicitly requires t-frequent patterns
to be biconnected because by definition, there is no BBP subgraph isomorphism from
a non-biconnected graph to a biconnected outerplanar graph. We do not know whether
this special problem can be solved in incremental or at least in output polynomial time.

Acknowledgments

Tamás Horváth and Stefan Wrobel were partially supported by the DFG project (WR
40/2-1) Hybride Methoden und Systemarchitekturen für heterogene Informationsräume.
Jan Ramon is a post-doctoral fellow of the Fund for Scientific Research (FWO) of
Flanders.

References
1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of

association rules. In Advances in Knowledge Discovery and Data Mining, pp. 307–328.
AAAI/MIT Press, 1996.

2. Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent subtree mining - An overview.
Fundamenta Informaticae, 66(1-2):161–198, 2005.

3. Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labelled trees and their applications
in frequent subtree mining. Knowledge and Information Systems, 8(2):203–234, 2005.

4. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and
background knowledge. J. of Artificial Intelligence Research, 1:231–255, 1994.

5. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-based ap-
proaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data
Engineering, 17(8):1036–1050, 2005.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to NP-Completeness.
Freeman, San Francisco, CA, 1979.

7. F. Harary. Graph Theory. Addison–Wesley, Reading, Massachusetts, 1971.
8. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs:

Mining graph data. Machine Learning, 50(3):321–354, 2003.
9. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal inde-

pendent sets. Information Processing Letters, 27(3):119–123, 1988.
10. A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theo-

retical Computer Science, 63:295–302, 1989.
11. D. W. Matula. Subtree isomorphism in O(n

5
2). Annals of Discrete Mathematics, 2:91–106,

1978.
12. S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs.

Information Processing Letters, 9(5):229–232, 1979.
13. R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and

spanning trees. Networks, 5(3):237–252, 1975.
14. R. Shamir and D. Tsur. Faster subtree isomorphism. J. of Algorithms, 33(2):267–280, 1999.
15. M. M. Sysło. The subgraph isomorphism problem for outerplanar graphs. Theoretical Com-

puter Science, 17:91–97, 1982.
16. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. on Computing,

1(2):146–160, 1972.
17. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. of the 2002

IEEE Int. Conference on Data Mining (ICDM), pp. 721–724, IEEE Computer Society, 2002.

Type Extension Trees: a Unified Framework for
Relational Feature Construction

Manfred Jaeger

Institut for Datalogi, Aalborg Universitet, Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø
jaeger@cs.aau.dk

Abstract. We introduce type extension trees as a formal representation
language for complex combinatorial features of relational data. Based
on a very simple syntax this language provides a unified framework for
expressing features as diverse as embedded subgraphs on the one hand,
and marginal counts of attribute values on the other. We show by various
examples how many existing relational data mining techniques can be
expressed as the problem of constructing a type extension tree and a
discriminant function.

1 Introduction

A key component of relational data mining methods is the construction of rel-
evant features. Whereas in conventional (“propositional”) learning settings the
set of possible features is usually given by the available attributes, one has in
relational learning the ability to construct new features by considering the rela-
tional neighborhood of an entity. Taking into consideration related entities and
their attributes, one obtains a basically unlimited supply of potential features.
The space of features actually explored by specific relational learning methods
is often not very clearly defined and more or less only implicit in the learning
algorithm and its candidate feature generation mechanisms.

In this paper we study relational features in their own right. We propose
type extension trees (TETs) as a very simple, yet general and powerful repre-
sentation language for relational features. We will illustrate the expressiveness
and flexibility of type extension trees by showing how they can represent a great
variety of different types of features used by different kinds of methods in graph
mining, relational learning, and standard propositional learning.

This paper is mostly conceptual. Though intended to be eventually used in
an implemented learning system, we introduce type extension trees in this pa-
per mostly as a basis for an integrated view of existing data mining models
and techniques. TETs provide a unified view along several dimensions: they ac-
commodate relational features as considered in a variety of different disciplines,
ranging from graph mining to statistical relational learning and probabilistic in-
ductive logic programming (ILP); they provide a unified view of features of single
entities, tuples of entities, or whole datasets; they support all levels of separation
or integration of the feature construction and model induction components in a
relational learning procedure.

50 Manfred Jaeger

Type extension trees, thus, provide a common ground from which fundamen-
tal aspects of different data mining techniques can be more clearly elucidated. A
unifying conceptual framework is all but indispensable for a theoretical analysis
of differences and similarities between different data mining techniques, and can
help to translate results and techniques across different areas.

2 Type Extension Trees

In this section we introduce syntax and semantics of type extension trees. Our
definitions are partly motivated by type extension axioms, which play a pivotal
role in finite model theory [4]. Type extension axioms and various generalizations
have been used to characterize the combinatorial structure of large random struc-
tures [5, 13, 8, 1]. In the finite model theory setting the generating distribution is
given, and one is interested in the asymptotic properties of random structures.
In relational learning the situation is reversed: one observes one randomly gen-
erated structure (the data), and would like to infer a model for the generating
process. A language that has been found to express the characteristic features
of data sampled from known distributions is also a good candidate for speci-
fying those features of data that are important for reconstructing an unknown
generating model.

We now turn to defining type extension trees, starting with definitions relat-
ing to relational structures, which serve as a general, abstract model for struc-
tured data.

R denotes a relational signature (or vocabulary), i.e. a set of relation symbols
(of any arities). We typically use r, s, t, . . . to denote symbols from R, and |r | to
denote the arity of r. Throughout, we denote with u, v, w logical variables, and
with a, b, c, . . . constants (representing specific entities in a domain). Tuples of
variables and constants are denoted in bold font: v,a, etc. The length of a tuple
v is denoted |v |. An expression of the form r(u, v), r(a, v), etc. is called an atom.
If all arguments are constants, the atom is ground. A literal is an atom or a
negated atom. A type is a conjunction of literals. Types are denoted τ, σ, We
use T to denote an empty conjunction, which is to be interpreted as a tautology.

Definition 1. A relational R-structure M consists of a domain M and an
interpretation function IM that assigns truth values to ground R-atoms, i.e.
IM(r(a)) ∈ {true, false} for all r ∈ R and a ∈ M |r|. The size of M is the
cardinality of M (in this paper always assumed to be finite).

In logic programming terminology, an R-structure is just an interpretation.
An R-structure with only unary and binary relations can be seen as a graph
with colored nodes and edges. From a database perspective, an R-structure is
a relational database with only boolean attributes. Using a boolean encoding
of categorical attributes, one can represent databases with only categorical at-
tributes as relational structures in the sense of definition 1.

Type Extension Trees 51

Definition 2. A type extension tree (TET) over R is a tree whose nodes are
labeled with R-types, and whose edges are labeled with (possibly empty) sets of
variables.

A type extension tree is syntactically closely related to predicate logic formu-
las, with subtrees corresponding to sub-formulas, and edge labels corresponding
to variables that are quantified over. In analogy to standard predicate logic defi-
nitions one defines the free variables of a TET, and the substitution of constants
a for free variables v.

TETs can be represented graphically as in figure 4 or equation (1). We also
write [τ, [w1, T1], . . . , [wm, Tm]] for a TET whose root is labeled with τ , and
which has m subtrees T1, . . . , Tm reached by edges with labels w1, . . . ,wm. We
write T (v) for a TET containing free variables v, and T (a) for the result of
substituting a for v in T .

The semantics of TETs differs from semantics of most formal languages in
that interpretations of TETs do not just return a truth value, but a complex
combinatorial structure. To motivate the following definitions, consider the first-
order sentence τ(a) → ∃wσ(a, w). Interpreted over a structure M with a ⊆ M
this sentence is either true or false. Furthermore, one can replace the existential
quantifier ∃ with a counting quantifier like ∃≥10 stipulating the existence of at
least ten w with σ(a, w). The interpretation of the new sentence would still be
either true or false. However, instead of specifying exact truth conditions for the
quantifier in front of w, we can also define the interpretation of the formula as
the number of b ∈ M such that σ(a, b) is true. This is basically how we will

interpret the TET τ(a)
w
− σ(a, w). For more complex TETs the interpretations

are not simply numbers, but more complex combinatorial specifications, which
are introduced by the following two definitions.

Definition 3. For a finite set D and k ∈ N define the set of all k-multisets over
D as

multisets(D, k) := {f : D → {0, . . . , k} |
∑
d∈D

f(d) = k}

Concrete multisets are written in the notation [d1 7→ k1, . . . , dq 7→ kq] (only
listing the di ∈ D with f(di) = ki > 0).

Definition 4. The value space Vn(T) of a TET T for structures of size n is
inductively defined as follows:

– If T consists of a single node, then Vn(T) = {true, false}.
– If T = [τ, [w1, T1], . . . , [wm, Tm]], then

Vn(T) = {true, false} × ×m
i=1multisets(Vn(Ti), n|wi|)

Example 1. The value space of the TET T (v) = τ(v)
w
− σ(v, w) over a structure

M of size n is Vn(T (v)) = {true, false} × multisets({true, false}, n). A tuple
a ∈M|v| defines a value V (T (a)) = (I, f) ∈ Vn(T (v)), where I ∈ {true, false} is
the truth value of τ(a) in M, and f ∈ multisets({true, false}, n) gives the counts

52 Manfred Jaeger

a3a2a1

srel

rrel

trel

Fig. 1. Example 2

of elements b ∈ M for which σ(a, b) is true, respectively false. The general
definition of the value of a tuple a in a structure M is given in the following
definition.

Definition 5. Let T (v) be a TET, M an R-structure of size n, and a ∈ M |v|.
The value of the ground TET T (a) is defined as follows:

– V ([τ(a)]) = IM(τ(a))
– V ([τ(a), [w1, T1(a,w1)], . . . , [wm, Tm(a,wm)]]) =

(IM(τ(a)), f(a,w1, T1), . . . , f(a,wm, Tm)), where

f(a,wi, Ti) : γ 7→|{b ∈ M |wi| | V (Ti(a, b)) = γ}| (γ ∈ Vn(Ti))

Example 2. Figure 1 shows three different structures for a vocabulary containing
two binary relations s, t, and one unary relation r. The relational neighborhoods
of the entities a1, a2, a3 in the three structures have somewhat similar, yet unique,
properties. Consider the following three TETs:

T1(v) : >(v)
u,w
− s(v, u), t(u, w), r(w)

T2(v) : >(v)
u
− s(v, u)

w
− t(u, w), r(w)

T3(v) : >(v)
w
− r(w)

u
− s(v, u)t(u, w)

The value space V7(T1(v)) is {t, f}× multisets({t, f}, 72). If M is a domain
of seven entities, and a ∈ M , then V (T1(a)) = (t, [t 7→ l, f 7→ 72 − l]), where l is
the number of distinct tuples (b, c) ∈ M2 for which s(a, b)∧ t(b, c)∧ r(c) is true.
Thus, T1(a) just gives the counts of paths leading from a via one s() and one
t() relation to an entity with attribute r(). This count is 3 for a1, a2, a3, so that
V (T1(a1)) = V (T1(a2)) = V (T1(a3)).

The value space Vn(T2) is more complex. Values here not only encode the
number of s − t-paths to an entity with attribute r, but also differentiate with
regard to the number of different intermediate nodes on these paths. The precise
values are (for legibility, multisets here written as column vectors):

Type Extension Trees 53

V (T2(a1)) = V (T2(a2)) =t,

(

t,

[
t 7→ 1
f 7→ 6

])
7→ 3(

f,
[
f 7→ 7

])
7→ 4

V (T2(a3)) =t,

(

t,

[
t 7→ 3
f 7→ 4

])
7→ 1(

f,
[
f 7→ 7

])
7→ 6

Thus, T2 distinguishes a1 from a3, but not from a2. Another variation is provided
by T3(v), which counts the number of distinct endpoints c (but not the number
of distinct mid-points b): V (T3(a1)) = V (T3(a3)) 6= V (T3(a2)).

In the preceding example we found that type extension trees T2, T3 provided
somewhat more information than T1. This is formally captured in the following
definition, which provides a refinement concept related to those used in ILP-
based learning methods.

Definition 6. Let T (v), T ′(v) be type extension trees. T ′ is called a refinement
of T if there exist functions

Γn : Vn(T ′) → Vn(T) (n ∈ N),

such that for all structures M of size n, and all a ∈ M |v|:

V (T ′(a)) = γ → V (T (a)) = Γn(γ).

Here we have defined refinement on a semantic basis. One can easily define
several syntactic operations on TETs that produce refinements (e.g. adding a
new subtree to an existing TET).

Values V (T (a)) provide a very detailed quantitative picture of the “relational
neighborhood” of tuple a in structure M. For all but the simplest TETs, the full
value will be too complex to handle by a model induction algorithm. The complex
feature value V (T (a)), therefore, may need to be reduced or summarized.

Definition 7. A discriminant function for a TET T is a function

d : ∪n≥1Vn(T) → R.

Discriminant functions can be employed in different ways. For example, a
0,1-valued discriminant function turns T into a boolean feature. A collection of
TETs, each equipped with a boolean discriminant function, then defines a set
of boolean features that can be used by standard propositional model induction
algorithms. However, discriminant functions can also represent the final model
itself. For example, a discriminant function on T (v) with values in {1, 2, 3} could
represent a predictive model for a three-state class variable c(v).

3 Examples

In this section we show how several quite distinct relational data mining tasks
can be represented as the problem of finding a TET and a discriminant function.

54 Manfred Jaeger

3.1 Frequent subgraphs

A key task in graph-based data mining is finding frequent subgraphs (see e.g. [19]).
Consider, for example, a relational alphabet R = {r(·), t(·, ·)}. Figure 2 shows a
two node graph G over this vocabulary.

v
w

G
t(,)
r()

Fig. 2. A two node subgraph

Now consider the TET

TG(v, w) = r(v)
∅
− ¬r(w)

∅
− ¬t(v, v)

∅
− t(w,w)

∅
− t(v, w)

∅
− ¬t(w, v) (1)

The value space Vn(TG(v, w)) is equivalent to the 6-fold product of {true, false}
(independent of n). For any two entities a, b, the value V (TG(a, b)) determines
the truth value of all the ground atoms r(a), r(b), . . . , t(b, a), and thus represents
the subgraph induced by a, b.

Now let de be the discriminant function on V(TG) that counts the number
of false components in V (TG). For any a, b, then de(V (TG(a, b))) is the edit
distance between the subgraph induced by a, b and G.

Suppose, now, we want to determine whether our data M contains at least
k occurrences of 2-node subgraphs whose edit distance to G is at most l. This
becomes an evaluation of a TET-discriminant function by defining on the TET

T ′G = >
v,w
− TG(v, w) (2)

the discriminant function dk,l defined by

dk,l(V (>), f((v, w), TG(v, w)) =

1 if
∑

γ∈V(TG(v,w)):de(γ)≤l

f((v, w), TG(v, w))(γ) > k

0 else

Finally, the problem of finding all subgraphs G′ that are “approximately
frequent” (in the sense that graphs with edit distance to G′ at most l occur at
least k times) now becomes the problem of finding all TETs TG′ of the structure

>
v
− TG′(v) with dk,l(V (TG′)) = 1.
This example shows how TETs and discriminant functions capture operations

at all stages of feature construction and model induction: a TET of the form (1)
together with the discriminant function de is just a boolean feature that could
be used by any model induction algorithm. However, full model induction tasks
can also be expressed as a search for TETs and discriminant functions.

Type Extension Trees 55

Student

success: y,n

intelligence: y,n

advisor:

Professor

fame: y,n

funding: y,n

editor:

Journal

impact: y,n

Fig. 3. A simple PRM

3.2 Probabilistic Relational Models

In this section we consider probabilistic relational models (PRMs) in the sense
of [17, 6]. PRMs in their simplest form (there exist various extensions) are a
probabilistic model for attribute values in a relational database. Figure 3 illus-
trates a simple example PRM based on [17]. It consists of a database schema
consisting of three tables ’student’, ’professor’ and ’journal’. All tables have one
or two boolean attributes. The student table also has a reference attribute ad-
visor, which points to entries in the professor table, and the professor table has
a reference attribute editor pointing to the journal table. The dashed arrows in
figure 3 indicates that the PRM provides a probabilistic model for the success
attribute in the student table, and that according to this model the probability
for student.success values depends on the values of the intelligence attribute for
the given student, and on the value of the fame attribute of the student’s advisor.
The complete specification of the PRM furthermore will contain the quantita-
tive specification of the conditional distribution for student.success, which is not
shown here.

Generally, the probabilities for attributes can be defined conditional on at-
tribute values at any other table entries that can be reached by following a
sequence of references. References can also be followed in inverse order: for ex-
ample, by first following the advisor reference from a student entry s, one finds
an entry p in the professor table; by then following the inverse of the advisor
reference from p, one finds all entries in the student table that have the same
advisor as s. Similarly, the student.success attribute could also be defined con-
ditional on the impact of journals for which the student’s advisor is an editor.
Friedman et al. [6] call any such sequence of references a slot chain.

Slot chains essentially define the features used in a probabilistic relational
model. When the slot chain also contains one-to-many relationships, then aggre-
gation operators will also be needed to define a feature. Features definable by
slot chains can be represented as linear TETs:

T1(v) : >
w
− advisor(v, w)

∅
− fame(w) (3)

T2(v) : >
w
− advisor(v, w)

u
− advisor(u, w), u 6= w

∅
− success(u) (4)

56 Manfred Jaeger

T1(v) counts how many famous and how many non-famous advisors entity v
has. T2(v) counts how many successful and non-successful entities u exist that
have the same advisor as v.

3.3 Relational Bayesian Networks

Relational Bayesian networks (RBNs) [7, 9] are related both to PRMs and to
probabilistic modeling languages based on logic programming (e.g. [18, 11]).
RBNs also specify probability distributions over probabilistic relations on a given
domain. The representation language is quite different, however: an RBN repre-
sentation is given by the specification of one probability formula for each proba-
bilistic relation. A simple RBN encoding for the domain described in the previous
section could be given by assigning to the probabilistic relation success(v) the
probability formula

F (v) = noisy-or{(fame(w) : 0.8, 0.5) | w : advisor(v, w)}.

This formula can be read as a procedural computation rule for computing the
probability of a ground atom success(a) as follows: determine all objects w for
which advisor(a,w) is true (which may or may not be exactly one); each such
w contributes a value of 0.8 if fame(w) is true, and a value of 0.5 if fame(w) is
false to a multiset of probabilities; finally, compute a single probability value by
combining all the probabilities in the multiset with a noisy-or.

The reader is referred to [7, 9] for details on syntax and semantics of prob-
ability formulas. The preceding small example should be sufficient, however, to
illustrate the connection between RBNs and TETs: for the evaluation of the given
probability formula for success(a) it is sufficient to know the value of T1(a) with
T1 as in (3). More refined probability formulas could be constructed that define
the probability of success(a) also dependent on the feature T2(a). Generally,
one can show that for each probability formula F (v) one can (automatically)
construct a TET T (v), such that the evaluation of the probability formula for
some objects a only depends on the value V (T (a)). On the other hand, the
probability formula computes a probability value for each possible value of the
TET. Thus, a probability formula is both an (implicit) definition of a TET, and
a specification of a discriminant function on that TET.

3.4 Relational Decision Trees

Several approaches exist for adapting decision trees to relational settings [2, 12,
15]. Internal nodes in such a decision tree are labeled by relational features,
which can be expressed e.g. in a logical [2, 15] or graphical [12] notation.

Figure 4 shows a relational decision tree described in [15]. This is a decision
tree for a domain of web-pages with attributes like isStudent,isFaculty,isCourse
describing the nature of a web page (student, faculty, course homepage etc.).
Another attribute, path, describes whether or not the URL of a page contains a
directory path (i.e. pages for which path=false are top-level pages in a domain).

Type Extension Trees 57

Ew(l(w,v)&Eg11ul(w,u))

Ew(l(w,v)&npath(w))

avg(|(u:l(w,u))||w:l(w,v))g21

0.99

l(w,u)

l(w,v)

w

u

top

l(w,v),npath(w)

w

Y N

Y N

Y N

0.02

0.81 0.14

Fig. 4. Relational Decision Tree and Feature TET

The decision tree of figure 4 estimates the probability that a web-page v belongs
to the isStudent class. For this it tests (at most) three different relational fea-
tures: at the root node it is tested whether the page v is linked from another
page w which has at least 111 outgoing links (indicating, perhaps, a student
directory). The second node tests the feature whether v is linked from a page
without a directory path in the URL. The third node tests whether the average
number of outgoing links from pages w that also contain a link to v is at least
21.

The TET shown on the right of figure 4 represents the combinatorial prop-
erties that determine the truth value of the three features tested in the decision
tree: for each web page v, the truth value of a feature is a function of V (T (v))
(where, in fact, for the truth values of the first and third feature only the value
of the left branch is relevant, and for the truth value of the second feature only
the right branch is relevant). Furthermore, the probability estimates computed
by the decision tree can be defined by a discriminant function on T .

3.5 From Features to Statistics

In standard “propositional” learning settings there is a clear distinction between
a data item and a data set. The latter is a collection of the former, and, moreover,
the data items are typically assumed to be independent samples from some
common underlying distribution (iid). The distinction between data item and
data set gives rise to the distinction between a feature and a statistic: the former
describes a property of an individual data item, the latter a property of a data
set as a whole.

It is well-known that this “iid” model of data is often inappropriate in the
context of relational data (see e.g. [10]). Specifically, one can not regard the
entities in a relational structure as independent data items.

58 Manfred Jaeger

A3vA2vA1v

vwar vwar

empty empty empty

CvCvCv

top

vwar

tnb

Fig. 5. Naive Bayes Sufficient Statistics

Seeing that in relational data there is no clear dividing line between data
items and data sets, there can also not be a clear distinction between a feature
and a statistic. Type extension trees provide a clear perspective on both the
common nature and the remaining distinction between feature and statistic: a
statistic is basically a feature expressed by a TET without free variables. Such
a TET represents a global property of a relational structure, without reference
to any particular entities in the structure

The following example illustrates the use of TETs to represent global statis-
tics, and how standard propositional data can be treated as a special case of
relational structures.

Example 3. Assume a relational signature R containing four unary relation sym-
bols C,A1, A2, A3. A relational structure for R just consists of a collection of
entities, and the relations can be read as attributes in the conventional way, i.e.
an R-structure can also be seen as a standard propositional dataset.

Consider the TET Tnb of figure 5. This is a TET without free variables. Its
values represent the 2-way marginal counts of attribute pairs C,Ai (i = 1, 2, 3).
Thus, the value of Tnb for a given R-structure is just the minimal sufficient
statistic for learning a naive Bayes classifier for C given the Ai. Compare this to

Tsat = >
v
− C(v)

∅
− A1(v)

∅
− A2(v)

∅
− A3(v)

Values of Tsat are the full joint counts of C,A1, . . . , A3, and, thus, are sufficient for
learning a saturated model, i.e. without any constraints on the joint distribution
of the C,A1, . . . , A3.

4 Discussion and Related Work

In the previous sections we have introduced type extension trees as a language for
specifying relational features. We have seen that the language is very expressive,
and can represent different types of features that have been used within a wide
spectrum of different relational learning tasks.

One should compare TETs to two different classes of alternatives. First, we
may consider logics, database query or programming languages, which are not
specifically designed to specify relational features, but can be employed for that
purpose. The advantage of TETs over existing predicate logics is the former’s

Type Extension Trees 59

ability to represent quantitative, combinatorial properties, whereas the latter
only define Boolean features. Database query languages like SQL can also re-
trieve quite complex combinatorial information about the relational neighbor-
hood of an entity. There are several advantages of the TET language over SQL,
however: most importantly, the syntax of SQL is much more complex than the
syntax of TETs, and does not possess a similarly clearly defined semantics. For
example, it is not clear how to distinguish SQL queries that refer to properties
of single entities, from queries that refer to entity pairs, entity triples, etc. In
TETs this distinction is clearly made by the number of free variables.

Second, TETs need to be compared to specific feature specification languages
used in existing learning frameworks. Such specification languages have been
defined in terms of e.g. fragments of first-order logic [3], graph fragments [14],
and aggregation operators [16]. Most similar in spirit to TETs are perhaps the
selection graphs of [12]. However, the latter are much more limited in only being
able to express boolean features of single entities. A key advantage of TETs over
selection graphs and many other feature languages is their clear parsimonious
syntax, coupled with a precise formal semantics.

Apart from being an alternative to existing feature languages, TETs also
provide a solid basis for theoretical analyses of their characteristic properties.
For example, identifying different feature languages with specific sub-classes of
TETs provides a basis for analyzing more clearly what kind of information the
different languages are able to extract.

5 Conclusion

We have introduced TETs as an expressive and principled framework for de-
scribing features in relational domains. TETs provide a uniform language for
specifying features of single entities, tuples of entities, or a relational dataset
as a whole. By combining TETs with the notion of discriminant functions one
obtains a coherent, integrated view of feature construction and model induction
that can capture diverse data mining tasks such as graph mining and statistical
relational learning.

So far, we have introduced TETs mostly as a conceptual tool. One prereq-
uisite for using TETs in practice is to complement the language of TETs with
a formal language for defining discriminant functions. Based on the TET tree
structure it is quite easy to inductively define such languages in a way that is
similarly parsimonious and semantically clear as the TET language itself. One
example of such a language already exists in the language of probability formulas
(section 3.3).

Here we have introduced TETs only for boolean data. However, all our ba-
sic definitions can be directly generalized to non-binary data by only relaxing
the definition of literals to also include equational literals r(v) = A (A a pos-
sible value of categorical attribute r), or s(v) ≥ q (q ∈ R a threshold value for
numerical attribute s).

60 Manfred Jaeger

References

1. A. Blass and Y. Gurevich. Choiceless polynomial time computation and the zero-
one law. In Proc. of CSL 2000, pages 18–40, 2000.

2. H. Blockeel and L. de Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, (101):285–297, 1998.

3. C. Cumby and D. Roth. Feature extraction languages for propositionalized rela-
tional learning. In Proc. of the IJCAI-2003 workshop on learning statistical models
from relational data, 2003. http://kdl.cs.umass.edu/srl2003.

4. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical
Logic. Springer Verlag, 1995.

5. Ronald Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–
58, 1976.

6. N. Friedman, Lise Getoor, D. Koller, and A. Pfeffer. Learning probabilistic re-
lational models. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

7. M. Jaeger. Relational bayesian networks. In Dan Geiger and Prakash Pundalik
Shenoy, editors, Proceedings of the 13th Conference of Uncertainty in Artificial
Intelligence (UAI-13), pages 266–273, Providence, USA, 1997. Morgan Kaufmann.

8. M. Jaeger. Convergence results for relational Bayesian networks. In Proceedings
of the 13th Annual IEEE Symposium on Logic in Computer Science (LICS-98),
pages 44–55, IEEE Computer Society Press.

9. M. Jaeger. Complex probabilistic modeling with recursive relational Bayesian net-
works. Annals of Mathematics and Artificial Intelligence, 32:179–220, 2001.

10. D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection
bias in relational learning. In Proceedings of the 19th International Conference on
Machine Learning (ICML–2002), pages 259–266, 2002.

11. K. Kersting and L. De Raedt. Towards combining inductive logic programming
and bayesian networks. In Proceedings of the Eleventh International Conference
on Inductive Logic Programming (ILP-2001), Springer Lecture Notes in AI 2157,
2001.

12. A. J. Knobbe, A. Siebes, and D. van der Wallen. Multi-relational decision tree
induction. In Proceedings of PKDD-99, pages 378–383, 1999.

13. Ph. G. Kolaitis and M.Y.Vardi. 0-1 laws and decision problems for fragments of
second-order logic. Information and Computation, 87:302–338, 1990.

14. S. Kramer and L. de Raedt. Feature construction with version spaces for biochem-
ical applications. In Proc. of ICML-01, 2001.

15. J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability
trees. In Proceedings of SIGKDDD’03, 2003.

16. C. Perlich and F. Provost. Aggregation-based featrue invention and relational
concept classes. In Proc. of SIGKDD’03, 2003.

17. A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford
University, 2000.

18. T. Sato. A statistical learning method for logic programs with distribution seman-
tics. In Proceedings of the 12th International Conference on Logic Programming
(ICLP’95), pages 715–729, 1995.

19. Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.
SIGKDD Explor. Newsl., 5(1):59–68, 2003.

Flexible Tree Kernels based on
Counting the Number of Tree Mappings

Tetsuji Kuboyama1, Kilho Shin2, and Hisashi Kashima3

1 Center for Collaborative Research, University of Tokyo, Japan
4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan

kuboyama@ccr.u-tokyo.ac.jp
2 Research Center for Advanced Science and Technology, University of Tokyo, Japan

4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
kshin@mpeg.rcast.u-tokyo.ac.jp

3 Tokyo Research Laboratory, IBM Japan, Ltd., 1623–14 Shimotsuruma, Yamato-shi,
Kanagawa, 242–8502,Japan

hkashima@jp.ibm.com

Abstract. Functions counting the number of common sub-patterns be-
tween trees have been promising candidates for kernel functions for trees
in learning systems. There are several viewpoints of how two patterns
between two trees can be regarded as the same. In the tree edit dis-
tance, these viewpoints have been well formalized as the class of tree
mappings, and several distance measures have been proposed according
to the classes of tree mappings. In this paper, we address the design
problem of new flexible tree kernels corresponding to four representative
classes of tree mappings. Therefore, first, we develop four counting func-
tions for tree mappings according to the four classes. Secondly, we prove
that three of the four counting functions are kernel functions, and the
other is not.

1 Introduction

The kernel method, a method of machine learning, provides a generic framework
to address a variety of applications, and is being extensively studied [1].

This paper focuses on kernel methods for trees. In prior work, Collins and
Duffy [2] presented the parse tree kernel as a counting function of common (sub-
tree) patterns between trees. Kashima and Koyanagi [3] extended the parse tree
kernel by allowing elastic structure matching for a more flexible interpretation
of the common patterns, which is referred to as an elastic tree kernel. However,
it has yet to be shown that the counting function really satisfies the required
properties of a kernel function, i.e. semi-positive definiteness.

For tree edit distance, the problem of what is the common pattern between
trees has been thoroughly studied. First, Tai [4] showed that the computation of
the tree edit distance can be defined as an optimization problem of a common
pattern representation, the tree mapping. The tree mapping given by Tai is a

62 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

partial node-to-node mapping between two trees that preserves the two funda-
mental orders defined over the sets of the nodes in the trees (i.e. the ancestor-
descendent and sibling orders). This tree mapping is referred to as a Tai mapping.
Inspired by Tai’s result, several subclasses of the Tai mapping class have been
proposed [5–9], each of which determines a variant of the tree edit distance.
Recently, Kuboyama and Shin [10, 11] showed that many of the interesting map-
ping classes fall into four fundamental classes, which are called the accordant,
semi-accordant, alignable, and Tai mappings. The following inclusive relationship
holds among these classes.

Accordant $ Semi-Accordant $ Alignable $ Tai

This class hierarchy represents the flexibility of the interpretation of the com-
mon patterns between trees. Note that Tai mapping is the most flexible in this
hierarchy.

It is presumable that four tree kernels can be proposed by giving counting
functions for tree mappings for these four classes. In fact, the counting function
of the elastic tree kernel [3] turned out to be that of the accordant mappings.
This fact indicates the possibility that three more flexible tree kernels can be
designed, since the elastic tree kernel [3] corresponds to the most restrictive
one among the four classes, even though the tree kernel was designed with the
intention of designing the most flexible tree kernel possible.

This paper presents new tree kernels more flexible than existing ones by
considering the following characteristics.

1. The counting functions for all four of the mapping classes have recursive
expressions, which enable efficient evaluation by dynamic programing.

2. The counting functions for the accordant, semi-accordant, and Tai map-
pings are positive semi-definite. In contrast, for the alignable mapping, a
counterexample to positive semi-definiteness exists.

3. Hence, the counting functions for the Tai, semi-accordant, and accordant
mappings are kernel functions whereas that for the alignable mapping is
not. The accordant case proves that the elastic tree kernel [3] is a kernel
function.

This paper is organized as follows. In Sect. 2, tree kernels proposed in prior
work and the notion of tree mapping are described. In Sect. 3, the recursive ex-
pressions of the counting functions are presented for each class of tree mappings.
In Sect. 4, it is shown that the counting functions for the Tai, semi-accordant, and
accordant mapping classes are positive semi-definite. For the alignable mapping,
a counterexample to positive semi-definiteness is presented. Finally, this paper
is concluded in Sect. 5. Most of proofs are omitted due to the space limitation.

2 Background

2.1 Preliminaries

The trees considered in this paper are labeled rooted ordered trees. A labeled
tree is a tree in which each node is labeled from a finite alphabet Σ. Let l be a

Flexible Tree Kernels based on Counting the Number of Tree Mappings 63

labeling function which assigns a label from a set Σ = {a, b, c, . . .} to each node.
An ordered tree is a tree in which the left-to-right order among siblings is given.
Let V (Ti) denote the set of nodes of a tree Ti (i = 1, 2).

An ancestor of a node is recursively defined as follows: the ancestor of a node
is either the node itself, or an ancestor of the parent of the node. The notation
x ≤ y denotes a node y is an ancestor of a node x, and x` y denotes the least
(or nearest) common ancestor of x and y. If x ≤ y and x 6= y, then y is a proper
ancestor of x, and denoted by x < y. A node x is to the left of a node y if x`y
is a proper ancestor of both x and y, and the child of x`y on the path to x is
to the left of the child of x`y on the path to y, and denoted by x ≺ y. In this
paper, a ‘tree’ refers to a labeled rooted ordered tree.

2.2 Tree Kernels

Collins and Duffy [2] presented the parse tree kernel as a counting function of
common subtrees, which is in the class of convolution kernels [12].

Since a common subtree between T1 and T2 uniquely defines a partial map-
ping between V (T1) and V (T2), the parse tree kernel is regarded as a counting
function of partial node-to-node mappings between trees. Then the kernel func-
tion is basically defined as follows. (Note that the definition is slightly modified
from the original.)

K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

KSC(v1, v2),

where KSC(v1, v2) is the counting function of the number of the partial mappings
f that satisfy the following conditions.

– f is a mapping from a domain D j V (T1) to V (T2) with f(v1) = v2.
– Any v ∈ D \ {v1} and its parent w in T1 satisfy: (1) v is a descendent of v1;

(2) w ∈ D; (3) w and f(w) have the same number of children; and (4) If v
is the i-th child of w, then f(v) is also the i-th child of f(w).

A partial mapping satisfying the above conditions is referred to as a subtree-
congruent mapping. The value of KSC(v1, v2) can be calculated by the following
equality.

KSC(v1, v2) =
{

δl(v1),l(v2) ·
∏#ch(v1)

i=1 (1 + KSC(v1i, v2i)) if #ch(v1) = #ch(v2);
0 otherwise

where by #ch(v), vij , and l(vi), we denote the number of the children of v, the
j-th child of vi, and the label attached to vi respectively; and δij is Kronecker’s
delta, i.e. δij = 1 if i = j and 0 otherwise.

The value of the kernel K(T1, T2) can be calculated by dynamic programming
in O(|V (T1)|·|V (T2)|) time. Note that the subtree-congruent mapping is injective
and preserves the ancestor-descendant and the sibling orders between two trees.

Kashima and Koyanagi [3] thought that the subtree-congruent mapping is
too restrictive for HTML parse trees, and proposed an extended tree kernel, the
elastic tree kernel, based on a more flexible mapping. Unfortunately, their work
is incomplete for two reasons.

64 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

– The function has yet to be shown to be positive semi-definite.
– The elastic tree kernel turns out to be a counting function of a relatively

restrictive class of tree mappings in the study of the tree edit distance. This
fact implies that the kernel is not as flexible as they intended.

This paper resolves these problems.

2.3 Common Patterns and Tree Mappings in the Tree Edit Distance

Tree Edit Distance and Tree Mappings. The edit distance from a tree S to a
tree T is defined as the minimum cost of an edit sequence that transforms S to T .
An edit sequence is a sequence of the primitive edit operations of (1) relabeling,
(2) deleting, and (3) inserting a node in a tree. The edit operation of changing
the label of a node from a to b (a, b ∈ Σ) is denoted by 〈a → b〉, and the edit
operations of deleting and inserting a node with label a are respectively denoted
by 〈a → λ〉 and 〈λ → a〉, where λ denotes the null symbol. The cost of the
operation 〈α → β〉, where α, β ∈ Σ∪{λ}, is denoted by γ(α → β) and is assumed
to satisfy γ(α → β) ≤ γ(α → µ) + γ(µ → β) for arbitrary α, β, µ ∈ Σ ∪ {λ}.

Tai [4] showed a fundamental correspondence between an effect of an edit
sequence and a common pattern occurring in two trees. The common pattern is
represented as a set of pairs of nodes called a tree mapping. The formal definition
of the tree mapping is given as follows.

Definition 1. M j V (S)×V (T) is said to be a tree mapping, if and only if the
following are satisfied for arbitrary (s1, t1), (s2, t2) ∈ M . (1) s1 = s2 ⇔ t1 = t2,
(2) s1 < s2 ⇔ t1 < t2, and (3) s1 ≺ s2 ⇔ t1 ≺ t2.

The tree mapping defined by Tai is referred to as a Tai mapping. An example of
a Tai mapping is shown in Fig. 1. With the notation of MS = {s | (s, t) ∈ M}
and MT = {t | (s, t) ∈ M}, the cost of the Tai mapping M is defined by

γ(M) =
∑

(s,t)∈M

γ(l(s) → l(t)) +
∑

s 6∈MS

γ(l(s) → λ) +
∑

t6∈MT

γ(λ → l(t)).

Tai [4] showed that the tree edit distance is defined as the cost minimization
problem of tree mappings as follows.

d(S, T) = min{γ(M) | M is a Tai mapping from S to T} (1)

In the rest of this paper, the problem of calculating the right-hand side of Eq. (1)
is referred to as the edit problem.

Class Hierarchy of Tree Mappings. In the tree edit distance, several classes
of tree mappings have been proposed by restricting the conditions for the Tai
mapping. There are two major motivations for restricting the Tai mapping. The
first is to improve the computation cost of the edit problem. The second is to tai-
lor the tree mapping for specific applications, since the Tai mapping may be too
general for certain applications such as comparing parse trees, taxonomies, and
so forth. The following are some of the most important classes of tree mappings
in the tree edit distance.

Flexible Tree Kernels based on Counting the Number of Tree Mappings 65T1u1u2u3u4 u5u6
u7u8 u9

T2v1v2v3 v4 v5v6v7 v8 v9
Fig. 1. Example of a Tai mapping:
M = {(u1, v1), (u4, v3), (u6, v6), (u7, v9)}T1u1u2u3u4 u5u6

u7u8 u9
T2v1v2v3 v4 v5v6v7 v8 v9

Fig. 2. Example of an accordant
mapping: M = {(u2, v1), (u4, v2), (u7, v5), (u8, v7), (u9, v9)}

Table 1. Characteristic of Mapping Classes

T1

T2 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1s2 s3 s1s2 s3t1 t2 t3 Tai, Al
S-Ac, Ac

Tai, Al Tai none none

t1 t2 t3 Tai, Al Tai, Al
S-Ac, Ac

Tai, Al none none

t1 t2 t3 Tai Tai, Al Tai, Al
S-Ac, Ac

none nonet1t2 t3 none none none Tai, Al
S-Ac, Ac

Tai, Al
S-Act1t2 t3 none none none Tai, Al

S-Ac
Tai, Al
S-Ac, Ac

Al: Alignable, S-Ac: Semi-Accordant,
Ac: Accordant; M = {(s1, t1), (s2, t2), (s3, t3)}.

– Zhang [5] introduced the notion of the constrained mapping and proposed a
quadratic time algorithm for the edit problem for the constrained mapping.

– Lu et al. [6] slightly relaxed the definition of the constrained tree mapping
and gave the notion of the less-constrained mapping.

– Richter [7] introduced the structure-respecting mapping for comparing syntax
trees.

– Jiang et al. [8] extended the alignment of sequences to the alignment of
trees, and Kuboyama and Shin [10] elucidated the mapping definition for
the alignment of trees called an alignable mapping.

Recently, Kuboyama and Shin [10, 11] showed the following inclusive relation.

Constrained = Structure-Respecting $ Less-Constrained = Alignable

In this paper, the constrained and structure-respecting mappings are both re-
ferred to as semi-accordant mapping, and the less-constrained and alignable
mappings are both referred to as alignable mappings. In addition, Shin and
Kuboyama [11] introduced the notion of the accordant mapping. The following
are the formal definitions of these mapping classes.

Accordant mapping. A Tai mapping M is accordant iff s1 ` s2 = s1 ` s3 ⇔
t1 ` t2 = t1 ` t3 holds for any (s1, t1), (s2, t2), (s3, t3) ∈ M .

Semi-Accordant mapping. A Tai mapping M is semi-accordant iff s1 `s2 =
s1 ` s3 ⇔ t1 ` t2 = t1 ` t3 holds for any (s1, t1), (s2, t2), (s3, t3) ∈ M such
that none of s1, s2, or s3 is an ancestor of any of the others.

Alignable mapping. A Tai mapping M is alignable iff s1 ` s2 < s1 ` s3 ⇒
t1 ` t3 = t2 ` t3 holds for any (s1, t1), (s2, t2), (s3, t3) ∈ M .

66 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

T1 T2 � � � Ti| {z }F1 Ti+1 Ti+2 � � � Tn| {z }F2| {z }F1 � F2 = T1 � T2 � � � � � Tn
vT = v(F)

T1 T2 � � � Tn| {z }F = T1 � T2 � � � � � Tn
Fig. 3. The composition of two forests F1 and F2, and a tree T = v(F).

An example of an accordant mapping is shown in Fig. 2. Each class is charac-
terized by the properties depicted in Tab. 1. It is easy to show that the elastic
tree kernel [3] turns out to be the counting function of the accordant mappings
between two trees.

3 Recursive Expressions of Counting Functions

In this section, first, we extend the notion of tree mappings to forests. Next, we
give the counting functions of the extended tree mappings between two forests.

3.1 Mapping Definition for Forests

A forest F is an ordered sequence of disjoint trees T1, . . . , Tn, denoted by T1 •
· · · • Tn, or •n

i=1 Ti, and in particular denoted by ∅ if n = 0. The composition
of forests F1 and F2 in this order is denoted by F1 • F2 (See Fig. 3). The set of
nodes V (T1) ∪ · · · ∪ V (Tn) is denoted by V (F).

Definition 2. Let F be a forest T1 • · · · • Tn and v be a node not included in
V (F). The tree v(F) is defined as follows.

– V (v(F)) = (
⋃n

i=1 V (Ti)) ∪ {v}.
– x < y iff, for some i, either x, y ∈ V (Ti) and x < y in Ti, or y = v holds.
– x ≺ y holds iff, for some i, either x, y ∈ V (Ti) and x ≺ y in Ti or x ∈ V (Ti),

y ∈ V (Tj) and i < j holds.

The notion of tree mappings is extended to forests as follows.

Definition 3. Let F1 and F2 be forests and C denote one of Accordant,
Semi-Accordant, Alignable, or Tai. A non-empty mapping M ⊆ V (F1)×
V (F2) is said to be a C-mapping if and only if M defines a C-mapping from
v1(F1) to v2(F2).

Let MC(F1, F2) denote the set of C-mappings between F1 and F2. The count-
ing functions KC(F1, F2) are defined as follows, where the symmetric function
σ : Σ×Σ → R+

0 defines the similarity between labels of nodes, where R+
0 denotes

the set of all non-negative real numbers.

KC(F1, F2) =
∑

M∈MC(F1,F2)

σ(M); σ(M) =
∏

(x1,x2)∈M

σ(l(x1), l(x2))

In the rest of this paper, a forest F ′ is called a subforest of a forest F if and only
if V (F ′) is a subset of V (F) and the ancestor-descendant and sibling orders of
F ′ are inherited from F .

Flexible Tree Kernels based on Counting the Number of Tree Mappings 67

3.2 Counting Function for Tai Mapping Class

KTai(F, ∅) = KTai(∅, F) = 0
KTai(v1(F ′

1) • F ′′
1 , v2(F ′

2) • F ′′
2) =

σ(l(v1), l(v2))(1 + KTai(F ′
1, F

′
2))(1 + KTai(F ′′

1 , F ′′
2))

+KTai(v1(F ′
1) • F ′′

1 , F ′
2 • F ′′

2) + KTai(F ′
1 • F ′′

1 , v2(F ′
2) • F ′′

2)
−KTai(F ′

1 • F ′′
1 , F ′

2 • F ′′
2) (2)

The natural properties of the Tai mapping (Prop. 1 and Lem. 1) play a central
role in proving the correctness of Eq. (2). Let M ′ = M ∩ (V (F ′

1) × V (F ′
2)) and

M ′′ = M ∩ (V (F ′′
1)× V (F ′′

2)) in the following proposition and lemma.

Proposition 1. Let F ′
i be any subforest of Fi. Then the following hold.

1. If M is a Tai mapping from F1 to F2, then M ′ is also a Tai mapping from
F ′

1 to F ′
2.

2. For non-empty M ⊆ V (F ′
1)× V (F ′

2), the following two properties are equiv-
alent.
(a) M is a Tai mapping from F ′

1 to F ′
2.

(b) M is a Tai mapping from F1 to F2.

Lemma 1. Let F ′
i and F ′′

i be completely distinct. For non-empty M ⊆ (V (F ′
1)∪

V (F ′′
1))× (V (F ′

2) ∪ V (F ′′
2)), the following two conditions are equivalent.

1. M ∪ {(v1, v2)} is a Tai mapping from v1(F ′
1) • F ′′

i to v2(F ′
2) • F ′′

2 .
2. M satisfies the following three conditions. (1) M = M ′ ∪ M ′′; (2) M ′ is a

Tai mapping from F ′
1 to F ′

2; and (3) M ′′ is a Tai mapping from F ′′
1 to F ′′

2 .
The left-hand side of Eq.(2) is decomposed into the following two parts.

KTai(v1(F ′
1) • F ′′

1 , v2(F ′
2) • F ′′

2) =
∑

(v1,v2)∈M σ(M) +
∑

(v1,v2) 6∈M σ(M)

Assume (v1, v2) ∈ M . The mapping M \ {(v1, v2)} is identical to M ′ ∪M ′′ for
some Tai mappings M ′ from F ′

1 to F ′
2 and M ′′ from F ′′

1 to F ′′
2 by Lem. 1. To

the contrary, for arbitrary Tai mappings M ′ from F ′
1 to F ′

2 and M ′′ from F ′′
1 to

F ′′
2 , M ′ ∪M ′′ ∪ {(v1, v2)} is also a Tai mapping from v1(F ′

1) •F ′′
i to v2(F ′

2) •F ′′
2

by Lem. 1.
Therefore, since σ(M) = σ(l(v1), l(v2))σ(M ′)σ(M ′′), the following holds.∑

(v1,v2)∈M σ(M) = σ(l(v1), l(v2))(1 + KTai(F ′
1, F

′
2))(1 + KTai(F ′′

1 , F ′′
2))

Let S1, S2, and S3 be as follows.
S1 = {M ∈MTai(v1(F ′

1) • F ′′
1 , v2(F ′

2) • F ′′
2) | (v1, w) ∈ M ∧ w 6= v2},

S2 = {M ∈MTai(v1(F ′
1) • F ′′

1 , v2(F ′
2) • F ′′

2) | (w, v2) ∈ M ∧ w 6= v1}, and

S3 = {M ∈MTai(v1(F ′
1) • F ′′

1 , v2(F ′
2) • F ′′

2) | (v, w) ∈ M ⇒ v 6= v1 ∧ v 6= v2}.

By condition 2 of Prop. 1, the following holds.∑
M∈S1

σ(M) = KTai(v1(F ′
1) • F ′′

1 , F ′
2 • F ′′

2)−KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2),∑
M∈S2

σ(M) = KTai(F ′
1 • F ′′

1 , v2(F ′
2) • F ′′

2)−KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2), and∑
M∈S3

σ(M) = KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2).

The correctness of Eq. (2) is shown by adding together all of the above compo-
nents.

68 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

3.3 Template of Counting Function for Subclasses of Tai Mappings

Since Prop. 1 and Lem. 1 do not hold for the subclasses of the Tai mapping, then
Eq. (2) is not applicable. However, there exists a common template of counting
functions applicable to all three of the subclasses.

C ∈ {Accordant, Semi-Accordant,Alignable}
KC(∅, F) = KC(F, ∅) = KC

f (T, ∅) = 0 (4)
KC(T1 • F1, T2 • F2) = KC

1 (T1 • F1, T2 • F2) + KC(F1, F2) (5)
KC

f (v(F1), T2 • F2) = KC
t (v(F1), T2)−KC

f (T2, F1) + KC
f (v(F1), F2)

−KC(F1, F2) + KC(F1, T2 • F2) (6)
KC

t (v1(F1), v2(F2)) = σ(l(v1), l(v2)) · (1 + KC
2 (F1, F2)) + KC

f (v1(F1), F2)
+KC

f (v2(F2), F1)−KC(F1, F2) (7)

KC
1 (F1, F2) and KC

2 (T1, T2) in the template are defined as follows.

KC
1 (T1 • F1, T2 • F2) =

∑
M∈S1

σ(M); KC
2 (v1(F1), v2(F2)) =

∑
M∈S2

σ(M),

where

S1 = {M ∈MC(T1 • F1, T2 • F2) |
M ∩ (V (T1)× V (T2 • F2)) 6= ∅ ∨M ∩ (V (T1 • F1)× V (T2)) 6= ∅}, and

S2 = {M ∈MC(v1(F1), v2(F2)) | M ∪ {(v1, v2)} ∈ MC(v1(F1), v2(F2))}.

The recursive expressions for KC
1 (F1, F2) and KC

2 (F1, F2) are given afterward.
KC

t (T1, T2) takes two trees as the arguments, and KC
f (T, F) takes a tree and

a forest. Equations (5) to (7) are verified in a similar way to Eq. (2), and the
following Prop. 2 is used instead of Prop. 1 and Lem. 1.

Proposition 2. Let C be one of Accordant, Semi-Accordant, or
Alignable. Further, let F ′

i be a subforest of Fi satisfying one of the follow-
ing. (1) Fi = F ′

i ; (2) Fi = vi(F ′
i); or (3) Fi = Gi • F ′

i • Hi for some forests
Gi,Hi. Then the following hold.
1. For a C-mapping M from F1 to F2, M ′ = M ∩ (V (F ′

1) × V (F ′
2)) is a C-

mapping from F ′
1 to F ′

2.
2. For arbitrary M ⊆ V (F ′

1) × V (F ′
2), the following two properties are equiva-

lent. (1) M is a C-mapping from F ′
1 to F ′

2; and (2)M is a C-mapping from
F1 to F2.

In the rest of this section, the following notations are used for Fi = •ni
j=1 T i

j (i =
1, 2) and M ∈ MC(F1, F2): M1

j = M ∩ (V (T 1
j) × V (F2)), M2

j = M ∩ (V (F1) ×
V (T 2

j)), and Mij = M1
i ∩M2

j .
The expressions of counting functions are stated without further proof of

their correctness due to the space limitation.

Flexible Tree Kernels based on Counting the Number of Tree Mappings 69

Expressions for KAcc
1 and KSemi-Acc

1

C ∈ {Accordant, Semi-Accordant}
KC

1 (T1 • F1, T2 • F2) = KC
t (T1, T2)(KC

3 (F1, F2)− 1)
+KC

f (T1, T2 • F2)−KC
f (T1, F2) + KC

f (T2, T1 • F1)−KC
f (T2, F1)

+KC(T1 • F1, F2) + KC(F1, T2 • F2)− 2KC(F1, F2) (8)

KC
3 is defined as

KC
3 (F1, F2) =

∑
M∈S3

σ(M),

where

S3 = {M ∈MC(F1, F2) | Mij 6= ∅ ∧ Mkl 6= ∅ ⇒ (i, j) = (k, l)∨(i 6= j ∧ k 6= l)}.

C ∈ {Accordant, Semi-Accordant}
KC

3 (F, ∅) = KC
3 (∅, F) = 0

KC
3 (T1 • F1, T2 • F2) = KC

t (T1, T2)(1 + KC
3 (F1, F2))

+ KC
3 (F1, T2 • F2) + KC

3 (T1 • F1, F2)−KC
3 (F1, F2) (9)

Expressions for KAlgn
1 and KAcc

2

KAlgn
1 (•m

i=1 T 1
i ,•n

j=1 T 2
j) = κ1,1

1,1(1 + κ2,m
2,n)

+
∑n

j=2{(κ
1,1
1,j − κ1,1

1,j−1)(1 + κ2,m
j+1,n)

+
∑m

i=2(κ
1,i
j,j − κ1,i−1

j,j − κ2,i
j,j + κ2,i−1

j,j)(1 + κi+1,m
j+1,n)}

+
∑m

i=2{(κ
1,i
1,1 − κ1,i−1

1,1 (1 + κi+1,m
2,n)

+
∑n

j=2(κ
i,i
1,j − κi,i

1,j−1 − κi,i
2,j + κi,i

2,j−1)(1 + κi+1,m
j+1,n)} (10)

Let a, b, c, and d satisfy 1 ≤ a ≤ b ≤ n1 and 1 ≤ c ≤ d ≤ n2.

κa,b
c,d = KAlgn(•b

i=a T 1
i ,•d

j=c T 2
j) (11)

KAcc
2 (F1, F2) = KAcc

3 (F1, F2) (12)

Expressions for KSemi-Acc
2 and KAlgn

2

C ∈ {Semi-Accordant,Alignable}
KC

2 (F1, F2) = KC(F1, F2) (13)

The left-to-right recursive evaluation of Eq. (2) to Eq. (13) actually terminate
due to the base expression in Eq. (4). Each counting function can be evaluated
with the time complexity O(n4) for the Tai, O(n2d2) for the alignable, O(n2) for
the semi-accordant, and O(n2) for the accordant mapping class, where n denotes
the size of trees, and d denotes the maximum degree by dynamic programing as
in the case of the algorithms for the tree edit distance.

70 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

Remark. The counting functions in the parse tree kernel and the elastic tree
kernel both require a pair of nodes (sr, tr) in the mapping M such that sr ≥ s
and tr ≥ t for any (s, t) ∈ M . It is easy to modify our counting functions
proposed in this paper to satisfy this restriction. Nevertheless, we believe our
counting functions are more natural as the similarity measures between two
trees.

4 Positive Semi-Definiteness of Counting Functions

Assume that the label-similarity function σ is positive semi-definite. Then intu-
ition may suggest that the positive semi-definiteness of KC can be inferred from
the fact that KC(x, y) can be represented as a polynomial in σ(a, b).

However, this intuition is incorrect when C is Alignable. Consider the
three forests F1, F2, andF3 and the label-similarity function σ over Σ =
{a, b, c, d, e, f, g, h} as shown in Fig. 4. The Gram matrix [KAlgn(Fi, Fj)] is given
by:

[KAlgn(Fi, Fj)] =

7 + 16ε + 8ε2 7 6
7 7 + 8ε 7
6 7 7 + 16ε + 8ε2

Since its determinant D coincides with −7 + ε · q(ε) for some quartic q(ε), D is
negative for a sufficiently small ε < 1 (ε > 0), and therefore, the matrix has at
least one negative eigenvalue. This fact means that KAlgn(x, y) is not a kernel
function.

F1 F2 F3dea b fa b ga hb σ(x, y) =

8><>:
1 if x = y ∈ {a, b, c}
ε if x = y ∈ {d, e, f, g, h}
0 if x 6= y

Fig. 4. A counterexample to positive semi-definiteness

In contrast, KC is positive semi-definite when C is one of Tai, Semi-
Accordant, or Accordant (Cor. 1). Prop. 3 plays a key role to prove Cor. 1.

In Prop. 3, the following notations are used.

– When Aij are m-dimensional square matrices parameterized by (i, j) =
{1, . . . , n}2, A denotes the derived mn-dimensional square matrix
[Aij]i,j=1,...,n; and the (mi + k, mj + l)-element of A is defined to be the
(k, l)-element of Aij , and denoted by Aij

kl.
– p is a homogeneous polynomial of degree d in the m2 variables

X11, X12, . . . , Xmm. Further, assume that p is given a representation of

p(X11, X12, . . . , Xmm) =
∑

k∈{1,...,m}d

∑
l∈{1,...,m}d

ck,lXk1l1 · · · · ·Xkdld ,

where k = (k1, . . . , kd) and l = (l1, . . . , ld). Note that such representation of
p is not unique.

Flexible Tree Kernels based on Counting the Number of Tree Mappings 71

Proposition 3. Let A be positive semi-definite. If there exists c̄k ∈ R for each
k ∈ {1, ..,m}d such that ck,l = c̄kc̄l, then the n-dimensional square matrix
[p(Aij

11, . . . , A
ij
mm)]i,j=1,...,n is also positive semi-definite.

For a positive integer N , let FN denote the set of forests F such that |V (F)| ≤
N . A universal tree TN is a tree with a finite set of nodes, into which each forest
F ∈ FN is embedded preserving the ancestor-descendent and sibling orders.
When a single order-preserving embedding eF : V (F) → V (TN) is assigned to
each F ∈ FN , a pair of TN and the set {eF | F ∈ FN} is used as a common
numbering scheme of the nodes for any F ∈ FN .

Let C denote an arbitrary subclass of the Tai mapping, including, but not
limited to, Tai, Alignable, Semi-Accordant, and Accordant. The only
restriction imposed on C is to satisfy {(v1, v1), . . . , (vn, vn)} ∈ MC(F, F) for
arbitrary F , n and v1, . . . , vn ∈ V (F), where MC(F1, F2) denotes the set of
C-mappings from F1 to F2.

The mapping class C is said to be absorbent if and only if, for an arbitrary N ,
there exists a pair of a universal tree TN and a set of embedding {eF | F ∈ FN}
such that: ∀(F1 ∈ FN)∀(F2 ∈ FN)∀(M ∈ V (F1) × V (F2))[M ∈ MC(F1, F2) ⇔
(eF1 × eF2)(M) ∈ MC(TN , TN)]. In addition, C is said to be transitive if and
only if, for arbitrary M12 ∈ MC(F1, F2) and M23 ∈ MC(F2, F3), the mapping
M13 = {(v1, v3) | ∃(v2)[(v1, v2) ∈ M12 ∧ (v2, v3) ∈ M23]} is also a C-mapping
from F1 to F3.

If C is transitive, the inverse of a given C-mapping and the composition
of given C-mappings are all C-mappings. In particular, MC(F, F) under map
composition forms a group.

Theorem 1. Let σ : Σ × Σ → R+
0 be positive semi-definite. If C is absorbent

and transitive, the function KC |FN
: FN × FN → R+

0 is positive semi-definite
for an arbitrary N .

It is easy to see that Accordant, Semi-Accordant, Alignable and Tai
classes are all absorbent. In contrast, the alignable mapping class is not transi-
tive, while the others are. A counterexample to the transitivity of the alignable
mapping is also given by Fig. 4: M12 = {(a, a), (b, b), (c, c)} ∈ MAlgn(F1, F2);
M23 = {(a, a), (b, b), (c, c)} ∈ MAlgn(F2, F3); M13 = {(a, a), (b, b), (c, c)} 6∈
MAlgn(F1, F3). Note that, for simplicity, in the mappings, labels are used to
indicate the nodes. Corollary 1 gives the main assertion of this section.

Corollary 1. Let C be one of Tai, Semi-Accordant, or Accordant.
KC |FN

: FN × FN → R+
0 is positive semi-definite for an arbitrary N if and

only if σ : Σ ×Σ → R+
0 is positive semi-definite.

Theorem 1 has a wide range of applications. For example, the subtree-
congruent mapping class is absorbent and transitive. Moreover, let Leaf-Tai,
Leaf-Semi-Accordant, and Leaf-Accordant respectively denote the sub-
classes of Tai, Semi-Accordant and Accordant such that, for M belonging
to the subclasses, x and y are both leaves if (x, y) ∈ M . They are also absorbent
and transitive. Therefore, the counting functions for those mapping classes are
positive semi-definite.

72 Tetsuji Kuboyama, Kilho Shin, and Hisashi Kashima

5 Conclusion

A generalization of the tree kernels due to Collins and Duffy [2], and due to
Kashima and Koyanagi [3] is addressed in this paper. Based on the notion of
tree mapping, which depicts a common sub-pattern between two trees, it is
shown that these existing kernels are the counting functions of tree mappings.
By focusing on four major classes of tree mappings proposed in the field of
the tree edit distance, four counting functions of tree mappings are proposed
according to the four classes. In addition, it is proved that three of the four
counting functions are kernel functions, and the other is not by checking their
positive semi-definiteness. One of the three tree kernels developed in this paper
turns out to be the elastic tree kernel due to Kashima and Koyanagi. The other
two tree kernels are more general than existing tree kernels in the interpretation
of the common patterns occurring between two trees.

For future work, it is necessary to undertake an empirical analysis of the
proposed tree kernels by applying them to real-world data in order to show the
adequacy and effectiveness for specific applications.

Acknowledgments

We would like to thank the reviewers for their helpful comments. This work is
partly supported by Grant-in-Aid for Scientific Research No. 17700138 from the
Ministry of Education, Culture, Sports, Science and Technology, Japan.

References
1. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
2. Collins, M., Duffy, N.: Convolution Kernels for Natural Language. Advances in

Neural Information Processing Systems 14, Vol.1 (NIPS). (2001) 625–632
3. Kashima, H., Koyanagi, T.: Kernels for Semi-Structured Data. Proc. of the 9th

International Conference on Machine Learning (ICML). (2002) 291–298
4. Tai, K.C.: The Tree-to-Tree Correction Problem. JACM 26 (1979) 422–433
5. Zhang, K.: Algorithms for The Constrained Editing Distance between Ordered

Labeled Trees and Related Problems. Pattern Recognition 28 (1995) 463–474
6. Lu, C.L., Su, Z.Y., Tang, G.Y.: A New Measure of Edit Distance between Labeled

Trees. LNCS 2108 (2001) 338–348
7. Richter, T.: A New Measure of The Distance between Ordered Trees and its

Applications. Technical Report 85166-CS, Dept. of Computer Science, Univ. of
Bonn (1997)

8. Jiang, T., Wang, L., Zhang, K.: Alignment of Trees — An Alternative to Tree
Edit. Theoretical Computer Science 143 (1995) 137–148

9. Wang, J.L., Zhang, K.: Finding Similar Consensus between Trees: An Algorithm
and A Distance Hierarchy. Pattern Recognition 34 (2001) 127–137

10. Kuboyama, T., Shin, K., Miyahara, T., Yasuda, H.: A Theoretical Analysis of
Alignment and Edit Problems for Trees. Theoretical Computer Science, The 9th
Italian Conference. LNCS 3701 (2005) 323–337

11. Shin, K., Kuboyama, T.: An algebraic Foundation of The Tree Edit Distance.
Technical report, Center for Collaborative Research, University of Tokyo (2005)

12. Haussler, D.: Convolution kernels on discrete structures. UCSC-CRL 99-10, Dept.
of Computer Science, University of California at Santa Cruz (1999)

Mining Interpretable Subgraphs

Siegfried Nijssen

Institut für Informatik, Albert-Ludwidgs-Universität,
Georges-Köhler-Allee, Gebäude 097, D-79110, Freiburg im Breisgau, Germany.

snijssen@informatik.uni-freiburg.de

Abstract. We present a measure that estimates the interpretability of
a frequent subgraph. We show that a feature selection algorithm that
uses this measure creates a set of features that is smaller and equally
predictive as features obtained in earlier studies. A significant number
of the selected features turn out to be trees or cyclic graphs, leading us
to the conclusion that such features are not as useless as suggested in
some earlier studies. Finally, we show that a constraint on this measure
can be pushed in the mining process, thus leading to faster discovery of
interesting subgraphs.

1 Introduction

One of the most important applications of graph mining is the analysis of molecu-
lar datasets, where the aim is to predict accurately if an unseen molecule exhibits
a certain chemical activity or not. Traditional methodes proposed in the chemo-
informatics community rely mostly on paths, but the data mining community
has started the use of subgraphs in the hope of obtaining better classifiers, where
both frequent pattern mining [10, 7] and kernel approaches [6, 9] have been in-
vestigated.

In two recent papers, however, it was suggested that the additional complex-
ity of taking into account subgraphs may not be justified [2, 9]. It was reported
that for a large number of classifiers and a large number of datasets, features
based on paths yield more accurate classifiers.

In the local pattern mining approach, which is used for example in [2], classi-
fication is typically approached as follows. First, given a dataset, a set of patterns
(in this case, paths or subgraphs) is computed. During this search, a constraint
is enforced such that only patterns are found that have sufficient correlation with
the activity of the molecules; for instance, the subgraph should occur more often
in the active molecules than in the inactive ones.

Second, each pattern is used to create a new feature for the molecules: if a
molecule contains a certain pattern, the feature correponding to the pattern gets
value 1 (or true), otherwise the feature has value 0 (or false). On the resulting
set of features, a classifier, such as a decision tree, is learned. This decision tree
is finally used to predict the activity of new molecules.

It is indeed an interesting observation that a set of paths can contain the
same amount or even more information than a set of subgraphs. An equally

74 Siegfried Nijssen

interesting question is how these results can be explained. We believe that there
are several possible explanations:

– in [2] feature sets of equal size were determined for each type of pattern; if
one considers the contingency tables that achieve the best correlation values,
there are usually significantly more subgraphs with exactly that table than
there are subpaths, yielding features that are more correlated among each
other in case a fixed number of subgraphs are used;

– if subgraphs are considered, the amount of possible features is much larger;
thus the risk of overfitting to the training data is also much larger.

In the study of [2] it was reported that by relaxing the correlation constraint,
a more accurate classifier can be obtained. One could explain this by the argu-
ment that the resulting additional features are in this case less correlated among
eachother.

In this paper, we investigate these observations further. Concretely, we pro-
pose a measure to drastically cut down the number of frequent subgraphs that
are used as features, thus yielding classifiers that are more interpretable, and we
propose a feature selection method to avoid redundancy among the features. We
show that the interpretability constraint can be pushed in the mining process,
thus showing that there are efficient ways to search for patterns that are still
simple, but also cyclic.

The paper is organized as follows. In section 2 we briefly reintroduce the
formal concepts that are important in this paper. In section 3 we introduce our
notion of interpretable subgraphs. In section 4 we show how a constraint on in-
terpretable subgraphs can be pushed in the mining process. Section 5 introduces
our feature selection algorithm. Section 6 concludes.

2 Concepts

An essential task in the local pattern mining scenario is the computation of a
relevant set of patterns. In the data mining community, these features are often
determined using a frequent subgraph mining algorithm. To formalize what a
frequent subgraph is, we need the following definitions.

Definition 1 (Graphs). An undirected, labeled graph G(V, E, λ, Σ) consists of
a finite set V of vertices, a set E ⊆ {{u, v}|u, v ∈ V, u 6= v} of edges, an alphabet
Σ and a labeling function λ : (V ∪ E) → Σ.

Definition 2 (Connected Graphs). A graph G(V,E, λ,Σ) is called connected
iff for each pair of nodes u, v ∈ V there is a sequence of nodes v1, . . . , vn in V
with v1 = u and vn = v and {vi, vi+1} ∈ E.

In this paper, we only consider connected graphs.

Definition 3 (Graph Isomorphism). Graphs G(V,E, λ, Σ) and G′(V ′, E′, λ′, Σ′)
are called isomorphic if there exists a bijective function f : V → V ′ such that:
∀v ∈ V : λ(v) = λ′(f(v)) ∧E = {{f(v1), f(v2)}|{v1, v2} ∈ E′} ∧ ∀e ∈ E : λ(e) =
λ′(f(e)).

Mining Interpretable Subgraphs 75

Definition 4 (Subgraph). Given a graph G(V, E, λ, Σ), G′(V ′, E′, λ′, Σ′) is
called a subgraph of G iff V ′ ⊆ V ∧ E′ ⊆ E ∧ ∀v ∈ V ′ : λ(v′) = λ(v) ∧ ∀e ∈ E′ :
λ(e′) = λ(e).

If a graph H has a subgraph H ′ such that a graph G is isomorphic with H ′,
then G is said to be subgraph isomorphic with H, denoted by H º G; fuction f
defines how subgraph G can be embedded in the larger graph H. The set of all
embeddings of G in H is denoted by FHºG.

Definition 5 (Frequent Subgraph). Given a collection D of graphs and a
graph G, the frequency of G, denoted by freq(G,D), is the cardinality of the
set {G′ ∈ D|G′ º G}. A graph G is frequent if freq(G,D) ≥ minsup, for a
predefined threshold minsup.

The problem that is solved by a frequent subgraph mining algorithm is to find
all subgraphs that are frequent in a dataset. In the molecular setting the set of
frequent subgraphs is usually computed on the active set of molecules, and their
corresponding frequencies on the inactive set of molecules are computed later.

Several algorithms have been proposed to solve the frequent subgraph min-
ing problem, among which gSpan [10], Gaston [7] and MoFA [5, 8]. All these
algorithms exploit the fact that the frequency constraint is anti-monotonic: if
G º H, then freq(G) ≤ freq(H). As a consequence of this property, algorithms
do not need to consider all possible subgraphs of a database to find all frequent
ones: it is possible to search from small to large subgraphs, and stop searching
if a large graph is not frequent any more.

An important issue that subgraph miners have to address, is that there are
many ways to construct isomorphic subgraphs. For instance, a molecular frag-
ment consisting of an oxygen (O) connected to a carbon (C), can be obtained
by connecting either a carbon to an oxygen, or by connecting an oxygen to a
carbon. To avoid duplicates, only one of these two extensions should be allowed.
Most subgraph miners solve this issue by using a canonical code that restricts in
what ways a subgraph can be extended.

The degree of a node v, denoted by deg(v), is the number of nodes to which
the node is directly connected by the edges in the graph. Several simple classes
of subgraphs have been studied. A (free) tree is a connected graph in which
|V | = |E|+ 1; a path is a tree in which no node has a degree higher than 2.

Assume that there are two graphs H and G, such that H º G, and freq(G) =
freq(H), then for the purpose of classification graph H can be considered redun-
dant: it covers exactly the same set of molecules as G, but is more specific, and
therefore more likely to overfit. Therefore, it is often useful to restrict the search
to subgraphs G for which there is no subgraph H for which freq(G) = freq(H).
Such subgraphs are called free subgraphs. If there is no supergraph H for which
freq(G) = freq(H), then subgraph G is called a closed subgraph.

Finally, if we know the frequency of a subgraph in both a set of active and
inactive molecules, we can compute its correlation with that activity; this score
—typically the result of a χ2 test— can be used to rank patterns. A top-k
pattern miner finds all k subgraphs that obtain the highest positions in this

76 Siegfried Nijssen

ranking. The motivation is that only the highest scoring subgraphs are expected
to be important to classify molecules.

In [2], the classification of molecules was approached using a top-k free pat-
tern mining algorithm. For several values of k the highest scoring patterns were
determined; these patterns were used to build classifiers. Trees, graphs and paths
were considered as pattern domains. It was concluded in many cases that clas-
sifiers based on paths achieved the highest predictive accuracy.

3 Interpretable subgraphs

A situation that occurs in many molecular data mining applications, is illus-
trated by the following example. Assume that we have a (hypothetical) database
containing the following two highly active molecules:

Then we can derive the following substructure, which tries to encode a disjunc-
tion of these two graphs, but which is chemically hard to interpret, as it contains
only part of an aromatic ring:

In this subgraph, some edges have been selectively included or excluded to obtain
the best fit to the data. This subgraph shows that there is sometimes a tension
between interpretability and predictive accuracy of subgraphs:

– if this subgraph obtains a superior accuracy score, one could believe that it
is desirable that it is found;

– if this subgraph cannot be interpreted without looking through an enormous
set of embeddings in the data, it may not be useful that it is found.

Thus, by interpretability we mean that less additional information has to be
considered before the true value of the pattern can be determined by an expert.

A further problem is the size of the search space. If one allows individual
removal or inclusion of edges, the search space becomes larger. As a result of the
additional features, accuracy can increase, but on the other hand, if there are
so many features to consider, it will be harder to interpret the features and to
determine which of the features are really of interest.

These issues also important when building accurate classifiers. On the one
hand, tweaking of substructures can be desirable, as it could yield a better fit
to the data; on the one hand, if too much tweaking is allowed, we might overfit
to the data. It is a well-known problem to balance these issues.

Until now, two solutions are prevalent. In the approaches based on gSpan
or Gaston [10, 7] the interpretability of subgraphs is neglected, thus allowing

Mining Interpretable Subgraphs 77

structural tweaking as in the example above. In MoFA [5, 8] the issue is addressed
by hard-coding structural preference in the search: for example, rings of length
5 or 6 are marked as special structural elements, and edges of such rings can
never be added individually, yielding more interpretable subgraphs and smaller
search spaces, but disallowing potentially interesting subgraphs such as in the
example above.

In this paper, we investigate an approach in which there is a parameter to
balance interpretability and structural freedom. We wish to allow structural free-
dom, but want to implement a measure that allows us to express our preference
for structures that are not too incomplete. There are many conceivable measures.
Here, we take an approach that is based on considering how graphs match to
the data. What we can observe in general for the example fragment, is that it is
incomplete: in every embedding of this subgraph, we can connect an additional
edge to the fragment. If we consider the original molecules as fragments, they are
more ‘complete’: there would usually be less possibilities to connect additional
edges to an embedding. Therefore, a reasonable measure seems to be based on
the number of edges that can be connected to an embedding of the subgraph.

Formally, we can compute this as follows:

missing(f) =
∑

v∈VG

deg(f(v))− deg(v),

which is the number of edges that can be connected to the embedded subgraph.
For a database D of graphs we can compute

missing(G) =

∑
H∈D,G⊆H minf∈FHºG

missing(f)
|{H ∈ D|H º G}| .

We believe that it is reasonable to consider only the best possible embedding
(for example, an average over all embeddings would be skewed as the number of
embeddings can be exponential), therefore we choose to minimize the missing
value. The measure clearly reflects the number of possibilities for extending the
pattern in the minimal case.

The use of this measure can be two-fold. We can use it to express a preference
between structures that are more or less equivalent otherwise, thus in principle
still allowing unlimited structural freedom. Another possibility is to enforce a
constraint on this measure. In this case, we might not find some well-scoring sub-
structures any more. On the other hand, structures satisfying such a constraint
would have the advantage that the resulting substructures are usually easier to
interpret, and the possibilities for overfitting are reduced.

It is important to observe that this constraint is neither monotonic nor
anti-monotonic. A given subgraph with a low missing value can obtain a high
missing value after extenion: assume that the newly added node is always con-
nected to many other nodes in the data, then missing will go up. On the other
hand, the missing value can also go down. If we add an edge to the exam-
ple fragment, we can obtain the second example molecule. This graph has less
missing edges.

78 Siegfried Nijssen

4 Pushing the missing constraint

Although the missing(G) ≤ maxmissing constraint is neither monotonic nor
anti-monotonic, it is still possible to push the constraint in the mining process.
The reason is that in subgraph mining, the canonical form limits how we are
allowed to refine a subgraph. It is not possible to connect a new edge to every
possible node in a subgraph to avoid duplicates. Therefore, for a certain embed-
ding, we can determine that we will never get rid of some of the ‘missing’ edges
as the search procedure does not allow for adding these missing edges. If the
number of mising edges that we are not allowed to get rid off, is too large, we
can stop refining the subgraph and prune the search space.

As an example, we use the DFS canonical code of gSpan; for more details
about this canonical code, consult [10]. Consider the subgraph given below.

We assume that the label N is lower than the label C. Then in gSpan the
canonical DFS code of this graph is (assuming all edges are labeled with λ):

(1, 2, N, λ, C)(2, 3, C, λ, C)(3, 4, C, λ, C)(1, 5, N, λ, C)(5, 6, C, λ, C),

where (x, y, σ1, σ2, σ3) denotes that there is an edge from node vx to node vy

with label σ2; the label of vx and vy is σ1 and σ3, respectively. According to
gSpan’s canonical code, we can only connect new edges to the rightmost path.
Thus, nodes 2, 3 and 4 cannot be extended any more. Furthermore, in the DFS
code, among siblings, the lowest label must be listed first. This means that we
cannot connect a node with label N to node 1 of the example graph.

For a given node v in a subgraph, and an embedding f of this subgraph, let
sdegf (v) be the static degree of the node. We define the static degree to be the
number of sibling edges of f(v) that can not be added to the subgraph, either
because they are already in the subgraph, or because the canonical code does
not allow it. Then for an embedding we can compute

smissing(f) =
∑

v∈VG

sdegf (v)− deg(v).

For a given graph H in the database and a pattern graph G, we can determine
whether

min
f∈FHºG

smissing(f) ≤ maxmissing.

If there is no database graph in which this condition holds, we do not need to
refine the subgraph, as the average missing value can never become low enough
to satisfy the constraint.

Mining Interpretable Subgraphs 79

Name Size class 1 Size class 2

NCI HIV 417 1069
Mutagenicity I [7] 2401 1936
Mutagenicity II [4] 341 343
Biodegradability [1] 143 185
PTE [10] 340 —

Table 1. Properties of the datasets used in the experiments

In principle, to decide which edges can be connected to a subgraph accord-
ing to the canonical form is computationally hard, as we need to solve graph
isomorphism. However, the above given two rules can be used to approximate
sdegf (v): nodes are static if either (1) they are a sibling of a node not on the
rightmost path or (2) they are a siblings of a node on the rightmost path, but
the label is too low. This approximation will not influence the correctness of the
algorithm, as it underestimates the number of missing edges.

Experimental Evaluation To test the influence of this pruning rule we have per-
formed several experiments with an implementation of gSpan that includes this
constraint. The properties of the datasets are listed in Figure 1.

We first performed experiments on the predictive toxicology dataset (PTE).
Runtime experiments were performed on an Intel Pentium M processor running
at 1.1Ghz, and are listed in Table 2. In this table, the number of processed
subgraphs is the number of subgraphs that is enumerated by the graph mining
algorithm, including subgraphs for which missing is too high. We can observe

min- max- # processed
sup missing runtime subgraphs

32 ∞ 5.9s 930
32 2.0 3.7s 706
16 ∞ 46.9s 4405
16 2.0 9.7s 2197
10 ∞ 261.8s 22758
10 4.0 108.9s 13472
10 3.0 57.0s 9449
10 2.0 19.9s 5344

Table 2. Experiments on the PTE
dataset

min- max- # processed
sup missing runtime subgraphs

200 ∞ 298.7s 2244
200 3.0 298.9s 2231
200 2.0 279.5s 2115
150 ∞ 590.5s 6367
150 2.0 533.9s 5790

Table 3. Experiments on the Muta-
genesis I dataset

that the runtime improvement is much larger than the number of processed
subgraphs. The reason is that especially large subgraphs, for which computing
subgraph isomorphism is more expensive, are pruned.

Next, we performed a set of experiments on the Mutagenesis I dataset. Exper-
iments were performed on an Intel Pentium IV running at 3.2Ghz. The minimum
support threshold applies to the set of active molecules. We observe that on this

80 Siegfried Nijssen

dataset the influence of the constraint is almost negligible. A possible explanation
is that in this dataset the molecules were encoded without hydrogens (contrary
to the PTE dataset). Consequently, the branching factor of nodes in the data is
lower. A larger amount of the nodes therefore already have low missing value.
The pruning opportunities are therefore reduced.

Finally, we performed an experiment in which the NCI HIV dataset was used;
we determined the frequent patterns in the active molecules, and evaluated the
patterns also on the moderately active ones. The experiments were performed
on an Intel Pentium IV 3.2Ghz again. For a minimum support of 6% we deter-
mined that the runtime without constraint was 1500s, while it was only 691s if
a maxmissing constraint of 3.0 was applied. In this dataset the hydrogens were
not included in the encoding. Apperently, the amount of speed-up is not only
dependent on this encoding.

Dataset minsup Frequent Interpretable

Mutagenesis I 2.5% 48583 132
Mutagenesis II 2.5% 7577 208
Mutagenesis II 5.0% 1005 103
HIV 6.0% 371374 350
HIV 7.5% 58380 264
Biodegradability 2.5% 168033 206
Biodegradability 5.0% 34839 88

Table 4. Experiments showing the reduction in subgraphs by applying the
maxmissing constraint

Finally, in Table 4 the results are reported of an experiment in which we com-
pared the number of frequent subgraphs in the output of gSpan with and without
a maxmissing = 3.0 constraint. This shows that the maxmissing constraint is
very effective in reducing the number of subgraphs.

5 Ranking patterns

As discussed in the introduction, the simplest approach to rank subgraphs is to
order them according to the χ2 statistic of their correlation with the activity
of molecules. However, such an absolute ordering may not always be justified.
Assume that we have two subgraphs of which the TID lists (i.e., the lists of
graphs in the database to which they map) are almost equal, then it might not
be justified to prefer the one pattern above the other pattern; the small difference
might just be noise in the data. For every pattern, we can therefore define a set
of patterns that is close to it in terms of TID list, and for which we have no
reason to prefer one pattern above the other.

One way then to cut the ties between patterns with almost equal TID lists,
is to use the missing score. Thus, assuming that we have sorted all patterns on
χ2, we can apply this procedure:

Mining Interpretable Subgraphs 81

1. Among the set of all patterns within a close distance from the topmost
pattern, pick the pattern that scores best according to the missing score.
Add this pattern to the result set.

2. Remove all patterns that are close to the chosen pattern (which includes the
best pattern), including the chosen pattern.

3. Go to step 1 for the remaining sorted list of patterns.

Observe that if two graphs have equal TID lists, and one is a subgraph of the
other, the missing score can still cut ties. However, one cannot predict whether
the subgraph or the supergraph will be preferred. Thus, we do not imply either
closed subgraph mining or free subgraph mining.

Parameters in this procedure are the distance measure and the threshold
on this measure. Currently, we have chosen symmetric difference as distance
measure. As a rule of thumb, the threshold on the distance is lower than the
minimum support threshold.

We first performed an experiment on the Mutagenesis I dataset. We used
a minimum support of 150, a distance threshold of 30, and no interpretability
constraint. The total number of frequent patterns was 6367. If we apply the
selection procedure given above, 297 fragments remain. The best 8 fragments
are given below. For each fragment its χ2 value and its missing value are given.

C

C100

C

100

C

100

C

100

C

100

C
100

C

100

C
100

C

100

100

O
N2

C

C100

C

100

C

100

C

100

C100

C

100

C100

C

100

100

C

C

100
C100

C

100
C

100

C

100

C
100

100

(1) 401.0/4.3 (2) 384.8/1.8 (3) 364.9/4.0 (4) 352.8/3.1
C

C
100

C

100

C

100

C

100

C

100

C

100

C100

C

100

C100

C

100

100

N

C

1

C

100

O

N

1

C

1

C

100

C

C100

C100

C

100

C

100

C100

C

100

C

100100

(5) 348.5/4.6 (6) 337.4/3.2 (7) 334.4/3.5 (8) 327.5/5.3

We can observe that there is a large number of fragments involving aromatic
bonds, which are labeled with ‘100’ in these figures. The first, third and fourth
fragment still have significant differences in TID lists. Please note that the long
chains in the patterns are not chains in the data. The method of [8] would not
prune them. An example of a molecule that does not contain the first fragment,
but does contain the third fragment, is given below:

82 Siegfried Nijssen

C

C100

C

100

C

100

C

100

C

100

N100

C

100

C

100

100

C

100

C

100

N

100

C

1

100

C

100

100

The problem is that the information of how this pattern matches (i.e., if the
non-branching chain in the pattern is also a non-branching chain in the data, as
one could be tempted to think), is not readily available from the pattern and a
closer inspectation of patterns and data is required; there might also be other
explanations. It is not obvious for what reasons this particular fragment matches
as good as it does.

If however we apply a maximum value of 3.0 as constraint on the missing
value, the number of frequent fragments that satisfies the constraint falls down to
54. With the algorithm given above, using a threshold distance of 30, 44 become
selected. The best 8 fragments are given below:

O
N2

O

N

1

C

1

O
N

2

O

1

C

1

O
N1

(1) 384.8/1.8 (2) 322.8/2.9 (3) 303.2/2.0 (4) 312.1/1.9

O N
2

O

1

C

1

C

100 C

C

100

C

100

C

100C

100

C

100

C 100 100

C

100

C
100

C100

100

N

C

1
C100

C

100
C

100

C

100

C
100

100

O

N1

C
1

C

100

C

100

C100

C

100

C

100100

(5) 304.9/2.0 (6) 288.4/2.7 (7) 238.9/2.9 (8) 227.9/3.0

To a certain extent, we still have similar effects as in the previous experiment.
The fifth fragment only contains one aromatic bond, because the given group can
connect to any aromatic ring, not only a six-ring, like in the seventh fragment.
The effects are however much smaller.

Next, we performed several experiments on this dataset to compare the clas-
sification accuracies of several classes of fragments. To make the results compa-
rable to the results obtained in [2], we took the same settings as in that paper,
except that we used our new algorithm to select the cyclic subgraphs that are
used as features; so, the results are obtained after 10 fold crossvalidation, using
implementations of Weka [3]. We restricted ourselves to the C4.5 decision tree

Mining Interpretable Subgraphs 83

Mutagenesis I Mutagenesis II Biodegradability
Algorithm Number of Accuracy Number of Accuracy Number of Accuracy

features features features

Paths 100 76.37 100 70.90 100 76.22
1000 79.73 1000 71.63 1000 74.10

Trees 100 70.94 100 70.39 100 71.96
1000 74.83 1000 71.55 1000 76.07

Graphs 100 70.79 100 70.53 100 71.82
1000 74.68 1000 72.06 1000 71.20

Selection 2.5% 82 79.94 93 76.02 83 72.56
Selection 5.0% 48 78.35 58 70.91 54 72.87

Table 5. Accuracies on the Mutagenesis I, Mutagenesis II and Biodegradability
datasets; Selection x% denotes that a minimum support of x% was used

Algorithm Number of Accuracy Algorithm Number of Accuracy
features features

Paths 100 77.46 Selection 6.0% 4 107 82.77
1000 83.21 Selection 6.0% 8 93 82.30

Trees 100 77.06 Selection 7.5% 4 94 82.77
1000 75.95 Selection 7.5% 8 83 82.55

Graphs 100 77.06
1000 75.95

Table 6. Accuracies on the NCI HIV dataset; Selection x% y denotes that a minimum
support of x% was used and a maximum distance of y

learner, as this algorithm achieved the best results in all experiments in [2]. Re-
sults are listed in Table 5 and 6; results for Paths, Trees and Graphs are copied
from [2].

In all cases maxmissing was fixed to 3.0. The distance threshold was 60
on Mutagenesis I, 2.5% on Mutagenesis II, and 2.5% on Biodegradability. In-
terestingly, we achieve similar classification accuracies as for the paths in most
cases; only on the biodegradability dataset our results are disappointing. The
set of features that is passed to C4.5 is smaller in all cases. Also in terms of the
size of the decision tree, our classification method seems more interpretable; for
example, a decision tree learned on the entire Mutagenesis I dataset using 1000
paths, contains 196 leaves, while the tree that is built on our features contains
104 leaves.

Comparing these tables to table 4, the largest reduction in the number of
features stems from the maxmising constraint.

In addition to the minimum support threshold, we also varied the distance
threshold on the NCI HIV dataset. Most results do not seem to be very sensi-
tive to the choice of the parameters, with the exception perhaps of the minsup
threshold on the Mutagenesis II dataset.

84 Siegfried Nijssen

6 Conclusions

We argued that there is a general trade-off between pattern representations,
mining efficiencies and classification accuracies. To illustrate this, we developed
a measure to quantify the interpretability of a subgraph, and showed that this
measure could be pushed in the mining process, with mixed success. We per-
formed experiments with the features that were selected using a feature selection
method that takes this measure into account, and found that the classifiers were
accurate in most cases, and possibly more interpretable.

There are many open issues in this approach. A broader study of inter-
pretability measures might yield measures that approximate the average chemist’s
idea of interpretability better. For instance, one could also base an interpretabil-
ity measure on how well examples cluster on the frequent supergraphs of a sub-
graph. We used an ad-hoc method to prefer structures that achieve a higher
interpretability score, but a more principled approach would be desirable. Fi-
nally, in most experiments we applied feature selection only on pruned features.
Our feature selection method did not work efficiently on large amounts of fea-
tures. How to optimize this method is also an open question.

Acknowledgements This work was supported by the EU FET IST project IQ (“In-

ductive Querying”), contract number FP6-516169. We would like to thank Taneli

Mielikäinen and Jeroen Kazius for discussions.

References

1. H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer.
Experiments in predicting biodegradability. In Appl. Art. Int. 18, pages 157–181,
2004.

2. B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen. Don’t be afraid of
simpler patterns. In PKDD, 2006.

3. E. Frank, M. Hall, L.E. Trigg, G. Holmes, and I.H. Witten. Data mining in bioin-
formatics using weka. In Bioinformatics 20, pages 2479–2481, 2004.

4. C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine
learning techniques for the identification of mutagenicity inducing substructures
and structure activity relationships of noncongeneric compounds. In Journal of
Chemical Information and Computer Systems 44, pages 1402–1411, 2004.

5. H. Hofer, C. Borgelt, and M. Berthold. Large scale mining of molecular fragments
with wildcards. In IDA, pages 380–389, 2003.

6. T. Horvath, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph
mining. In KDD, pages 158–167, 2004.

7. J. Kazius, S. Nijssen, J.N. Kok, T. Bäck, and A. IJzerman. Substructure mining
using elaborate chemical representation. In Journal of Chemical Information and
Modeling 46, 2006.

8. T. Meinl, C. Borgelt, and M. Berthold. Mining fragments with fuzzy chains in
molecular databases. In MGTS, pages 49–60, 2004.

9. N. Wale and G. Karypis. Acyclic subgraph-based descriptor spaces for chemical
compound retrieval and classification. In Technical report, Univ. Minnesota, 2006.

10. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM,
pages 721–724, 2002.

A Linear Programming Approach
for Molecular QSAR analysis

Hiroto Saigo1, Tadashi Kadowaki2, and Koji Tsuda1

1 Max Planck Institute for Biological Cybernetics,
Spemannstr. 38, 72076 Tübingen, Germany

{hiroto.saigo,koji.tsuda}@tuebingen.mpg.de,
2 Bioinformatics Center, ICR, Kyoto University

Uji, Kyoto 611-0011, Japan
tadakado@gmail.com

Abstract. Small molecules in chemistry can be represented as graphs.
In a quantitative structure-activity relationship (QSAR) analysis, the
central task is to find a regression function that predicts the activity of
the molecule in high accuracy. Setting a QSAR as a primal target, we
propose a new linear programming approach to the graph-based regres-
sion problem. Our method extends the graph classification algorithm by
Kudo et al. (NIPS 2004), which is a combination of boosting and graph
mining. Instead of sequential multiplicative updates, we employ the lin-
ear programming boosting (LP) for regression. The LP approach allows
to include inequality constraints for the parameter vector, which turns
out to be particularly useful in QSAR tasks where activity values are
sometimes unavailable. Furthermore, the efficiency is improved signifi-
cantly by employing multiple pricing.

1 Introduction

Nowadays we are facing a problem of screening a huge number of molecules in or-
der to testify, e.g., if it is toxic to human or it has an effect on HIV virus, etc. Such
bioactivities or chemical reactivities are measured by laborious experiments, so
selecting small number of good candidates for the later synthesis is important. A
quantitative structure-activity relationship (QSAR) analysis, a process to relate
a series of molecular features with biological activities or chemical reactivities,
is expected to decrease a number of expensive experiments. The conventional
QSAR analysis manipulates chemical data in a table in which molecules are
defined by individual rows and molecular properties (descriptors) in binary or
real values are defined by the associated columns. The prediction model is then
built to be consistent to the structure-activity relationship. Our approach use
subgraphs as molecular properties instead of conventional descriptors. Since we
know that simple subgraphs are already included in conventional descriptors,
and believe that enriching subgraph features would contribute to make a better
prediction model.

86 Saigo, Kadowaki, Tsuda

A graph is a powerful mathematical framework which can deal with many
real-world objects. Several approaches based on kernel methods have been pro-
posed [1–6], which all consider molecules as graphs and tried defining distance
measures between molecules. However, these kernel methods lack interpretabil-
ity, because the feature space is implicitly defined and it is difficult to figure out
which features played an important role in prediction.

We take the boosting approach, which works in a feature space explicitly
defined by substructure indicators [7]. Therefore, it is rather easy to show the
substructures contributed to activity predictions, which may lead to new findings
by chemists. Though the number of possible subgraphs in graph database are
exponentially large, the recent advance of graph mining algorithms [8–12] sug-
gests a way to handle them. The graph boosting method by Kudo et al. [7] has
to be modified in several ways for QSAR applications. First of all, the original
classification algorithm should be modified to a regression algorithm, because
the activity is real-valued. Very recently, Kadowaki et al.[13] used the graph
boosting in a SAR task, where the problem is to predict a chemical compound
is active or not. However, the activity values are continuous and they are not
obviously separated into active/non-active categories. Second, in publicly avail-
able databases, the activity values are not always available, because, if some
compounds are obviously inactive, they do not bother to measure the activity.
Therefore, for many compounds, one knows that their activities are low, but the
actual values are not available. We need a mechanism to take those unusual data
into account. Finally, in AdaBoost, only one substructure is found by the search
of the whole pattern space. So, if one needs d substructures for good accuracy,
the graph mining has to be done d times. For more efficiency, it is desirable that
multiple substructures are derived by one mining call.

Among several boosting algorithms for regression [14], we found the linear
programming (LP) boosting proposed by Demiriz et al. [15] is most appropriate
for our task. One reason is that the linear programming allows to include in-
equality constraints which are useful for incorporating the compounds with low
activities. Another reason is that it is possible to obtain multiple structures by
one graph mining call, because the LP boost always updates all the parameters
whereas AdaBoost updates one parameter at a time. Finally, in the LP boost,
the optimality of the solution can be evaluated by the duality gap, whereas, in
AdaBoost, it is not obvious when to stop the iteration and it is hard to figure
out the distance from the current solution to the optimal one.

In this paper, we will describe how the LP boost can be combined with the
graph mining algorithm to yield an efficient graph regression algorithm. In ex-
periments using Endocrine Disruptors Knowledge Base (EDKB), our method is
favorably compared with the marginalized graph kernels [1] that are successfully
applied to chemical data recently [5]. We also illustrate the speed up achieved
by reducing the number of mining calls.

A Linear Programming Approach for Graph-based QSAR analysis 87

2 Graph Preliminaries

In this paper, we deal with undirected, labeled and connected graphs. To be
more precise, we define the graph and its subgraph as follows:

Definition 1 (Labeled Connected Graph). A labeled graph is represented
in a 4-tuple G = (V, E,L, l), where V is a set of vertices, E ⊆ V × V is a set
of edges, L ∈ R is a set of labels, and l : V ∪ E → L is a mapping that assigns
labels to the vertices and edges. A labeled connected graph is a labeled graph such
that there is a path between any pair of vertices.

Definition 2 (Subgraph). Let G′ = (V ′, E′,L′, l′) and G = (V,E,L, l) be la-
beled connected graphs. G′ is a subgraph of G (G′ ⊆ G) if the following conditions
are satisfied: (1)V ′ ⊆ V , (2)E′ ⊆ E, (3)L′ ⊆ L, and (4)l′ ⊆ l. If G’ is a subgraph
of G, then G is a supergraph of G’.

To apply a machine learning method to graphs, one has to represent a graph as a
feature vector. One idea is to represent a graph of a set of paths as in marginalized
graph kernels (MGK) [1]. MGK and similar methods are recently applied to
the classification of chemical compounds [4, 5]. Although the computation of
kernels (i.e., the dot product of feature vectors) can be done in polynomial time
using the path representations, paths cannot represent structural features such
as loops and often end up with poor results (e.g., [16]). Therefore, we employ
the substructure representation (Figure 1), where the feature vector consists of
binary indicators of patterns (i.e., small graphs). Now our central issue is how to
select patterns informative for regression. We will adopt the boosting approach
to solve the problem as described in the next section. In chemoinformatics, it is
common that a set of small graphs (i.e., fingerprints) is determined a priori, and
the feature vector is constructed based on them [17]. However, we do not rely
on ready-made fingerprints to search for unexplored features and to make our
method applicable to any graph regression problem in other areas of science.

(0,...,0,1,0,...,0,1,0,...)
B

A

A

B
A

AA

B

A

A

Fig. 1. Substructure representation of a graph. Each substructure is restored in the
corresponding position in a vector.

88 Saigo, Kadowaki, Tsuda

3 Graph Regression by Linear Programming

When a graph is represented as a vector of binary indicators of all possible
substructures, the dimensionality becomes too large for conventional regression
methods such as ridge regression. In this work, we employ a regression method
based on the LP (linear programming) boosting [15, 18], because it greedily
selects features in learning and can avoid computational problems in a systematic
way. In feature selection, we need to search for the best feature in the whole
pattern space. To perform the search efficiently, we adopted a data structure
called DFS code tree [12] as will be described in the next section. A QSAR
problem is basically considered as a graph regression problem, where graph-
activity pairs are given as the training data, and the activities of test graphs
are predicted by the learned regression function. However, one problem is that
the activity is measured only for the chemicals that are suspected to be active.
For apparently inactive chemicals, nobody bothers to measure their activities.
Thus, in the database, we have a set of chemicals with real-valued activities
and a set of chemicals known to be inactive but the actual activity values are
not available. The latter examples are called “clearly negative data”. In the
following formulation, those examples appear as inequality constraints of the
weight vector.

Let x ∈ Rd be a feature vector. Given the training examples {xi, yi}m
i=1

and clearly negative examples {x̄k}l
k=1, our objective is to learn the regression

function

f(x) =
d∑

j=1

αjxj .

where αj is a weight parameter. The objective function to minimize is as follows:

min
α

m∑

i=1

|α>xi − yi|ε +
l∑

k=1

|α>x̄k − z|+ +
1
C

n∑

j=1

|αj |

where z is a predetermined negative constant, C is the regularization parameter
and | · |ε is the ε-insensitive loss [19], and | · · · |+ is the hinge loss, namely |t|+ =
t (t ≥ 0), 0 (t < 0). We used the L1-regularizer to force most of the weights to
be exactly zero in solution. Even if the dimensionality is large, the number of
non-zero weights is kept small by this regularizer. The solution is obtained by
solving the following linear programming.

min
α,ξ

||α||1 + C

m∑

i=1

ξ+
i + ξ−i + C

l∑

k=1

ξ′k (1)

s.t. α>xi − yi ≤ ε + ξ+
i , ξ+

i ≥ 0, i = 1, . . . ,m (2)
yi −α>xi ≤ ε + ξ−i , ξ−i ≥ 0, i = 1, . . . ,m (3)
α>x̄k ≤ z + ξ′k, k = 1, . . . , l (4)

A Linear Programming Approach for Graph-based QSAR analysis 89

where ξ+
i , ξ−i are slack variables for over-estimation and under-estimation, re-

spectively, and ξ′k is for clearly negative example. Let u+
i , u−i , vk be the Lagrange

multipliers for the constraints (2), (3) and (4), respectively. Setting ui = u+
i −u−i ,

the dual of the above problem is written as

min
u,v

z

l∑

k=1

vk −
m∑

i=1

yiui + ε

m∑

i=1

|ui| (5)

s.t. −1 ≤
m∑

i=1

uixij −
l∑

k=1

vkx̄kj ≤ 1, j = 1, · · · , d (6)

−C ≤ ui ≤ C, i = 1, . . . , m (7)
0 ≤ vk ≤ C, k = 1, . . . , l (8)

Instead of the primal problem, we will solve the dual problem and recover the
solution for α from the Lagrange multipliers of the dual problem [15, 18].

When the number of features d is extremely large, it is computationally
prohibitive to solve the dual problem directly. Such a large scale problem is
typically solved by the column generation (CG) algorithm [15, 18], where one
starts from a restricted problem with a small number of constraints and necessary
constraints are added one by one. At each step, the restricted LP problem is
solved, and the solution at step t is used to select the constraint added in step
t+1. The procedure continues until the convergence, or we can trade the accuracy
with the computational time by stopping it before convergence. In our case, the
problematic part is (6), so the column generation is performed with respect to
the constraints in (6).

The efficiency of the CG algorithm depends crucially on the pricing step,
where the importance of each constraint is evaluated using an intermediate so-
lution. Here we select the constraint which is violated the most.

j∗ = arg max
j

|
m∑

i=1

uixij −
l∑

k=1

vkx̄kj |. (9)

If the maximum value is below or equal to 1, the column generation is stopped.
It is also possible to add multiple constraints at a time. For example, one can
sort the constraints based on the score (9), and take the top t constraints. This
technique is called multiple pricing [20] and we will actually adopt it for reducing
the number of searches.

When the substructure representation of a graph is employed, the number
of all constraints is extremely large, thus we need a specialized machinery to
obtain the maximally violated constraint. Since each constraint corresponds to
a pattern, the search (9) is formulated as a graph mining problem as explained
below.

90 Saigo, Kadowaki, Tsuda

4 Weighted Substructure Mining

Graph mining algorithms such as gspan efficiently enumerate the set of patterns
that satisfy a predetermined condition [12]. Denote by G = {Gi}n

i=1 a graph
database including l clearly negative examples (n = m+ l), and let T = {Tj}d

j=1

be the set of all patterns, i.e., the set of all subgraphs included in at least one
graph in G. There are many variations of graph mining, but the most common
one is the frequent substructure mining, where the task is to enumerate all
patterns whose support is more than s,

Sfreq = {j |
n∑

i=1

I(Tj ⊆ Gi) ≥ s}. (10)

On the other hand, what we need now is the weighted substructure mining to
search for the best pattern in terms of the score

j∗ = arg max
j

∣∣∣∣∣
n∑

i=1

wi(2xij − 1)

∣∣∣∣∣ , (11)

where xij is defined as xij := I(Tj ⊆ Gi), the weight for a training example is
wi = ui − 1

m

∑m
k=1 uk, and the weight for a clearly negative example is wi =

−vi + 1
l

∑l
k=1 vk.

The key idea of efficient graph mining is to exploit the anti-monotonicity,
namely the frequency of a pattern is always smaller than or equal to that of its
subgraph. In frequent substructure mining (10), one constructs a tree-shaped
search space (i.e., DFS code tree) where each node corresponds to a pattern
(Figure 2). The tree is generated from the root with an empty graph, and the
pattern of a child node is made by adding one edge. As the pattern gets larger,
the frequency decreases monotonically. If the frequency of the generated pattern
Tj is s, it is guaranteed that the frequency of any supergraph of Tj is less than
s. Therefore, the exploration is stopped there (i.e., tree pruning). By repeating
node generation until all possibilities are checked, all frequent subgraphs are
enumerated.

In the tree expansion process, it often happens that the generated pattern is
isomorphic to one of the patterns that have already been generated. It leads to
significant loss of efficiency because the same pattern is checked multiple times.
The gspan algorithm solves this problem by the minimum DFS code approach,
and we also adopted it for pruning isomorphic patterns.

In weighted substructure mining (11), the search tree is pruned by a different
condition. Let us rewrite the weight as wi = yidi where di = |wi| and yi =
sign(wi). Then, the following bound is obtained: For any Tj ⊆ Tk,

∣∣∣∣∣
n∑

i=1

wi(2xik − 1)

∣∣∣∣∣ ≤ γ,

A Linear Programming Approach for Graph-based QSAR analysis 91

A B
A B

D

A B

E

A B C D A B

Tree of SubstructuresDatabase

C

A

B C

Fig. 2. Schematic figure of the tree-shaped search space of patterns (i.e., substructures)

where γ = max(γ+, γ−) and

γ+ = 2
∑

{i|yi=+1,Tj⊆Gi}
di −

n∑

i=1

diyi,

γ− = 2
∑

{i|yi=−1,Tj⊆Gi}
di +

n∑

i=1

diyi.

See [7] for the proof. When a pattern Tj is generated, the scores of its supergraphs
Tk are upperbounded as above. Thus, if the upperbound is less than the current
best value, we can safely quit further exploration.

4.1 Use of multiple constraints

In practice we found that the computation time of our algorithm is dominated
by graph mining algorithm, so we propose to use multiple subgraphs for each
iteration (multiple pricing[20]) in order to decrease the number of graph mining.
This can be performed by mining top k subgraphs at each graph mining. In
order to implement this change, we use a band of τ to maintain top k subgraphs
which maximizes |∑m

i=1 uixij −
∑l

k=1 vkx̄kj |. It should be noted that no matter
how many subgraphs we add for each iteration, the solution is kept optimal by
solving linear programming [18].

5 QSAR Experiments

We used Endocrine Disruptors Knowledge Base (EDKB) data provided by the
National Center for Toxicological Research3 for measuring performance of our
algorithms. Endocrine disruption is caused by the interference of the endocrine
system by environmental or exogenous chemicals. The E-SCREEN assay of the
EDKB consists of 59 molecules with activities provided in real number (logRPP).

3 http://edkb.fda.gov/databasedoor.html

92 Saigo, Kadowaki, Tsuda

Table 1. 5-fold cross validation results on 59 molecules. For MGK, stopping probability
0.5 is chosen from {0.1 . . . 0.9}. k = 3 is chosen for kNN, and a ridge 1e− 5 is used for
ridge regression. Proposed algorithm is stopped at 50 iteration.

Methods l1 error l2 error time[s] iterations subgraphs

MGK + kNN 0.338±0.0326 0.240±0.0485 10.1 - -
MGK + ridge 0.343±0.0282 0.213±0.0470 10.3 - -

Proposed (ε = 0.01) 0.291±0.0185 0.157±0.00701 30.7 10.3 9.6
Proposed (ε = 0.1) 0.239±0.0136 0.107±0.00481 46.4 15.2 14.2
Proposed (ε = 0.2) 0.227±0.0124 0.101±0.00340 139 37.6 14.4
Proposed (ε = 0.3) 0.237±0.0124 0.123±0.00424 200 50 6.2
Proposed (ε = 0.5) 0.282±0.0200 0.170±0.00887 178 50 2

We also used 61 clearly negative data, and set z to the lowest active level in the
active data. The parameter C, which controls a generalization error, was set to
0.2. The performance was measured by 5 fold cross validation on Linux with
Pentium4 2.4Ghz processor.

We compared our method with marginalized graph kernel (MGK) [1] in com-
bination with ridge regression or kNN regression. MGK-based regression, how-
ever, cannot correctly include the information of clearly negative data, thus we
just added them with labels as same value as the lowest active level in the ac-
tive data. For comparison, we tried the same experimental setting on our graph
regression algorithm, and denoted it as Proposed* in Table 2.

The results in the EDKB dataset are shown in Tables 1 and 2. For MGK
with kNN regression or ridge regression, we can observe that inclusion of negative
data degrades the performance. Performance of our our method was constantly
better than MGK indifferent to regression algorithms suggests that our method
better extracted the structurally characteristic patterns. Also good performances
of “Proposed” over “Proposed*” in Table 2 validates our way of incorporating
clearly negative data.

All the extracted subgraphs from 120 molecules are illustrated in Figure 3.
Subgraphs are ordered from the top left to the bottom right according to their
weights.

There are pros and cons both for classification and regression, i.e., classifica-
tion involves a problem of discretization of activities while regression does not,
but regression does not take into account clearly negative data. In this sense,
our method is located between classification and regression.

While we built a regression model and found its component subgraphs, how-
ever, those extracted subgraphs are sometimes not so easy to interpret. For
example, if a simple carbohydrate chain with fixed length is extracted, there are
many ways of superimposing it on a molecule. Enriching atom and bond labels
would be a better way to overcome this difficulty, and we are investigating this
direction.

We can see from Figure 4 that the decrease in the number of iterations until
convergence is almost in proportion to k, and we can see a similar curve for

A Linear Programming Approach for Graph-based QSAR analysis 93

Table 2. 5-fold cross validation results on 120 molecules. For MGK, stopping prob-
ability 0.5 is chosen from {0.1 . . . 0.9}. k = 3 is chosen for kNN, and a ridge 1e − 5
is used for ridge regression. Proposed algorithm is stopped at 50 iteration. Proposed*
method regards 61 negative data labeled as lowest active value in the active data.

Methods l1 error l2 error time[s] iterations subgraphs

MGK + kNN 0.474±0.0644 0.361±0.0469 29.0 - -
MGK + ridge 0.454±0.0577 0.335±0.0431 29.1 - -

Proposed (ε = 0.01) 0.234±0.0114 0.100±0.00262 57.0 11.6 10.6
Proposed (ε = 0.1) 0.232±0.0108 0.087±0.00207 112 21.6 20.6
Proposed (ε = 0.2) 0.233±0.0132 0.101±0.00298 296 50 20.8
Proposed (ε = 0.3) 0.249±0.0154 0.126±0.00420 289 50 15.6
Proposed (ε = 0.5) 0.288±0.0201 0.163±0.00563 272 50 11.4

Proposed* (ε = 0.01) 0.277±0.0191 0.153±0.00997 51.2 10 9
Proposed* (ε = 0.1) 0.267±0.0182 0.128±0.00731 88.8 16.6 17.6
Proposed* (ε = 0.2) 0.250±0.0139 0.104±0.00430 173 29.8 25.6
Proposed* (ε = 0.3) 0.238±0.0124 0.106±0.00299 322 50 22.2
Proposed* (ε = 0.5) 0.278±0.0205 0.147±0.00691 329 50 11.8

the time until convergence. The l1 error and the number of subgraphs which
contributed to the final ensemble almost did not change over different k, which
guarantees the appropriate termination of the algorithm. The optimal number of
k which let the learning algorithm converge the fastest depends on the data, but
the LP theory gives validity of the final ensemble independent of the selection
of k, and we observed no practical disadvantages just by setting k large.

6 Discussions

We have presented a graph regression algorithm using multiple subgraphs weighted
by a linear programming. Experiments are carried out to show the usefulness of
the algorithm in regression problems.

A method that first discovers all the subgraphs satisfying a certain condition,
then classifies graphs by SVMs exists [21]. Our method, however, can discover
subgraphs and add them to an ensemble simultaneously, therefore can save the
cost of discovering subgraphs which satisfies some condition but do not con-
tribute to the final ensemble. Also, knowledge based SVMs [22, 23] can take into
account inequality constraints as well, but our algorithm is more efficient by the
same reason above.

The importance of aligning functional groups in QSAR/QSPR is discussed
in [4] and [5]. Alignment of pharmacophore was used to be done manually, but
our algorithm is alignment-free, and might be useful for this problem.

Our algorithm automatically selects sparse features due to sparse regularizer.
This has an advantage in interpretability, and we are not required to define or
pre-register key structures [24], or to find a pre-image [25]. However, combining
classical features such as partial charges, logP etc. might be useful to build a

94 Saigo, Kadowaki, Tsuda

O O O

0.517 0.340 0.224 0.134 0.122 0.120

Cl O O

0.075 0.0704 0.0704 0.0491 0.0448 0.0395

O O

O

0.0356 0.0272 0.0260 0.0203 0.0114 -0.0764

Fig. 3. Extracted subgraphs from 120 molecules. Subgraphs are ordered from the top
left to the bottom right according to their weights. H atom is omitted, and C atom is
represented as a dot for visual interpretability.

more precise model, and we are investigating this direction. Finally, we focused
on mentioning properties and applications of our method in chemistry, but the
framework of graph classification and regression is general, and can be applied
to any data which consists of graphs.

Acknowledgments Computational resources were provided by the Bioinfor-
matics Center, Institute for Chemical Research, Kyoto University, and the Su-
percomputer Laboratory, Kyoto University.

References

1. H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the twenty-first International Conference on Machine
Learning, pages 321–328. AAAI Press, 2003.

2. T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Proceedings of the sixteenth Annual Conference on Com-
putational Learning Theory and seventh Kernel Workshop, pages 129–143. Springer
Verlag, 2003.

3. L. Ralaivola, S.J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical
informatics. Neural Netw., 18(8):1093–1110, 2005.

4. H. Fröhrich, J. Wegner, F. Sieker, and Z. Zell. Kernel functions for attributed
molecular graphs - a new similarity based approach to adme prediction in classifi-
cation and regression. QSAR & Combinatorial Science, 25(4):317–326, 2006.

5. P. Mahé, L. Ralaivola, V. Stoven, and J.P. Vert. The pharmacophore kernel for
virtual screening with support vector machines. Technical report, 2006. Technical
Report HAL:ccsd-00020066.

A Linear Programming Approach for Graph-based QSAR analysis 95

 0

 5

 10

 15

 20

 25

 10 20 30 40 50
 0

 20

 40

 60

 80

 100
N

o.
 o

f i
te

ra
tio

ns

T
im

e[
s]

k

No. of iterations
Time[s]

 0

 10

 20

 30

 40

 50

 10 20 30 40 50

 0.16

 0.18

 0.2

 0.22

 0.24

N
o.

 o
f s

ub
gr

ap
hs

l1
 e

rr
or

k

No. of subgraphs
l1 error

Fig. 4. Speed up of the algorithm by multiple pricing. We can see the number of
boosting iterations and the time until convergence decreases in proportion to k (left),
while keeping the number of subgraphs and l1 error almost constant (right).

6. T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive
graph mining. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data minig, pages 158–167. ACM Press, 2004.

7. T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph
classification. In Advances in Neural Information Processing Systems 17, pages
729–736. MIT Press, 2005.

8. S. Kramer, L.D. Raedt, and C. Helma. Molecular feature mining in hiv data. In
Proceedings of the seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM Press, 2001.

9. L.D. Raedt and S. Kramer. The level-wise version space algorithm and its applica-
tion to molecular fragment finding. In Proceedings of the seventeenth International
Joint Conference on Artificial Intelligence. Morgan Kaufmann, 2001.

10. S. Kramer and L.D. Raedt. Feature construction with version spaces for biochem-
ical applications. In Proceedings of the eighteenth International Conference on
Machine Learning. AAAI Press, 2001.

11. A. Inokuchi. Mining generalized substructures from a set of labeled graphs. In
Proceedings of the fourth IEEE Internatinal Conference on Data Mining, pages
415–418. IEEE Computer Society, 2005.

12. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining, pages 721–724.
IEEE Computer Society, 2002.

13. T. Kadowaki, T. Adachi, T. Kudo, S. Okamoto, N. Tanaka, C.E. Wheelock,
K. Tonomura, K. Tsujimoto, H. Mamitsuka, S. Goto, and M. Kanehisa. Chemical
genomic study in endocrine disruptors on metabolic pathways. submitted, 2006.

14. R. Meir and G. Rätsch. An introduction to boosting and leveraging. In Lecture
Notes in Computer Science: Advanced lectures on machine learning, pages 118–183,
Heidelberg, 2003. Springer-Verlag.

15. A. Demiriz, K.P. Bennet, and J. Shawe-Taylor. Linear programming boosting via
column generation. Machine Learning, 46(1-3):225–254, 2002.

16. K. Tsuda and T. Kudo. Clustering graphs by weighted substructure mining. In
Proceedings of the twenty-third International Conference on Machine Learning,
pages 953–960. ACM Press, 2006.

96 Saigo, Kadowaki, Tsuda

17. J. Gasteiger and T. Engel. Chemoinformatics: a textbook. Wiley-VCH, 2003.
18. G. Rätsch, A. Demiriz, and K.P. Bennett. Sparse regression ensembles in infinite

and finite hypothesis spaces. Machine Learning, 48(1-3):189–218, 2002.
19. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, 2002.
20. D. G. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.
21. S. Kramer, E. Frank, and C. Helm. Fragment generation and support vector ma-

chines for including sars. SAR and QSAR in Environmental Research, 13(5):509–
523, 2002.

22. O.L. Mangasarian and E.W. Wild. Knowledge-based kernel approximation. Jour-
nal of Machine Learning Research, 5:1127–1141, 2004.

23. Q.V. Le, A.J. Smola, and T. Gärtner. Simpler knowledge-based support vector
machines. In Proceedings of the twenty-third International Conference on Machine
Learning. ACM Press, 2006.

24. C.A. James, D. Weininger, and J. Delany. Daylight theory manual, 2004.
25. T. Akutsu and D. Fukagawa. Inferring a graph from path frequency. In Proceedings

of the sixteenth Annual Symposium on Combinatorial Pattern Matching, pages
371–382. Springer, 2005.

Matching Based Kernels for Labeled Graphs

Adam Woźnica and Alexandros Kalousis and Melanie Hilario

University of Geneva, Computer Science Department
Rue General Dufour 24, 1211 Geneva 4, Switzerland

{woznica, kalousis, hilario}@cui.unige.ch

Abstract. For various classification problems it is most natural to represent train-
ing examples as labeled graphs. As a result several kernel functions over these
complex structures have been proposed in the literature so far. Most of them ex-
ploit the Cross Product Kernel between two sets resulting from the decomposi-
tions of corresponding graphs into subgraphs of a specific type. The similarities
between the substructures are often computed using the 0 − 1 Kronecker Delta
Kernel. This approach has two main limitations: (i) in general most of the sub-
graphs will be poorly correlated with the actual target variable, adversely affect-
ing the generalization of a classifier and (ii) as no graded similarities on sub-
parts are computed, the expressivity of the resulting kernels is reduced. To tackle
the above problems we propose here a class of graph kernels based on set dis-
tance measures whose computation is based on specific pairs of points from the
corresponding graph decompositions. The actual matching of elements from the
two sets depends on a graded similarity (standard Euclidean metric in our case)
between the elements of the two sets. To make our similarity measure positive
semidefinite we exploit the notion of the proximity space induced by a given set
distance measure. To practically demonstrate the effectiveness of our approach
we report promising experimental results for the task of activity prediction of
drug molecules.

1 Introduction

Support Vector Machines (SVMs), and Kernel Methods in general, are becoming in-
creasingly popular for their performance [1]. As most of the real-world data can not
be easily represented in an attribute-value format many kernels for various kinds of
structured data have been defined in the literature. In particular graphs are a widely
used tool for modeling structured data in the machine learning community and many
kernels over these complex structures have been proposed so far. These kernels have
been mainly applied for predicting the activity of chemical molecules represented by
undirected labeled graphs where vertices are atoms and edges are covalent bonds.

However, due to the powerful expressiveness of graphs it has been proved that ker-
nels over arbitrarily structured graphs, taking their full structure into account, can be
neither computed [2] nor even approximated efficiently [3]. The most popular approach
to tackle the above problem is based on a decomposition of graphs into particular
subparts which are compared via subkernels. The substructures considered are mainly
walks [2, 4–7], however, other researchers have experimented with shortest paths [8],

98 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

subtrees [3], cyclic and tree patterns [9] and limited-size general subgraphs centered at
each vertex [10].

The existing kernels based on decompositions have two main limitations. First, most
of them combine substructures using the Cross Product Kernel which takes all the pos-
sible substructures of a given type into account. This might adversely affect the gener-
alization of a classifier since most of the subgraphs, and hence attributes in the feature
space, will be poorly correlated with the actual class variable. Second, almost all the
existing graph kernels use the 1 − 0 matching kernel to compute similarities between
subgraphs. This means that the expressivity of these kernels is reduced since they are
not able to find partial similarities.

To tackle the above problems we propose here a class of graph kernels that: (i) are
based on specific matchings of substructures (walks in our case) 1 from the correspond-
ing decompositions of two graphs and (ii) compute graded similarities between these
subparts. More precisely, we exploit kernels in the proximity space induced by set dis-
tance measures where the mapping is defined by a given representation set [11]. The
set distance measures we experimented with focus only on specific pairs of points from
the two sets of decompositions. The actual matching of the elements of the correspond-
ing sets depends on the pairwise graded similarities with are computed by means of
the standard Euclidean metric. Finally, all the considered distances are computable in a
polynomial time which means that these kernels can be applied to large graph databases.
To practically demonstrate the effectiveness of our approach we report experimental re-
sults for the task of activity prediction of drug molecules for the Mutagenesis and the
Carcinogenicity datasets.

2 Primer of graph theory

An undirected graph G = (V, E) is described by a finite set of vertices V = {v1, . . . , vn}
and a finite set of edges E = {e1, . . . , em} such that E = {{vi, vj} : vi, vj ∈ V}.
For labeled graphs there is additionally a set of labels L together with a function
label : V ∪ E → L that assigns a label to each vertex and edge. We denote a graph
database as G. The adjacency matrix A of G is defined as [A]ij = 1 ⇐⇒ {vi, vj} ∈ E
and [A]ij = 0 otherwise.

Some special graphs relevant to the existing graph kernels are walks, paths and
trees. A walk in a graph G is a sequence of vertices w = [v1, v2, . . . , vs+1] such that
vi ∈ V for 1 ≤ i ≤ s + 1 and {vi, vi+1} ∈ E for 1 ≤ i ≤ s. We define a length l(w) of
a walk as the number of vertices and edges in this sequence, i.e. in the above example
l(w) = 2s + 1. A path is a walk that never goes through the same edge twice. A tree is
a connected, acyclic graph.

3 Motivation and Related work

As mentioned in Section 1 the idea of decomposition of graphs into subparts is reflected
in most kernels for these type of structures [2, 4, 5, 8–10, 3, 6]. This mechanism origi-

1 More precisely we focus here on walks without consecutive repetitions of the same cycles of
nodes. It should be stressed, however, that any type of subgraphs can be used.

Matching Based Kernels for Labeled Graphs 99

nates from kernels for general structured data where the computation of the similarity
between two complex objects is based on the similarities of objects’ parts computed by
means of subkernels [12, 13].

An integral part of the above kernels for graphs is the decomposition of these struc-
tures into a multi-set of its parts (walks, paths, trees, cyclic pattern, etc.) and the final
kernel is defined as the Cross Product Kernel between the corresponding multi-sets of
decompositions. For particular decompositions {g} = Gt and {g′} = G′t (t denotes that
these subgraphs are of type t) of graphs G and G′, respectively, the above kernel can be
written as:

K(G,G′) =
∑

g∈Gt,g′∈G′t
k(g, g′) (1)

where k is a kernel over specific types of graphs Gt and the summation over the elements
of the multisets takes into account their multiplicity.

From Equation 1 it is clear that all the possible subgraphs of a given type are
matched by means of a subkernel. This might adversely affect the generalization of
a large margin classifier since due to the combinatorial growth of the number of distinct
subgraphs most of the features in the feature space will be poorly correlated with the
target variable [14, 10]. Possible solutions to this problem include down-weighting of
the contribution of larger subgraphs [15, 2], using prior knowledge to guide the selec-
tion of relevant parts [16] or considering contextual information for limited-size sub-
graphs [10]. The other solution would be to change the right side of Equation 1 such
that the sum runs over specific elements of the corresponding sets excluding elements
which are likely to be irrelevant for the given target variable. This kernel will be directly
based on specific pairs of elements from the two sets and can be written in a general
form as:

K : K(G, G′) = f({k(g, g′)|(g, g′) ∈ Gt × G′t}) (2)

i.e. it is some function of the set of pairwise elementary kernels, k(g, g′) where (g, g′) ∈
Gt×G′t. The idea of using specific pairs of points in a set kernel is promising, however,
it is easy to see that the kernel from Equation 2 is not positive semidefinite (PSD) in
general.

The other problem with general kernels based on decompositions is that most of
them can only use the Kronecker Delta Kernel (i.e. kδ(x, y) = 1 ⇐⇒ x = y, kδ(x, y) =
0 otherwise) on subgraphs. As a result the ability to find partial similarities is lost and
the expressivity of these kernels is reduced. A graded similarity on walks is considered
in the kernel from [6], however, it suffers from high computational complexity since
it requires taking powers of the adjacency matrix of the direct product graph, leading
to huge runtime and memory requirements [8]. Finally, some of the kernels based on
walks suffer from the problem known as tottering, i.e. by iteratively visiting the same
cycle of nodes, small identical substructures in input graphs can lead to high similarity
scores. This problem was recognized in [5] where the authors proposed a modification
of the algorithm from [4] modifying the underlying random walk model, however, their
algorithm did not lead to a significant improvement in performance.

To overcome the above problems we propose a class of set kernels that are based
on set distance measures. The final dissimilarity in the considered set distances is based
directly on specific pairs of points from two sets. Encouraged by the effectiveness of

100 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

walks in chemical domains we focus here on these type of structures (without repeti-
tions of the same cycles of nodes) constructed from a depth first exploration emanating
from each node in a graph and yielding all the walks of length l [7]. All the consid-
ered distances are computable in a polynomial time which means that our kernel can
be applied to large graph databases. The actual matching of the elements of the corre-
sponding sets depends on the pairwise graded similarities which are computed by the
standard Euclidean metric. To make the final kernel PSD we define it in the proximity
space induced by set distance measures where the mapping is defined by a given repre-
sentation set [11]. Mapping to a proximity spaceis a classical way to make a PSD kernel
from measures of similarity or distances.

It should be noted that in parallel to kernels based comparison of particular sub-
parts there exist other approaches for controlling computational complexity of graph
kernels. One line of research focuses on special kinds of graphs such as strings, trees
and nodes in graphs [17]. The resulting kernels are efficient, however, they loose most
of the modeling power of general graphs. An alternative direction explicitly controls the
dimensionality of the feature space by generating sets of connected graphs that occur
frequently as subgraphs in the graph database and this frequency is beyond a user de-
fined threshold [18, 19]. These kernels form an attractive alternative to kernels based on
decompositions since the corresponding feature space is constructed explicitly. On the
other hand these methods bear difficulties since their efficiency is threshold-dependent.

4 Kernels on Graphs

In this section we define a class of kernels based on matchings for labeled graphs.
The construction of these kernels is based on: (i) set distance measures which will be
described in Section 4.1 and (ii) kernels in proximity spaces induced by set distance
measures (presented in Section 4.2).

4.1 Distances on Sets

A number of different measures have been proposed in the literature for defining dis-
tances between sets of objects. We will briefly present some of them. Consider two
sets A = {ai} ⊆ X and B = {bj} ⊆ X . Let d(., .) be a metric defined on X . The
set distance measure D defined on 2X as: D : D(A,B) = f({d(ai, bj)|(ai, bj) ∈
A × B}), i.e. is some function of the pairwise distances, d(ai, bj), of the set of all
pairs (ai, bj) ∈ A × B. A and B should be nonempty and finite sets. Within this
framework we can define the following set distance measures. The (Normalized) Av-
erage Linkage,DAL, is defined as the (normalized) average of all pairwise distances,
DAL(A,B) =

P
ij d(ai,bj)

|A||B| . The Sum of Minimum Distances, DSMD, discussed in [20],
is the sum of the minimum distances of the elements of the first set to the elements
of the second set and vice versa, normalized be the sum of cardinalities of the two
sets, DSMD(A,B) = 1

|A|+|B| (
∑

ai
minbj{d(ai, bj)} +

∑
bi

minaj{d(bi, aj)}). The
Hausdorff distance measure, DH, discussed in [20], is one of the best known distances
measures between sets. By definition, two sets A and B are within the Hausdorff dis-
tance D of each other iff every point of A is within distance D of at least one point

Matching Based Kernels for Labeled Graphs 101

of B and vice versa. The RIBL distance, DRIBL, is the sum of the minimum dis-
tances of the elements of the smaller set to the elements of the larger, [21]. Formally if

|A| < |B| it is defined as DRIBL(A,B) =
P

ai
minbj

{d(ai,bj)}
|B| and if |A| ≥ |B| then

DRIBL(A, B) =
P

bj
minai

{d(ai,bj)}
|A| .

Another family of more elaborate distance measures is based on the definition of
a set of relations R = {Ri|Ri ⊆ A × B} between the two sets. The computation
of the distance measure will be based on an Ri ∈ R that minimizes the sum of dis-
tances computed on the elements that are part of the relation Ri. In the Surjections,
DS, set distance measure the set of relations R consists of all the possible surjections
of the larger to the smaller set [20]. In the Linkings, DL, distance measure the set of
relations is the set of all possible linkings [20]. A linking is a mapping of one set to
the other where all elements of each set participate in at least one pair of the map-
ping. For Fair Surjections, DFS, distance measure the set of relations is the set of
all fair surjections, [20]. A surjection is fair if it maps as evenly as possible the ele-
ments of the larger set to the elements of the smaller set. For the above set distance
measures the final distance of the two sets is defined as the minimum sum, over all
Ri, of the distances of the pairs of elements that participate in the surjection, link-

ings and fair surjections, respectively: DS∨L∨FS(A,B) =
minRi∈R

P
(ai,bj)∈Ri

d(ai,bj)

|Ri| .
In the Matchings, DM, the set of all possible matchings is considered within which
the minimum distance is computed [22]. In a matching each element of the two sets
is associated with at most one element of the other set. This distance is given by:
DM (A,B) = minRi∈R(

∑
(ai,bj)∈Ri

d(ai, bj)+(|B−Ri(A)|+ |A−R−1
i (B)|)× M

2)
where M is the maximum possible distance between two elements. DM is normalized
as DM (A, B) := 2DM (A,B)

DM (A,B)+(|A|+|B|)/2 .
It should be noted that all of the set distance measures defined above take values

between 0 and 1. In the rest of the paper we will focus only on the DSMD, DH, DRIBL,
DS, DL, DFS and DM set distance measures since these are the ones based only on
specific pairs of elements. The DAL will be examined only in comparative studies.

4.2 Set Kernels in the Proximity Space

To define a PSD kernel using the set distance measures from Section 4.1 we will use
the proximity space representation [11]. This space is defined by a given set distance
measure and a representation set (set of prototypes) of learning instances. More pre-
cisely, given a representation set S = {s1, . . . , sn} ⊆ 2X and a set distance measure
D : 2X × 2X → R+

0 we define a mapping D(z, S) : 2X → Rn as D(z, S) =
[D(z, s1), . . . , D(z, sn)]T where z ∈ 2X (here we assumed that our learning examples
are sets of objects). Since distance measures are nonnegative, all the data examples are
projected as points to a nonnegative orthotope of that vector space. The dimensionality
of this space is controlled by the size of the set S (usually the full training set).

The construction of the proximity space is justified by the fact that for an object si

belonging to the same class as z, D(z, si) should be small while for an object sj of
different classes D(z, sj) should be large, resulting in a set of features with possibly
high discrimination power [11]. On the other hand if si is a characteristic object of a

102 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

particular class, then the feature D(z, si) has a large discrimination power while for sj

being an outlier D(z, sj) may discriminate poorly. The definition of a set kernel in the
proximity space amounts to choosing a set distance measure, D, and a vectorial kernel,
k, in the induced space. The resulting Gram matrix of the set kernel KP consists of the
elements: (KPD

)ij = k(D(zi, S), D(zj , S)).

4.3 Matching Based Kernels

In this section we combine set distance measures and kernels defined in proximity
spaces to define matching based kernels for graphs. To exploit set distance measures
we assign to each graph G the set of subgraphs obtained from a particular decompo-
sition of G into subparts. In this work a graph will be decomposed into a set of walks
(without repetitions of the same two-nodes-cycles) obtained from a depth first explo-
ration emanating from each node in a graph and yielding all the walks of length l [7] 2.
In particular for l = 1 a molecule is represented as a set of atoms; for l = 2 a com-
pound is decomposed into a set of pairs with the first element being an atom and the
second element being one of its adjacent bonds. It should be noted that for a molecule
with n atoms and m bonds, the complexity of extracting all the walks of length up
to l is at most O(nαl) where α is the branching factor (slightly above two in organic
chemistry) [7].

Given two decompositions into walks {g} = G and {g′} = G′ of graphs G and G′

the matching based kernel on graphs can be written as:

KPD (G,G′) = k(D(G, S), D(G′, S)) (3)

where D, k, S denote the set distance measure, the elementary kernel and the represen-
tation set, respectively.

5 Experiments

We will experiment on two graph classification problems: Mutagenesis and Carcino-
genicity. The Mutagenesis dataset was introduced in [23]. The application task is the
prediction of mutagenicity of a set of 188 aromatic and heteroaromatic nitro-compounds
which constitute the “regression friendly” version of this dataset. The other classifica-
tion problem comes from the Predictive Toxicology Challenge and is defined over car-
cinogenicity properties of chemical compounds [24]. This dataset lists the bioassays of
417 chemical compounds for four type of rodents: male rats (MR), male mice (MR), fe-
male rats (FR) and female mice (FM) which give rise to four independent classification
problems. We transformed the original dataset (with eight classes) into a binary problem
by ignoring EE (equivocal evidence), E (equivocal) and IS (inadequate study) classes,
grouping SE (some evidence), CE (clear evidence) and P (positive) in the positive class
and N (negative) and NE (no evidence) in the negative one.

2 As presented in Section 2 the length of a walk is defined as the number of its constituent
vertices and edges.

Matching Based Kernels for Labeled Graphs 103

In the experiments we want to perform several comparisons of the SVM and kNN
algorithms with different distances over sets of subgraphs and using different decom-
positions based on walks. First, for various set distance measures we want to explore
the performance of the linear kernel defined in the corresponding proximity spaces for
various lengths of walks. This kernel will be used with the SVM method, resulting in
the SVMP algorithm. The goal of this experiment is to examine the influence of walk
lengths to the performance of the classifier. Second, we want to check how the perfor-
mance of SVM with the above kernels compares with SVM with the following two set
kernels taking all the elements of the two decompositions into account (i) the Cross
Product Kernel (CPK) with the linear kernel as an elementary kernel and (ii) the linear
kernel in the proximity space induced by the DAL distance measure; kernels matching
all subgraphs are a standard way of tackling classification problems where instances
are represented as graphs. Third, we are going to examine how the SVMP algorithm
compares with the kNN algorithm where these distances are used directly. By doing
this we establish whether SVMP indeed provides an improvement over the simple kNN
algorithm. Finally, we would like to examine performance of the SVM algorithm where
a given molecule will be represented by a set of all walks of length smaller than (or
equal to) a given value. The reason we use the linear kernel in the experimental setup is
to make a fair comparison between the algorithms and to avoid the situation where an
implicit mapping given by a nonlinear kernel will influence the results.

For SVMP and the SVM with the CPK the regularization parameter C was op-
timized in an inner 10-fold cross validation loop over the set C = {0.1, 1, 10, 50}
whereas for kNN algorithm the number of nearest neighbors was optimized over the set
{1, 3, 9}. In all the experiments accuracy was estimated using stratified ten-fold cross-
validation and controlled for the statistical significance of observed differences using
McNemar’s test (sig. level=0.05).

6 Results

The first dimension of comparison is to examine the influence of lengths of walks to
the predictive performance of the SVM algorithm. The results for walks of length up to
eleven are presented in Figure 1 3. From these results it is clear that the optimal length
of walks depends on the actual application and the set distance measure. However, the
following findings can be observed. First, for all the datasets and for all the set distance
measures (with the exception of FairSurjections and Hausdorff distance measures) the
highest predictive accuracy is obtained for walks of lengths between five and seven.
Second, in Carcinogenicity for walks longer than seven a decay in performance is ob-
served. Additionally, the poor performance of the FairSurjections can be noted which
might be explained by the fact that FairSurjections distance measure maps as evenly as
possible the elements of the larger set to the elements of the smaller set which might
result in a situation where irrelevant subgraphs from the two decompositions will be
matched, affecting the performance of a classifier.

3 Due to the space limitation the results are only given for the Mutagenesis and the MR version
of the Carcinogenicity datasets. For other versions of the latter dataset similar trends hold.

104 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

1 2 3 4 5 6 7 8 9 10 11
65

70

75

80

85

90

95

Walk length

E
si

m
at

ed
 a

cc
ur

ac
y

(%
)

Estimated accuracy vs. walk lengths, SVM, MUTAGENESIS

AL
SMD
Hausdorff
RIBL
Linkings
Surjections
FairSurjections
Matchings

1 2 3 4 5 6 7 8 9 10 11
52

54

56

58

60

62

64

66

68

70

Walk length

E
si

m
at

ed
 a

cc
ur

ac
y

(%
)

Estimated accuracy vs. walk lengths, SVM, MR

AL
SMD
Hausdorff
RIBL
Linkings
Surjections
FairSurjections
Matchings

Fig. 1. Estimated accuracy vs. lengths of walks for different set distance measures in the Mutage-
nesis and Carcinogenicity (MR) datasets.

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

Walk length

P
er

ce
nt

ag
e

of
 e

m
pt

y
se

ts

Percentage of empty sets of walks vs walk lengths

Mutagenesis
FM
FR
MM
MR

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

Walk length

M
ed

ia
n

ca
rd

in
al

ity

Median of cardinalities of sets of walks vs walk lengths

Mutagenesis
FM
FR
MM
MR

Fig. 2. Percentage of empty sets and medians of cardinalities vs. lengths of walks for the Muta-
genesis and Carcinogenicity datasets.

One problem with the decomposition of molecules into set of walks where consec-
utive repetitions of the same cycles of nodes are not allowed is that small molecules for
high values of l will be associated with an empty set of walks. To get more insight into
this problem the first graph in Figure 2 presents the dependency between the lengths
of the considered walks and the percentage of molecules associated with empty sets.
In particular in the Carcinogenicity datasets for walks of length equal to seven only six
molecules are associated with empty sets. As a result one can expect that the perfor-
mance of a classifier operating on such incomplete descriptors will be harmed. Indeed,
a correlation between the percentage of empty set descriptors and the performance of
SVM for walks longer than seven can be observed. Based on the above discussion and
on the results from Figure 1, we will focus in our consecutive experiments on walks of
length seven 4.

4 As mentioned the optimal walk length will probably depend on the actual application and
ideally should be learned as well. It means that the reported performance might be biased
compared to the true generalization error, as we did not use training/validation partitions for
the walk length optimization.

Matching Based Kernels for Labeled Graphs 105

Table 1. Accuracy and significance test results of SVMP and kNN for the Mutagenesis and Car-
cinogenicity datasets where walks of length seven are considered (+ stands for a significant win of
the first algorithm in the pair, - for a significant loss and = for no significant difference). The first
sign in the parenthesis corresponds to the comparison of SVMP vs. kNN, the second to SVMP

vs. SVM with Cross Product Kernel and the last one to SVMP vs. SVMP with KPAL . Due to
the space limitation for the MM dataset only the results for SVMP are reported. Additionally the
default accuracy (Def.) for each dataset is given.

Mutagenesis FR FM MR MM
Dist. SVMP KNN SVMP KNN SVMP KNN SVMP KNN SVMP

DSMD 86.7 (===) 81.4 64.7 (===) 64.1 62.7 (+==) 55.6 64.5 (==+) 59.6 67.0 (+==)
DH 75.5 (=-=) 79.8 65.0 (=- -) 65.0 64.2 (===) 65.0 56.7 (===) 54.4 62.8 (===)
DRIBL 85.1 (+==) 70.2 64.7 (=- -) 64.4 60.5 (+-=) 52.7 65.1 (+=+) 51.7 62.2 (===)
DS 91.5 (+++) 83.0 63.5 (===) 64.1 61.0 (+==) 52.1 68.6 (+++) 54.1 63.4 (===)
DL 88.3 (+=+) 82.4 65.5 (===) 64.1 59.3 (=-=) 54.4 66.3 (+++) 58.7 65.2 (+==)
DFS 66.5 (=- -) 66.5 67.5 (===) 64.1 62.7 (===) 58.7 58.4 (===) 58.7 62.5 (===)
DM 90.4 (+++) 72.9 67.2 (===) 64.4 61.0 (===) 56.4 66.9 (+++) 57.0 62.5 (+==)
CPK 83.0 67.5 63.6 58.4 63.4
KPAL 81.9 67.2 63.0 57.8 65.5
Def. 66.5 65.5 59.0 55.8 61.6

The next dimension of comparison is the relative performance between SVMP and
SVM with kernels based on all the elements of the two decompositions (the latter, as
already mentioned, is a standard approach to tackle graph problems). We experimented
with the following kernels in this category: the Cross Product Kernel (CPK) and the
linear kernel in the proximity space induced by the DAL distance measure (KPAL). The
main point of this comparison is to examine whether there are cases in which different
ways of matching the elements of two sets of subgraphs can be more beneficial than
the standard averaging which matches everything with everything. The results (with the
significance test results in parenthesis) are presented in Table 1. From the results it is
clear that the relative performance of kernels based on specific pairs of elements and
kernels based on averaging depends on the actual application. The strongest advantage
of the former is in the Mutagenesis and the MR datasets whereas the opposite trend
holds for the remaining datasets. Overall the choice of the appropriate way of matching
the elements of two sets depends on the application and ideally should be guided by
domain knowledge, if such exists. Nevertheless, the relative performance of the differ-
ent kernels provides valuable information about the type of problem we are facing. For
example examining Mutagenesis and Carcinogenicity we see that although they cor-
respond to the same type of classification problem, i.e. classification of graphs, in the
latter (except for the MR) averaging works better, hinting that the global structure of
the molecules is important, whereas in the former averaging performs poorly, indicat-
ing that matching specific components of the molecules is more informative. It should
be also noted that in all the datasets the differences between CPK and KPAL were not
statistically meaningful.

106 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

SMD H RIBL S L FS M
0

20

40

60

80

100

Set distance measures

Mutagenesis

w
l
 = 1

w
l
 = (1/2)l

SMD H RIBL S L FS M
0

20

40

60

80
FR

SMD H RIBL S L FS M
0

20

40

60

80
FM

SMD H RIBL S L FS M
0

20

40

60

80
MR

SMD H RIBL S L FS M
0

20

40

60

80
MM

Fig. 3. Accuracy of the SVMP algorithm for the Mutagenesis and Carcinogenicity datasets where
all walks of lengths smaller than (or equal to) eleven are used. Two different weighting schemas
are considered: wl = 1 denotes that walks of different length have equal importance whereas
wl = (1

2
)l characterizes the algorithm where longer walks are exponentially down-weighted.

We also compared the performance of a standard kNN algorithm on the standard
set distance measures with that of SVMP in order to establish whether the latter indeed
brings some improvement over the naive way of exploiting distances (these results are
also listed in Table 1). Indeed kNN was never significantly better than SVMP and it was
significantly worse in fourteen out of thirty five cases. The better performance of SVMP

in the proximity space in comparison with the “standard” kNN can be explained by the
fact that working in the proximity space gives a more global view to the data. More
precisely the kNN algorithm in a non proximity space examines a single neighborhood
of a given instance which is to be classified. On the other hand SVMP and kNNP in
the proximity space have access to all the neighborhoods of points in the representation
set. These neighborhoods are precisely given by the instances in the new space.

Finally, we examined the performance of the SVMP classifier where a given molecule
is represented by a set of all walks of length smaller than a given value (eleven in our
case). More precisely a compound C1 is represented by eleven sets [S1, . . . , S11] where
the set Sl, 1 < l < 11 contains all possible walks of length l. The distance between
compound C1 and C2 (we assume that C2 has the set representation of [T1, . . . , T11])
is given as D(C1, C2) =

∑11
l=1 wlD(Sl, Tl), where D is a set distance measure and

wl are weights. Here we experimented with two different weighting schemas: (i) wl =
1, 1 ≤ l ≤ 11, i.e. walks of different length have equal importance to the final distance
and (ii) wl = (1

2)l, 1 ≤ l ≤ 11, i.e. longer walks are exponentially down-weighted.
The results are presented in Figure 3. The main observation is that for some datasets
(Mutagenesis and MR) the down-weighting of longer walks harms the performance of
SVMP; in Mutagenesis the down-weighting schema was never significantly better and
it was significantly worse in two cases whereas in MR it was significantly worse in five
cases (the significance tests are not presented in Figure 3). For other datasets the dif-
ference in accuracy was not statistically significant. The above finding is in contrast to
the common practice in various graph kernels [15, 2] and it might indicate that for some

Matching Based Kernels for Labeled Graphs 107

applications also larger subgraphs are correlated with the target variable. The other ob-
servation is that, the performance of the representation based on all walks up to a given
length is comparable to the one where the lengths were fixed to a specified value.

To situate the performance of our relational learner to other relational learning sys-
tems we give the best results reported in the literature on the same benchmark datasets.
For the Mutagenesis dataset we obtained 91.5 % accuracy (for the Surjections distance)
while the best result from the literature (estimated with ten fold cross-validation) was
90.4 % [5]. The results for the Carcinogenicity dataset are not directly comparable with
other results from the literature since different evaluation metric was used (accuracy
instead area under ROC curve).

7 Conclusions and Future Work

It has been argued in [6] that a “good” kernel for graphs should fulfill at least the follow-
ing requirements: (i) should be a good similarity measure for graphs, (ii) its computa-
tional time should be possible in polynomial time, (iii) should be positive semidefinite
and (iv) should be applicable for various graphs. In this paper we propose a class of
kernels for graphs which are based on walks without repetitive occurrences of nodes,
that are computable in polynomial time, that are positive semidefinite and are applica-
ble to a wide range of graphs. Additionally the distinctive feature of our graph kernel is
that, instead of taking into account all the possible subgraphs of a given type, it matches
only specific subparts. More precisely we proposed a class of kernels for graphs which
directly exploit the set distance measures. These kernels are defined in the proximity
space induced by set distance measures where the mapping is defined by a given rep-
resentation set. To practically demonstrate the effectiveness of our approach we report
experimental results for the task of activity prediction of drug molecules.

There are several possible directions for further work. First, we would like to ex-
periment with non-PSD kernels such as the one from Equation 2. This is possible since
recent experimental and theoretical results state that even a kernel which is non-PSD
can be plugged into the SVMs. Second, we will experiment with decompositions of
graphs into substructures other than walks (e.g. the cyclic patterns from [9]). For such
subgraphs the standard Euclidean metric can not be used directly and other, more gen-
eral distances on graphs (e.g. the graph edit distance) need to be considered. Third, we
are going to compare our methods with alternative ways of creating smoother feature
space as mentioned in Section 3. Finally we would like to avoid empty sets in the set of
subgraphs representation of molecules as shown in Section 6. In particular we are go-
ing to experiment with mining frequent (connected) subgraphs approach as presented
in [18, 19].

References

1. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press (2004)

2. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alterna-
tives. In: Proceedings of the 16th Annual Conference on Computational Learning Theory
and the 7th Kernel Workshop. (2003)

108 Adam Woźnica and Alexandros Kalousis and Melanie Hilario

3. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: First International
Workshop on Mining Graphs, Trees and Sequences (help with ECML/PKDD’03). (2003)

4. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Pro-
ceedings of 20th International Conference on Machine Learning (ICML-2003), Washington,
DC (2003)

5. Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginalized graph
kernels. In: ICML 2004. (2004)

6. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.:
Protein function prediction via graph kernels. Bioinformatics 21(1) (2005) i47–i56

7. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics.
Neural Networks (2005) 1093–1110

8. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the 5th
IEE Internatinal Conference on Data Mining. (2005)

9. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In:
Proceedings of KDD’04. (2004)

10. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Proceedings of
22nd International Conference on Machine Learning (ICML-2005). (2005)

11. Pekalska, E., Paclı́k, P., Duin, R.P.: A generalized kernel approach to dissimilarity-based
classification. Journal of Machine Learning Research 2 (2001) 175–211

12. Haussler, D.: Convolution kernels on discrete structures. Technical report, UC Santa Cruz
(1999)

13. Woźnica, A., Kalousis, A., Hilario, M.: Kernels over relational algebra structures. In: The
Ninth Pacific-Asia Conference on Knowledge Discovery and Data, Hanoi, Vietnam (2005)

14. Ben-David, S., Eiron, N., Simon, H.: Limitations of learning via embeddings in euclidean
half spaces. Journal of Machine Learning Research 3 (2002) 441–461

15. Collins, M., Duffy, N.: Convolution kernels for natural language. In Dietterich, T.G., Becker,
S., Ghahramani, Z., eds.: Advances in Neural Information Processing Systems 14, Cam-
bridge, MA, MIT Press (2002)

16. Cumby, C., Roth, D.: On kernel methods for relational learning. In: Proceedings of 20th
International Conference on Machine Learning (ICML-2003), Washington, DC (2003)

17. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1) (2003)
49–58

18. Deshpande, M., Kuramochi, M., Karypis, H.: Frequent sub-structure-based approaches for
classifying chemical compounds. In: Proceedings of ICDM’03. (2004)

19. Kramer, S., Readt, L., Helma, C.: Molecular feature mining in hiv data. In: Proceedings of
KDD’01. (2001)

20. Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Infor-
matica 34(2) (1997) 109–133

21. Horvath, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and
terms. Machine Learning 43(1/2) (2001) 53–80

22. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point sets. Acta
Informatica 37(10) (2001) 765–780

23. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in a
non-determinate biological domain. In Wrobel, S., ed.: Proceedings of the 4th International
Workshop on Inductive Logic Programming. Volume 237. (1994) 217–232

24. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge
2000–2001. Bioinformatics 17 (2001) 107–108

Combining Ring Extensions
and Canonical Form Pruning

Christian Borgelt

European Center for Soft Computing
c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain

christian.borgelt@softcomputing.es

Abstract. A common problem in frequent graph mining is the size of
the output, which can easily exceed the size of the database to analyze.
In the application area of molecular fragment mining a promising ap-
proach to tackle this problem is to treat certain substructures as a unit.
Among such structures, rings are most prominent, and by requiring that
either a ring is present as a whole in a fragment, or not at all, the size
of the output can be reduced considerably. In this paper I present two
ways to combine such ring mining with canonical form pruning.

1 Introduction

In recent years frequent graph mining has become an area of very active research.
Given a database of (attributed) graphs, one tries to find all subgraphs that ap-
pear with a user-specified minimum frequency. Some algorithms for this task rely
on principles from inductive logic programming [5]. However, the vast majority
transfers techniques from frequent item set mining. Examples are MolFea [9],
FSG [10], MoSS/MoFa [1], gSpan [12], CloseGraph [13], FFSM [7], and Gaston
[11]. A related, but slightly different approach is used in Subdue [4].

The basic idea is to grow subgraphs into the graphs of the database, adding
an edge and maybe a node in each step, counting the number of graphs contain-
ing each grown subgraph, and eliminating infrequent subgraphs. Unfortunately,
with this method the same subgraph can be constructed in several ways, adding
its nodes and edges in different orders. The predominant method to avoid the
ensuing redundant search is to define a canonical form of a graph that uniquely
identifies it up to automorphisms: together with a specific way of growing the
subgraphs it enables us to determine whether a given subgraph can be pruned
from the search tree (see, for example, [3] for a family of such canonical forms).

Another common problem in frequent graph mining is the size of the output,
which can easily exceed the size of the database to analyze. To tackle this prob-
lem, it can be useful to restrict the output to subgraphs with certain meaningful
properties. In the application area of molecular fragment mining, for example,
treating rings as units—that is, requiring that either a ring is present as a whole,
or not at all—not only reduces the size of the output, but also improves its in-
terpretability and speeds up the mining process considerably [6].

110 Christian Borgelt

However, [6] employed a repository of reported fragments in order to suppress
duplicate fragments. The canonical form pruning approach is clearly preferable,
in particular, because it makes the method substantially simpler to parallelize.
In this paper I present two ways in which ring mining—that is, using extensions
by full rings instead of extensions by individual ring edges—can be combined
with canonical form pruning: a filter approach and a reordering approach.

2 A Filter Approach to Ring Mining

Ring Preprocessing. Ring mining requires preprocessing the rings in the
graphs (here usually: molecules) to analyze: given a user-specified range of ring
sizes, all rings within this size range are marked in the graphs [6]. Technically,
there are two parts: a marker in the edge attribute, fundamentally distinguishing
ring edges from non-ring edges, and a set of flags identifying the different rings
an edge is contained in. (Note that an edge can be part of several rings.)

Filtering Open Rings. If we require the output to have only complete rings, we
have to identify and remove fragments with ring edges that do not belong to any
complete ring. Since ring edges have been marked in the preprocessing, we know
which edges are ring edges. Using the same procedure as for the preprocessing,
we mark rings in the fragment, but only set the ring flags, while the edge type
marker is kept. Afterwards we can find edges that belong to incomplete rings by
simply checking whether a ring edge (as identified by its type marker) did not
receive any ring flags. If there exists such an edge, the fragment is discarded.

Filtering Unclosable Rings. Canonical form pruning allows to restrict the
possible extensions of a fragment [3]. For the canonical forms of gSpan [12] and
MoSS/MoFa [1] these are so-called rightmost extensions and maximum source
extensions, respectively. Their effect is that due to previous extensions certain
nodes in the graph become unextendable, that is, no new edge may be attached
to them. This can easily be exploited to prune the search. Obviously, a necessary
(though not sufficient) condition for all rings being closed is that every node has
either zero or at least two incident ring edges. If there is a node with only one
incident ring edge, this edge must be part of an incomplete ring. Hence we can
filter fragments in the search by checking whether any non-extendable node has
only one incident ring edge. If this is the case, the fragment can be discarded.

Merging Ring Extensions. The two filtering methods described above work
on individual edges and hence they cannot always detect if an extension by a ring
edge only leads to fragments with complete rings that are infrequent. Consider,
for example, a database with two molecules: one is a ring with 5 carbon atoms,
the other a ring with 6 carbon atoms (all bonds are single). If we want to find
fragments that are part of both molecules, we need not consider any extension by
a ring bond, since there is no common fragment with a complete ring. However,
any single ring bond is contained in both fragments and thus it is, in itself, a
frequent fragment. Therefore, by working on individual bonds, we only recognize
after constructing the full 5-ring that there is no common fragment.

Combining Ring Extensions and Canonical Form Pruning 111

To avoid such redundant search, we add all edges of a ring that an extension
edge is contained in, thus distinguishing extensions that start with the same
single edge, but lead into rings of different size or different composition. Then we
determine the support and prune infrequent extensions, and finally we trim and
merge ring extensions that share the same initial edge. Note that the resulting
situation differs considerably from direct extensions by individual edges. In the
first place, all extensions by ring edges, which are frequent as ring edges, but
become infrequent when completed into rings (and thus cannot produce any
output), have been removed. In addition, for the remaining edges all embeddings
(that is, occurrences of the fragment in the graph database), which lead to
infrequent fragments once rings are completed, have been eliminated.

3 A Reordering Approach to Ring Mining

Even with merging ring extensions the search is still based on an edge-by-edge
scheme and thus fragments grow fairly slowly. It would be better if we could add
complete rings in one step, thus adding several edges to the fragment. Unfortu-
nately such an approach interferes with canonical form pruning, as is discussed
below. However, the problems can be solved, although up to now I only achieved
a solution for the breadth-first search canonical form of MoSS/MoFa [3].

Ring Preprocessing. Although for the filtering approach it is sufficient to
mark rings in the user-specified size range, the reordering approach also needs
pseudo-rings, as I call them, to be marked. These are rings of smaller size than
the user specified, which consist only of edges that are part of rings within the
user-specified size range. As an example consider the molecule shown on the left
of Figure 3: if only rings with 5 and 6 bonds are marked, this molecule contains
a pseudo-ring of size 3 comprising the atoms labeled 1, 3, and 4.

Ring Extensions and Canonical Forms. If we add complete rings in one step
and want to use canonical form pruning, we have to order the new edges in such
a way that the result is (as far as possible) in canonical form. This can easily be
achieved with a recursive procedure similar to the canonical form test. However,
this can have the effect that—due to asymmetries in the ring—we commit to
a numbering of the nodes that prevents us from finding certain fragments. The
reason is that in order to be in canonical form an (asymmetric) ring may need its
nodes to be numbered differently depending on whether it is considered purely
(i.e. only ring edges are present) or whether it has branches attached to it.

As an example consider the molecules shown in Figure 1 and assume the
orderings N ≺ O ≺ C and = ≺ -. The nodes of the pure ring can be numbered in
two ways in a breadth-first manner starting at the nitrogen atom (as shown in
the top part of Figure 1). Of course, they lead to different code words, which are
shown in the middle. Since single bonds precede double bonds, the upper code
word is smaller and thus the left fragment is in canonical form. If, however, we
consider the ring with an oxygen atom attached (as shown in the lower part of
Figure 1), the alternative node numbering yields the canonical form. The reason

112 Christian Borgelt

NO O
0 2

4

5

3

1

N 0-C1 0-C2 1-C3 2-C4 3-C5 4=C5

NO O
0 1

3

5

4

2N 0-C1 0-C2 1-C3 2-C4 3=C5 4-C5

NO O
0

2

4

6

3

1 5

N 0-C1 0-C2 1-C3 2-C4 2-O5 3=C6 5-C6

NO O
0

1

3

6

5

2 4
N 0-C1 0-C2 1-C3 1-O4 2-C5 3-C6 5=C6

Fig. 1. Attaching a branch to a ring can change the ordering for the canonical form.

is that the attached bond to the oxygen atom has to be inserted into rather than
appended to the code word. As a consequence we cannot simply commit to the
numbering of the nodes as it is prescribed by the canonical form of a ring, since
this numbering may change when branches or other rings are added.

A second, even nastier problem is posed by connected or even nested rings:
if two ring extensions follow each other, their edges may have to be “spliced” to
construct a proper code word. In doing so, one has to take care that edges can be
reordered in a sufficiently flexible way, so that no fragments get lost due to the
canonical form pruning. On the other hand, one also has to make sure that no
duplicates result, which cannot be detected with a canonical form test. This is
fairly difficult to achieve, in particular if the fragment contains branching points
of equivalent ring edges, that is, ring edges that all start at the same node and
have the same edge attribute and the same destination node attribute.

Canonical Form Pruning for Ring Extensions. A strategy to overcome the
above problems consists in keeping (and thus also extending) fragments that are
not in canonical form, but that could become canonical once branches are added.
Which non-canonical fragments to keep is determined as follows: adding all edges
of a ring can be seen as adding its initial edge as in an edge-by-edge procedure,
and some additional edges, the positions of which are not yet fixed. Hence we
split the code word into two parts: a fixed part, which would also be built by
an edge-by-edge procedure, and a volatile part comprising the additional bonds.
The fixed part is the prefix of the code word up to (and including) the last edge
added in an edge-by-edge manner, and the volatile part is the suffix of the code
word after this edge. If the current code word deviates from the canonical code
word in the fixed part, the fragment is pruned, otherwise it is kept.

As an example consider the search tree shown in Figure 2. The search starts
at the nitrogen atom and constructs the ring with both possible numberings of
the nodes. The form in the left branch is canonic (indicated by a solid box), so
it is kept. In the form in the right branch only the first ring bond (from the
nitrogen atom to the right carbon atom) is fixed, every other bond is volatile.
Since the code word for this fragment deviates from the canonical one only at
the 5th bond (see Figure 1), we may not discard it. However, we mark it as
non-canonical (indicated by a dashed box), so that it is not reported.

On the next level, adding the bond to the oxygen atom in the two possible
places yields, for each branch, one canonical (solid box) and one non-canonical

Combining Ring Extensions and Canonical Form Pruning 113

N

NO O
0 2

4

5

3

1
NO O
0 1

3

5

4

2

NO O
0 2

5

6

3

1
4

NO O
0

2

4

6

3

1 5

NO O
0 1

3

6

4

2
5

NO O
0

1

3

6

5

2 4

NO O
0

2

6

7

3

1
4 5

NO O
0

12
3

45

6

7

Fig. 2. Search tree for an almost symmetric ring with two identical branches.

N
0

1

5
86

2
4

3

79

5
86

2
4

7

N

N

N
0 1

354

2
N
0

1

376

2
5

4

N
0

1

576

2
4

3

N
0

1

3
65

2
4

4

87

N
0

1

3
65

2
4

8

97

Fig. 3. Splicing equivalent bonds of ring extensions to achieve canonical form.

fragment (no box). The non-canonical fragments both differ in the fixed part,
which now consists of the first three bonds1, and hence they are both pruned.
Extending the canonical fragments adds the other bond to an oxygen atom, thus
making the fragment symmetric again (with the exception of the double bond).
Hence the left fragment is in canonical form. The fragment in the right branch,
however, is not canonical. Nevertheless it has to be kept: the first four bonds are
fixed, but it deviates from the canonical code word only in the 7th bond.

In order to handle connected and nested rings, we have to consider how the
edges of a ring extension may be “spliced” with edges already in the fragment.
The problem here are branching points, where several equivalent edges start (i.e.
edges with the same attribute and same attribute of the destination node). As
an example consider the molecule on the left of Figure 3, the relevant equivalent
edges of which are highlighted. Part of an example search for this fragment
(shown in the middle) starts from the nitrogen atom, adds a 6-bond ring and
then a 3-bond ring. If we only allowed, for example, shifts of new bonds to the left
up to equivalent bonds, we can only reach the upper form. However, the canonical
form is the lower one. On the other hand, we may not reorder equivalent edges
freely, as this would interfere with keeping certain non-canonical fragments: the
fragments in the first level of the search tree in Figure 2 differ only in the order
of the two equivalent bonds starting at the nitrogen atom. If adding another ring
to this atom could change this order, duplicate fragments could result.

1 Note how adding the bond to the oxygen atom turned one of the volatile ring bonds
into a fixed one: everything preceding the bond characterizing an extension—whether
it is a single non-ring bond or the first bond of a ring extension—becomes fixed.

114 Christian Borgelt

N

N0 3

5

42

1

N0 2

4

31

2

N0 2

4

53

1

N0 3

5

41

2

N0 2

5

41

3

N0 3

5

41

2

N0 3

5

41

2

N0 2

4

53

1

N0 3

5

42

1

N0 3

5

41

2

N0 3

5

41

2

N0 2

5

41

3

N0 3

5

41

2

N0 1

4

53

2

N0 1

4

52

3

N0 3

5

41

2

N0 3

5

42

1

N0 2

4

53

1

N0 3

5

41

2

N0 1

4

53

2

N0 1

4

52

3

also in
canonical
form

Fig. 4. Search tree for nested rings of different size (with ring order pruning).

As a consequence, the splicing rule for equivalent edges must be as follows: the
order of the equivalent edges already in the fragment must be maintained, and
the order of the equivalent new edges must be maintained (to avoid “flipping”
rings). In addition, no new edge must be shifted into the fixed part. However,
any sequence satisfying these conditions is acceptable and must be considered.
In other words: the two sequences of equivalent edges—one from the existing
fragment and one from the added ring—may be merged in a zipper-like manner,
selecting the next edge from either list, but maintaining the order in each list.

This also explains why we need pseudo-rings: without them it would be im-
possible in some cases to achieve canonical form. If, in the example, we could
only add the 5-ring and the 6-ring, but not the 3-ring (see the right of Figure 3),
the upward bond from the atom numbered 1 would always precede at least one
of the other two bonds that are equivalent to it. However, in the canonical form
(shown at the top left of Figure 3) the upward bond succeeds both other bonds.

Unfortunately, the same fragment can now be reached in the same form in
different ways. To see this, consider the search tree shown in Figure 4: the same
fragment results in six different forms, each of which (including the canonical
form) occurs twice. Hence we need an additional test to augment canonical form
pruning. The idea underlying this test is that the canonical form not only fixes
an order of the bonds, but also an order of the rings: order the rings by the first
edge in the canonical form that is contained in them. Break ties by considering
the second, third etc. edges in the canonical form the rings contain.

This ring order is exploited as follows: we mark all edges in the fixed part of
the fragment as well as all new edges. Then we traverse the unmarked ring edges.
For each of these edges we eliminate all rings it is contained in (by removing ring
flags, which are set in the fragment in the same way as in the ring preprocessing).
If by this procedure all ring flags of a marked edge (fixed edge or new edge) are
removed, this marked edge is part of a ring preceding the newly added one (w.r.t.
the ring order defined above). Therefore it had to be added before the current
ring. If, however, no marked edge loses all its ring flags, there exists a ring that
succeeds the currently added one. This ring should rather be added later and
thus the fragment is discarded, even if it is in canonical form.

Combining Ring Extensions and Canonical Form Pruning 115

2 2.5 3 3.5 4 4.5 5

0

5

10

15

20

25

time/seconds
reorder
merge rings
close rings
repository

2 2.5 3 3.5 4 4.5 5

0

2

4

6

8 fragments/104

reorder
merge rings
close rings
repository

2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5 embeddings/106

reorder
merge rings
close rings
repository

Fig. 5. Experimental results on the
IC93 data. The horizontal axis shows
the minimal support in percent. The
curves show the number of generated
fragments (top left), the number of
generated embeddings (top right), and
the execution time in seconds (bottom
left) for the four different strategies.
Note that the dotted line (repository)
is often covered by the solid line.

As an example consider again Figure 4. The canonical form (fragment at
bottom left) shows that the 6-bond ring succeeds both the 3-bond ring and the
5-bond ring, as it does not contain the first bond. The second bond shows that
the 3-bond ring precedes the 5-bond ring. For the second fragment in canonical
form (see arrow) the test, as outlined above, fails, using any of the highlighted
edges. However, for the leftmost fragment in the bottom row the ring flag removal
always leaves a marked edge flagless and thus it is accepted.

4 Experiments

I incorporated the described methods into the MoSS program.2 As a test dataset
I used the well-known subset of the Index Chemicus 1993 [8]. The results are
shown in Figure 5: each curve corresponds to one of the approaches, which were
executed with (full) perfect extension pruning [2]. The black dotted line refers to
the repository-based approach, the solid black line to the reordering approach.
The filter approach I used in two flavors: with ring extensions and consecu-
tive merging (solid grey line) and using only open and unclosable ring filtering
(dashed grey line). These results show that the somewhat complicated treatment
of ring extensions in order to combine them with canonical form pruning clearly
pays off, as the reordering method hugely outperforms the filter approaches.
2 MoSS is available for download under the Gnu Lesser (Library) Public License at
http://fuzzy.cs.uni-magdeburg.de/∼borgelt/moss.html.
The test system was a Lenovo Thinkpad X60s (Intel Core Duo@1.67GHz, 1GB) with
S.u.S.E. Linux 10.0, IBM’s Jikes compiler 1.22, and Sun’s Java 2 1.5.0 07.

116 Christian Borgelt

5 Conclusions

In this paper I developed two methods to combine canonical form pruning with
ring extensions, which are very useful for molecular fragment mining. The first
method is based on a filter approach, which exploits the requirement for closed
rings to restrict the output and prune the search. This approach is simple and
straightforward, but not competitive in terms of running time or memory usage
as the experiments show. Therefore it is indeed worthwhile to invest into the more
complicated reordering method, which enables us to do full ring extensions, thus
considerably reducing the height of the search tree and its number of nodes.

References

1. C. Borgelt and M.R. Berthold. Mining Molecular Fragments: Finding Relevant
Substructures of Molecules. Proc. IEEE Int. Conf. on Data Mining, 51–58. IEEE
Press, Piscataway, NJ, USA 2002

2. C. Borgelt, T. Meinl, and M.R. Berthold. Advanced Pruning Strategies to Speed
Up Mining Closed Molecular Fragments. Proc. IEEE Conf. on Systems, Man and
Cybernetics, CD-ROM. IEEE Press, Piscataway, NJ, USA 2004

3. C. Borgelt. On Canonical Forms for Frequent Graph Mining. Proc. 3rd Int. Work-
shop on Mining Graphs, Trees and Sequences, 1–12. ECML/PKDD 2005 Organi-
zation Committee, Porto, Portugal 2005

4. D.J. Cook and L.B. Holder. Graph-Based Data Mining. IEEE Trans. on Intelligent
Systems 15(2):32–41. IEEE Press, Piscataway, NJ, USA 2000

5. P.W. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacore Discovery
Using the Inductive Logic Programming System PROGOL. Machine Learning,
30(2–3):241–270. Kluwer, Amsterdam, Netherlands 1998

6. H. Hofer, C. Borgelt, and M.R. Berthold. Large Scale Mining of Molecular Frag-
ments with Wildcards. Intelligent Data Analysis 8:495–504. IOS Press, Amster-
dam, Netherlands 2004

7. J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism. Proc. 3rd IEEE Int. Conf. on Data Mining, 549–552.
IEEE Press, Piscataway, NJ, USA 2003

8. Index Chemicus — Subset from 1993. Institute of Scientific Information, Inc. (ISI).
Thomson Scientific, Philadelphia, PA, USA 1993
http://www.thomsonscientific.com/products/indexchemicus/

9. S. Kramer, L. de Raedt, and C. Helma. Molecular Feature Mining in HIV Data.
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
136–143. ACM Press, New York, NY, USA 2001

10. M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. Proc. 1st IEEE Int.
Conf. on Data Mining, 313–320. IEEE Press, Piscataway, NJ, USA 2001

11. S. Nijssen and J.N. Kok. A Quickstart in Frequent Structure Mining Can Make
a Difference. Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, 647–652. ACM Press, New York, NY, USA 2004

12. X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. Proc. 2nd
IEEE Int. Conf. on Data Mining, 721–724. IEEE Press, Piscataway, NJ, USA 2002

13. X. Yan and J. Han. Closegraph: Mining Closed Frequent Graph Patterns. Proc.
9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 286–295.
ACM Press, New York, NY, USA 2003

Structured Kernels for Automatic Detection of
Protein Active Sites

Elisa Cilia1, Alessandro Moschitti1, Sergio Ammendola2, and Roberto Basili1

1 Department of Computer Science, System and Production
University of Rome, Tor Vergata,

Via Della Ricerca Scientifica s.n.c., 00133, Roma, ITALY
elisa.cilia@gmail.com

{moschitti,basili}@info.uniroma2.it
2 Ambiotec sas

SME
field: biotechnology

Via F. Acqua Mariana 125, 00040, Roma, ITALY
PI 07635910636

sergio.ammendola@fastwebnet.it

Abstract. In this paper, we design novel models based on Support Vec-
tor Machines and Kernel Methods for the automatic protein active site
classification. We devise innovative attribute-value and tree substruc-
ture representations derived from biological and spatial information of
proteins. We experimented such models with the Protein Data Bank ad-
equately pre-processed to make explicit the active site information. Our
results show that structural kernels used in combination with polyno-
mial kernels can be effectively applied to discriminate an active site from
other regions of a protein. Such finding is very important since it firstly
shows the successful identification of catalytic sites of a very large family
of catalytic proteins belonging to a broad classes of enzymes.

1 Introduction

Recent research in Bioinformatics has been devoted to the production and un-
derstanding of genomic data. One important step in this direction is the study
of the relation between molecular structures and their functions, which in turn
depends on the discovering of the protein active sites. As there is a large number
of synthesized proteins which have no associated function yet, i.e. whose function
remains unknown, automatic approaches for active site detection are critical.

Currently, the general strategy used to identify a protein active site involves
the expertise of researchers and biologists accumulated in years of study on
the target protein as for example in [1]. This manual approach is conducted
essentially using homology based strategies, i.e. inferring the function of a new
protein based on a close similarity to already annotated proteins. Sometimes
proteins with the same overall tertiary structure can have different active sites,
i.e. different functions and proteins with different overall tertiary structure can

118 Cilia et al.

show the same function and similar active sites. In these cases homology based
approaches are inadequate. Moreover, there is no general automated approach to
protein active site detection, although it is evident its usefulness to restrict the
number of candidate sites and also to automatically learn rules characterizing
an active site [2].

In this paper we define the problem of determining protein active sites in
terms of a classification problem. We modeled protein active site based on both
attribute/value and structural representations. The former representation is a set
of standard linear features whereas the latter is constituted by tree structures
extracted from graphs associated with proteins or their candidate sites. The
graph nodes (or vertexes) represent amino acids (or better residues) and edges
represent distances in the three-dimensional space between these residues.

We applied these representations to SVMs using polynomial kernels, tree ker-
nels and some combinations of them. To experimentally evaluate our approach,
we created a data set, using the protein structures retrieved from the Protein
Data Bank (PDB) [3] maintained by the Research Collaboratory for Structural
Bioinformatics (RCBS) at http://www.rcbs.org. The combined kernels show the
highest F1 measure, i.e. 68%, in the detection of active sites. This is an important
and promising result considering that the baseline based on a random selection
of active sites has an upperbound of only 2%.

In the remainder of this article Section 2 describes the faced problem. Section
3 describes the proposed linear and structural features. Section 4 describes the
experimental evaluation and reports the results of the classification experiments.
Finally, in Section 5, we summarize the results of the previous sections and
propose other interesting future research lines.

2 Protein active site classification

An active site in a protein is a topological region which defines the protein func-
tion, in other words it is a functional domain in the protein three-dimensional
structure (see also [2]). In a cell there are many types of proteins which carry out
different functions. The enzymes are those proteins able to accelerate chemical
processes inside a cell. This type of proteins are distinguished from structural
and supplying proteins for their catalytical action on the large part of molecules
constituting the living world. We limit our research to a particular class of en-
zymes, the hydrolases.

Hydrolases are maybe the most studied and known type of enzymes. They
catalyze hydrolysis reactions, generically consisting in the cleavage of a biochem-
ical compound thanks to the addition of a water molecule (H2O). The character-
istic of some hydrolases to catalyze reactions in the presence of a water molecule
motivates our model: as an hydrolase active site, we choose a sphere in a three-
dimensional space centered in the coordinates of the oxygen atom of a water
molecule. This sphere includes a portion of the protein within its volume, that
is a number of amino acids which could reciprocally interact with other amino
acids in the surrounding space, or with water molecules. In this first analysis, we

Structured Kernels for Automatic Detection of Protein Active Sites 119

consider a sphere with a radius of 8 Å, which is the maximum distance needed
for the water-residue interaction.

Figure 1(a), shows the active site of 1A2O protein structure and its repre-
sentation according to our model. The protein residues are colored in light gray
whereas the particular catalytic residues are in dark gray. The center of the
sphere is the black colored oxygen atom of a water molecule.

(a) (b)

Fig. 1. (a) A sphere (positive example). (b) Distances.

2.1 The computational model

As stated in the previous section, we defined the functional site identification as
a classification problem, where the objects we want to classify are protein active
sites. We represent the portion of the protein contained in a spherical three-dim-
ensional region with a completely connected graph. Each vertex of this graph is
a residue and each edge represents the distance in the three-dimensional space
between a pair of vertexes.

Every amino acid is represented by two points in the three-dimensional space:
one which represents an amino acid main-chain (the α-carbon atom of the amino
acid, Cα) and one which represents an amino acid side-chain (the centroid be-
tween the coordinates of the atoms belonging to the amino acid side-chain, SC)
(see Figure 1(b)). The same kind of approximation has been described in [4]
because it seems to provide a good balance between fuzziness and specificity in
these kind of applications.

In Figure 1(b) the three-dimensional SC-SC distances and Cα-Cα distances
are indicated between the represented chain of three residues. An object (mod-
eled by a graph centered on a water molecule) can be classified as being an active
site or not with a binary classifier. Thus, we consider as a positive example, a
graph whose set of vertex includes all the catalytic amino acids and as a negative
example a graph which contain no catalytic amino acid. Moreover, to reduce the

120 Cilia et al.

task complexity, we extract, from the initial completely connected graph, some
spanning substructures which preserve the edges within the maximum interac-
tion distance of 5 Åbetween the side-chains of the residues.

The next section shows how the above representation model can be used along
with Support Vector Machines to design an automatic active site classifier.

3 Automatic classification of active sites

Previous section has shown that the active site representation is based on graphs.
To design the computational model of these latter, we have two possibilities: (1)
we extract scalar features able to capture the most important properties of the
graph and (2) we can use graph based kernels [5] in kernel-based machines such
as Support Vector Machines [6]. Point (2) often leads to high computational
complexity. We approached such problem by extracting a tree forest from the
target graph and applying efficient tree kernels [7].

3.1 Scalar features

Scalar features refer to typical chemical values of the molecules described in the
target graph. We defined 5 different types of such features (see Table 1):

The first class of linear features (C1) encodes chemical and physical properties
of the graph. This class represents properties such as hydrophobicity, polarity,
polarizability and Van der Waals volume of the amino acids composing the
sphere. The encoding is the same used in [8] where the features were used to
classify the function of proteins.

The second class of linear features (C2) encodes the amino acid composition
of a spherical region. There is a feature associated with every labeled vertex
(amino acid) in the graph, weighted with the inverse of the distance from the
oxygen atom of the water molecule which is the center of the sphere. This group
of features emphasizes the importance of the interaction distance of a residue
with respect to a water molecule.

The third class of features (C3) represents charge or neutrality of a spherical
region. This is measured by counting the number of positively or negatively
charged amino acids.

Another group of linear features (C5) encodes the quantity of water in a
sphere. This is measured by counting the number of water molecules within the
sphere radius. This group of features is motivated by the fact that biologists
observed that an active site is usually located in a hydrophobic core of the
protein while on the surface the quantity of water is higher and the residues
exposed to the solvent are not hydrophobic.

Finally, the last class of linear features (C6) is the one which measures the
atomic density of the sphere calculated as the total number of atoms in the
sphere.

It should be noted that (a) the last two classes of linear features are made
discrete using a different number of value intervals. A feature is associated with

Structured Kernels for Automatic Detection of Protein Active Sites 121

Table 1. Representation: feature classes

Linear Features Description

1st Class Physical and chemical properties (amino acid attributes)
2nd Class Amino acidic Composition
3rd Class Charge/Neutrality
5th Class Water molecule quantity
6th Class Atomic density

Structural Features Description

4th Class Tree substructures from tertiary structure

an example if the measured value of a certain property falls in the correspon-
dent range. (b) These features are often used to describe protein structures in
similar tasks of Bioinformatics [8] and to develop software for protein structure
prediction like Modeler 7v7.

3.2 Structural features

We designed a class of structural features to encode the three-dimensional struc-
ture (tertiary structure) or better, the spatial configuration characterizing a
spherical region, i.e. the set of amino acids composing it with their 3D distances.
As previously mentioned this representation results in a completely connected
graph since every vertex is connected to any other vertex in the sphere graph
through an edge labeled with the 3D distance of the pair.

Starting from this completely connected

Fig. 2. Graphical representation
of a tree of a sphere

graph, we extract some tree substructures
using heuristics: for example, the one which
preserves the maximum interaction distances
to 5 Åbetween the side-chains of the residues
and a minimum spanning tree algorithm. Such
heuristics is motivated by the observation
that to perform the catalytic function it is
necessary that the side-chains of the cat-
alytic residues can interact with each other
and with the substrate. The maximum inter-
action distance between atoms in different
residue side-chains is usually of about 3-4
Å. We chose a cut-off distance of 5 Åto take
into consideration our approximation in the
representation of residues (Figure 1(b)).

The applied heuristics lead possibly to the separation in disconnected com-
ponents of the initial graph. From each of these components, using the Prim
algorithm [9], we extract the spanning tree which minimizes the cost function
c(T), i.e. the interaction distances dxy between the side-chains of the residues x
and y. Note that as some graphs contain more than one connected component,

122 Cilia et al.

the Prim algorithm is applied to each of them. This leads to the extraction of a
tree forest.

We add the water molecule (center of the sphere) as root node to the obtained
spanning tree. In Figure 2, we show a tree which can represent the spherical
region in Figure 1(a). In bold light gray, we highlight the nodes which represent
catalytic amino acids.

The tree substructures generated for each example constitute the features
analyzed by our tree kernel function. If two examples are described by two tree
forests, we can use as a kernel function the summation of a tree kernels applied
to all possible pairs coming from such forests.

4 Experiments

In the subsequent subsections, we describe our classification experiments carried
out on the data set that we generated from the Protein Data Bank.

4.1 Experimental set-up

The evaluations were carried out using the SVM-light-TK software [10] (avail-
able at http://ai-nlp.info.uniroma2.it/moschitti/) which encodes tree kernels in
SVM-light [11]. We used the polynomial kernels for the linear features and tree
kernels for the structural feature processing. More precisely, we used the SST
and the PT kernels described in [7] on a simple tree, i.e. the main tertiary struc-
ture3, or on a tree forest (see Section 3.2). The former kernels are indicated with
SST T and PT T whereas the latter are called SST F and PT F. The kernel for
tree forest is simply the summation of all possible pairs of trees contained in two
examples.

We experimented our models with the protein structures downloaded from
the Protein Data Bank (PDB). We adequately pre-processed PDB files to obtain
all the information of interest for this task. In particular, we created a data set
of 14,688 examples from 48 hydrolases from the PDB structures. The data set is
composed of 171 positive examples and 14,571 negative examples, which means
a 1

125 ratio between positive and negative examples.
The results were evaluated by applying a 5-fold cross validation4 on this data

set measuring the performance with the F1 measure 5.
A noticeable attention was devoted to parameterization (cost factor, decay

factor, etc.)

3 The single tree structure is the most relevant one in the forest, that is, the tree which
contains at least a catalytic amino acid and the two nearest residue side-chains of
the sphere

4 We separated the data set into five parts, each one composed of examples belonging
to a set of nine or ten protein structures randomly assigned to this set.

5 F1 assigns equal importance to Precision P and Recall R i.e. F1 = 2P ·R
P+R

Structured Kernels for Automatic Detection of Protein Active Sites 123

Table 2. (a) Linear features performance. (b) Combined kernel performance.

(a)

Linear Precision Recall F1

C1 5.5% 66.7% 10.2%
C2 55.9% 63.3% 59.4%
C3 20% 3.3% 5.7%
C5 2.2% 30% 4.1%
C6 5.5% 13.3% 7.8%

(b)

Precision Recall F1 ±Std.Dev.

L 62.3% 55.4% 56.2% ±6.8

SST F 66.2% 31.8% 39.9% ±13.7

L+SST F 82.9% 58.6% 68.3% ±14.5

4.2 Experiment results

Table 2(a) reports the results on the 5 types of linear features using the poly-
nomial kernel (degree 3). These results are only indicative as we did not run a
cross validation procedure. We note that most linear features cannot discrimi-
nate between active and non-active site. Only, the second class, which encodes
the structural information, shows a meaningful F1. The general low results of
linear features is caused by the remarkable complexity of the task as suggested
by the F1 upperbound of the random selection, i.e. ' 1.6%.

In order to boost the classification performance, we experimented with the
structural kernels. Table 2(b) summarizes the cross validation results: Row 2
reports the results with polynomial kernels on all the linear features (L), Row
3 shows the outcomes of the SST kernels on the tree forest (SST F) and Row 4
illustrates the performance of the polynomial kernel summed to the SST kernel
on the tree forest (L+SST F). The ± sign precedes the standard deviation eval-
uated on the 5 folds. It is worth to note that the F1 obtained with the linear
features (56.24%) improves by 12 absolute points if we use the combined model
(L+SST F), i.e. 68%.

We also experimented different variants of Tree Kernels, i.e. based on PTs.
The results of the cross validation experiments are summarized in Table 3: Row 2
reports the results with polynomial kernel plus SST F (applied to linear features
and a forest structure), Row 3 reports the cross validation results of polynomial
kernel plus SST T (applied to linear features and a tree structure) and finally
Row 4 illustrates the performance of the additive combination of polynomial
with the PT kernel (PT T) (on linear features and a tree structure).

The results show that the high- L+TK Precision Recall F1 ±Std.Dev.
SST F 82.9% 58.6% 68.3% ±14.5
SST T 79.7% 51.7% 62.3% ±10.4
PT T 80.4% 41.2% 54.4% ±9.1

Table 3. Tree kernel impact

est F1 measure can be achieved with
the SST F but quite similar per-
formance can be obtained repre-
senting examples with only a tree
structure in the forest, i.e. SST T.
In contrast to our expectations the
PT kernel, which may be considered the one most suitable for this task, shows
the lowest F1. The most plausible explanation is the highest complexity on de-
riving its correct parameterization.

124 Cilia et al.

Overall, the very good F1 of our best model suggests that our classification
system can be a useful tool to help the biology researcher to study the protein
functions.

5 Conclusions

In this paper, we have studied the problem of the identification of protein func-
tional sites. We have defined a novel computational representation based on
biological and spatial considerations and several classes of linear and structural
features.

The experiments with SVMs using polynomial and tree kernels and their
combinations show that the highest F1, i.e. 68%, is achieved with the combined
model. Such finding is very important since it firstly shows the successful iden-
tification of catalytic sites of a very large family of catalytic proteins belonging
to a broad classes of enzymes. Moreover, our work highlights the importance of
structural information in the detection of protein active sites. This result mo-
tivates the need of structural representations which we efficiently modeled by
means of tree kernels.

References

1. Cilia, E., Fabbri, A., Uriani, M., Scialdone, G.G., Ammendola, S.: The signa-
ture amidase from sulfolobus solfataricus belongs to the cx3c subgroup of enzymes
cleaving both amides and nitriles: Ser195 and cys145 are predicted to be the active
sites nucleophiles. The FEBS Journal 272 (2005) 4716–4724

2. Tramontano, A.: The ten most wanted solutions in Protein Bioinformatics. Chap-
man & Hall/CRC Mathematical Biology and Medicine Series (2005)

3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res 28(1)
(2000) 235–242

4. Meng, E.C., Polacco, B.J., Babbitt, P.C.: Superfamily active site templates. PRO-
TEINS: Structure, Function, and Bioinformatics 55 (2004) 962–976

5. Gärtner, T.: A survey of kernels for structured data. Multi Relational Data Mining
(MRDM) 5 (2003) 49–58

6. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)
7. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntac-

tic trees. In: Proceedings of The 17th European Conference on Machine Learning,
Berlin, Germany, 2006, Berlin, Germany (2006)

8. Borgwardt, K.: Graph-based Functional Classification of Proteins using Kernel
Methods. Ludwig Maximilians University of Monaco (2004)

9. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst.
Tech. Journal 36 (1957) 1389–1401

10. Moschitti, A.: A study on convolution kernel for shallow semantic parsing. In:
Proceedings of the 42th Conference on Association for Computational Linguistic
(ACL-2004), Barcelona, Spain (2004)

11. Joachims, T.: Making large-scale svm learning practical. In: Advances in Kernel
Methods - Support Vector Learning, B. Schölkopf, C. Burges and A. Smola editors
(1999)

Learning Structured Outputs via Kernel
Dependency Estimation and Stochastic

Grammars

Fabrizio Costa1, Andrea Passerini1, and Paolo Frasconi1

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

Abstract. We focus on graph-valued outputs in supervised learning
and propose a novel solution to the pre-image problem in the kernel
dependency estimation framework. Output structures are generated by
a stochastic grammar and the output feature space is directly associated
with the set of productions for the grammar. The regression estimation
step learns to map input examples into a feature vector that counts the
number of applications of each production rule. A max-propagation al-
gorithm finally builds the predicted output according to the normalized
counts. We test our method on a ambiguous context free grammar (CFG)
parse tree reconstruction problem. We show on an artificial dataset that
mimics the prepositional attachment problem how learning the number
of applications of each production rule on a per example base allows CFG
parser to better tackle ambiguity issues.

1 Introduction

A structured output prediction problem can be formulated as a supervised learn-
ing problem in which the output or target space is not restricted in any way
and can be any set (e.g. a set of graphs or sequences). In this way, several
predictions can be made collectively on the same input instance, still main-
taining that instances are sampled independently. Formally, we denote by X
and Y the input and output spaces, respectively. Examples are in the form
D = {(x1, y1), . . . , (xm, ym)} with xi ∈ X and yi ∈ Y and are sampled iden-
tically and independently from a fixed and unknown distribution p. The cost
associated with prediction errors is measured by a loss function V : Y ×Y 7→ IR.
Learning consists of finding a function f : X 7→ Y in a given hypothesis space
such that the average loss V (y, f(x)) is minimized.

The above setting can be useful in many real world application domains.
Structural bioinformatics offers interesting examples since there are several pre-
diction tasks where the target is about a relation between two or more residues
in a protein chain. Problems of this kind include prediction of disulfide bridges,
metal binding sites, beta sheet partners and contact maps. Correlation often
plays a major role linking the prediction at different residues in the same chain.
It is relatively safe, however, to assume that different protein chains are sam-
pled independently. Thus, these structural bioinformatics problems fit the above

130 F. Costa et al.

framework choosing X to be a set of sequences and Y a set of graphs (whose
vertices are the elements of the input sequence). Computational linguistics offers
other interesting examples of sequential translation problems like POS-tagging
and named entity recognition.

Typically, structured output prediction involves searching the output space
Y, where the search can be guided by a scoring function associated with the
input x and a candidate output y.

f(x) = arg max
y∈Y

S(x, y). (1)

Exhaustive search in spaces of graphs is generally intractable and heuristic meth-
ods are necessary. Search in graph space can be implemented starting in some
initial state and iteratively moving in Y by applying some modification operator
to the current structure. In [2, 6], parse tree construction from input sequences
is formulated in the context of incremental dynamic grammars and recursive
neural networks were employed to learn the best operator to be applied at each
search step. In some special cases it is possible to define “unimodal” functions
S(x, y) for which hill climbing can be shown to be complete in solving Eq. 1.
In [12], a unimodal function was proposed for scoring candidate protein contact
maps and a recursive neural network was trained in regression mode to predict
the value S(x, y) to be plugged in Eq. 1.

Weston et al. [13] and Tsochantaridis et al. [10] have proposed kernel-based
formulations of the problem in Eq. 1. Here we follow-up the kernel dependency
estimation (KDE) framework introduced in [13] and further specialized to the
case of sequential transductions in [1].

2 Kernel Dependency Estimation

In KDE [13, 1], both the input and the output portions of the data are mapped
into their feature spaces, denoted as FX and FY , respectively. As usual, these
mappings can be implicitly defined via two kernel functions:

κ(x, x′) = 〈φ(x), φ(x′)〉 (2)
λ(y, y′) = 〈ψ(y), ψ(y′)〉 (3)

where φ : X 7→ FX and ψ : Y 7→ FY are the input and the output feature
mapping, respectively. Then every function f : X 7→ Y in the original domain,
can be mapped to a corresponding function F : FX 7→ FY in the transformed
space defined as F (φ(x)) = ψ(f(x)). KDE consists of two separate steps: feature
estimation and pre-image calculation, as detailed below.

Feature estimation problem. This step consists of predicting the image of
the target ψ(y) given the input x. We need the assumption that FY has
finite dimension no (or alternatively we could apply kernel PCA to reduce
its dimensionality to a finite integer).

Learning Structured Outputs via KDE and SG 131

The feature estimation problem can be conveniently represented as a vector-
output regression problem where one learns a function g : X 7→ FY from
examples {(xi, ψ(yi))}. It can be shown that using kernel ridge regression,
the no regression problems can be solved using a single matrix inversion,
obtaining the general solution

g(x) =
m∑
i=1

ciκ(x, xi) (4)

being ci ∈ IRn0 the columns of the solution to the following linear problem:

C = Ψ(y)(K + γmIm)−1 (5)

being K the input kernel matrix and Ψ(y) the no ×m matrix with columns
ψ(y). Efficient alternatives to the above approach consist of solving each
of the no regression problems by support vector regression [11] or using
maximum margin regression [8, 7].

Pre-image calculation problem. Once the feature space representation of
the target has been estimated as g(x), we are left with the problem of in-
verting the output feature mapping ψ(y) in order to obtain a predicted
f(x) ∈ Y. The approach suggested in [13, 1] consists of searching the space
Y for a structure whose image in FY is close to g(x):

f(x) = arg min
y∈Y

‖g(x)− ψ(y)‖2 (6)

When using kernel ridge regression, it can be shown that

‖g(x)− ψ(y)‖2 = λ(y, y)− 2
m∑

i,j=1

hijλ(yi, y)κ(xj , x) (7)

being H = {hij} = (K+µI)−1. In [1] the search problem of Eq.(6) is solved
by a graph theoretical algorithm in the case of output strings and k-gram
output kernels.

3 Using stochastic grammars

We propose here an alternative KDE formulation where the pre-image prob-
lem is solved via probabilistic inference in stochastic grammars. We focus on
supervised problems where input instances are arbitrary objects (e.g. strings)
and the associated targets y are the result of a generative mechanism described
by a stochastic grammar which depends on the input instance. One example is
language learning where x is a string in a finite alphabet T and y a parse tree
of x (which is not necessarily unique if the grammar is ambiguous). Another
example is string transduction where x and y are strings in different alphabets
and y is generated by selecting suitable production rules on the basis of x. Let
G(x) = {N,T,S,Π(x)} denote the stochastic grammar associated with x, where

132 F. Costa et al.

N is the set of nonterminal symbols, T the set of terminal symbols, S the set of
production rules and Π(x) the corresponding probabilities. In our notation we
have made explicit the assumption that the structure S of the grammar is fixed
and given as background knowledge to the learner, while the parameters Π(x)
depend on x and are unknown. Let L(x) be the language generated by G(x) and
for y ∈ L(x) let Pr(y|x) denote the probability that G(x) has generated y: in
order to solve the statistical learning problem outlined in the introduction, we
need that Pr(y|x) be a good model for p(y|x).

We link this generative process to KDE by choosing as features ψ(y) a real
vector from which Π(x) can be conveniently obtained.

While in this phase there is in principle no constraint on the kind of stochastic
grammar to employ (context free, context sensitive, or even more expressive!),
when we finally get down to the computation of the pre-image of ψ(y) we have
to opt for computationally tractable methods. To this end we choose a stochastic
context free grammar to model the structured output information so to exploit
efficient maximum-propagation algorithms (such as Viterbi [3]) which can, in
practice, run with complexity lower than O(|x|3). In this case ψ(y) is a vector
of frequency counts for the rules used in the parse tree y.

Formally, suppose G(x) is a stochastic context free grammar. Production
rules rk` have the form Ak 7→ α` with Ak ∈ N and α` ∈ (N ∪ T ∪ {ε})∗. Each
production rule rk` has an attached probability πk,` with constraints

∑
` πk,` = 1

for each k = 1 . . . , |N |. These probabilities are linked to the feature vector ψ(y)
by the softmax function:

πk,` =
eψk,`∑
j=1 e

ψk,j
. (8)

In this way, the feature estimation step of KDE consists of solving the regression
problem for a multinomial logit model, i.e. a generalized linear model [5]. Note
how the expressive power of the grammar describing the output structure is
greater than simple SCFG as the probabilities associated to each rule depend
on the inputs x. Informally, first we learn ψ(y) i.e. the frequency counts of each
rule in G for the parse tree y then we give these estimates to a SCFG parser
that computes the pre-image of ψ(y) i.e. builds the actual parse tree. We call
the overall procedure KDE-SCFG.

For another approach to the task of learning the structured output of a SCFG
parse tree in terms of its production rules see [9] where they learn a kernel
machine that discriminates among the entire space of parse trees factorized in
an extended bottom-up tabular representation.

4 Experiments

4.1 The artificial task

We test the proposed method on an artificial dataset. We are interested in prob-
lems where instances’ output structure cannot be well explained resorting only

Learning Structured Outputs via KDE and SG 133

to a SCFG (in this case we could use the standard parsing techniques). We sim-
ulate a problem of interest in the NLP domain known as the PP-attachment
ambiguity resolution problem which is known to be context-sensitive. The task
consists in deciding which of two possible structural parse tree that involve a
preposition is the correct one. To clarify the issue consider the following two
sentences “eat a salad with a fork” and “eat a salad with tomatoes”: in the first
one the propositional phrase (PP) “with a fork” specifies a characteristic of the
action of eating, while in the second case it specifies a property of the salad; in
the first case we have a parse tree where the PP is attached to the verb ’eat’
as in: (VP (V eat) (NP a salad) (PP with a fork)) while in the second case the
PP is attached to the noun ’salad’ as in (VP (V eat) (NP a salad (PP with
tomatoes))). A CFG that has access to the part of speech (POS) of the sentence
words only has no way to discriminate between the two alternatives which are
both syntactically correct: the disambiguation can happen only lexicalizing the
grammar i.e. making the rules dependent on the actual words, which is a way
to introduce a form of context-sensitiveness.

We simulate the PP-attachment problem using the following simple stochas-
tic context free grammar G:

S → ScS|NV
V → wNP |vNP
N → n|ncV
NP → nP |ncV P
P → pn

w → 5
v → 4
n→ 2|3
p→ 1
c→ 0

whereN = {S, V,N,NP , P, c, n, p, v, w} and T = {0, 1, 2, 3, 4, 5} and {c, n, p, v, w}
are the POS tags (pre-terminal). The probabilities are all uniform except for the
S derivation for which we set a .2 probability of deriving ScS against a .8 prob-
ability for NV .

To introduce the context-sensitiveness we collapse the POS tags ’v’ and ’w’ in
a single tag ’x’: now, given the structure of G and a dataset wide global estimate
of Π, the SCFG parser has no deterministic information as to which expansion
rule to use for the verbal phrase: the resulting grammar is ambiguous. We want
to show that exploiting similarities between the inputs in sequential form we
can learn the probabilities associated to the different rules used to resolve the
ambiguity and inform the SCFG parser on a per example base on which rule to
prefer hence obtaining a better parse tree.

4.2 Data preparation

We used Douglas Rohde’s Simple Language Generator (SLG) program1 to ran-
domly produce sets of sentences according to G. We then post-processed the sets
1 http://tedlab.mit.edu/ dr/SLG/

134 F. Costa et al.

with two strategies: in the first one (Natural) we filtered out sentences with the
same sequence structure (and therefore with the same parse trees), while in the
second set (Unique) we filtered out sentences with identical representation in the
output feature space FY .

4.3 Results

We compared KDE-SCFG with a standard SCFG parser that makes use of prob-
abilities globally estimated over the entire dataset. We employed a spectrum ker-
nel [4] with k-mers of size 2 to 5 to compute κ. We use Collin’s evalb program2

to compute the bracketing F-measure and exact parse matching scores. We ran-
domly split the dataset in two equally sized sets of 1,000 instances each, which
were employed for model selection and final evaluation respectively, both per-
formed by a 5-fold cross validation procedure. Table 1 reports micro-averaged
results of the 5-fold cross validation evaluation procedure, both for the entire
evaluation set and focused on short sequences (< 35 terminals) only. The results
indicate that the KDE-SCFG approach outperforms the SCFG parser signifi-
cantly (p > .05 in all pairwise comparisons).

Table 1. Comparison between standard SCFG and KDE-SCFG

Filtering Natural Unique

Measure F-score Exact F-score Exact

SCFG<35 86.4 10.3 84.7 3.1
SCFG 85.8 8.1 84.4 0.5
KDE-SCFG<35 93.3 33.2 94.3 28.6
KDE-SCFG 91.5 26.1 89.6 4.8

5 Conclusions

We introduced a novel solution to the pre-image problem for kernel dependency
estimation using an output feature space associated to the frequency of context
free grammar production rules. We showed that learning their frequency on a
per instance base is an effective way to approximate a specific context sensitive
grammar on a simplified NLP problem significantly outperforming a standard
stochastic context free parser. The key ideas introduced in this (preliminary)
work can in principle be extended to more complex settings: as an example
consider associating the feature space with clauses in a probabilistic inductive
logic programming setting and running logical inference procedures to find an
explanation (proof) for the target concept.
2 http://nlp.cs.nyu.edu/evalb/

Learning Structured Outputs via KDE and SG 135

6 Acknowledgement

This work was in part supported by the APrIL Project under contract no. FP6-
508861. The authors would like to thank Manfred Jaeger from Aalborg University
for useful comments and discussions.

References

1. C. Cortes, M. Mohri, and J. Weston. A General Regression Technique for Learn-
ing Transductions. Proceedings of the 22nd international conference on Machine
learning, pages 153–160, 2005.

2. F. Costa, V. Lombardo, P. Frasconi, and G. Soda. Wide coverage incremental
parsing by learning attachment preferences. In F. Esposito, editor, AI*IA 2001:
Advances in Artificial Intelligence, 7th Congress of the Italian Association for Ar-
tificial Intelligence, volume 2175 of Lecture Notes in Computer Science, pages 297–
307. Springer, 2001.

3. Karim Lari and Steve J. Young. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer Speech and Language, 4:35–56,
1990.

4. C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: a string kernel for svm
protein classification. In Proc. of the Pacific Symposium on Biocomputing, pages
564–575, 2002.

5. P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman & Hall, 1983.
6. P. Sturt, F. Costa, V. Lombardo, and P. Frasconi. Learning first-pass attachment

preferences with dynamic grammars and recursive neural networks. Cognition,
88(2):133–169, 2003.

7. S. Szedmak and J. Shawe-Taylor. Multiclass and Multiview Learning at One-class
Complexity. Technical report, ISIS Group Electronics and Computer Science, 2005.

8. S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez. Learning via Linear Op-
erators: Maximum Margin Regression. Technical report, Pascal Research Reports,
2005.

9. Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and Christopher Manning.
Max-margin parsing. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP
2004, pages 1–8, Barcelona, Spain, July 2004. Association for Computational Lin-
guistics.

10. I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods
for Structured and Interdependent Output Variables. The Journal of Machine
Learning Research, 6:1453–1484, 2005.

11. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

12. A. Vullo and P. Frasconi. A bi-recursive neural network architecture for the predic-
tion of protein coarse contact maps. In 1st IEEE Computer Society Bioinformatics
Conference (CSB’02), pages 187–196, Stanford, CA, 2002.

13. J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel depen-
dency estimation. In NIPS, pages 873–880, 2002.

136 F. Costa et al.

Distance-Based Generalisation Operators for
Graphs ?

Vicent Estruch, César Ferri, José Hernández-Orallo, and Maŕıa José
Ramı́rez-Quintana

DSIC, Univ. Politècnica de València , Camı́ de Vera s/n, 46020 València, Spain.
{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. Distances and similarity functions between structured data-
types, such as graphs, have been widely employed in machine learning
since they are able to identify similar cases or prototypes from which
decisions can be made. In these distance-based methods the justification
of the labelling of a new case a is usually based on expressions such as
“label(a)=label(b) because case a is similar to case b”. However, a more
meaningful pattern, such as “because case a and b have properties x and
y” is usually more difficult to find since the connection of this pattern
with the distance-based method might be inconsistent [4]. In this paper
we study possible consistent generalisation operators for the particular
case of graphs embedded in metric spaces.

1 Introduction

While in some learning problems the data can be described by a single-fixed row
of nomimal or numerical attributes, in most others, such as biomedicine or web
mining, a structured representation language is needed.

In general, for structured-data domains (e.g. graph-based instances), those
properties inherent to the sort of data (e.g. common subgraphs, trees, cycles,
etc.), might be important to achieve a competitive solution. This circumstance
has motivated that some learning techniques which directly deal with struc-
tured data have been developed (multi-relational data mining [3]). Among them,
distance-based methods are really popular for this purpose because several dis-
tance functions can be found for different sorts of data. However, unlike the ILP
approaches, these methods do not give an explanation of their predictions. It
is due to the fact that matches between two objects (e.g. two molecules) are
encoded by a number (their distance). Unfortunately, model comprehensibility
would be useful in some contexts. Imagine, for instance, in molecule classifica-
tion, how interesting it would be to describe a cluster of molecules by saying
what chemical structures these molecules have in common instead of saying that
? This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grant TIN 2004-7943-C04-02, ICT for EU-India Cross-Cultural Dissemination
Project under grant ALA/95/23/2003/077-054, Generalitat Valenciana under grant
GV06/301 and UPV under grant TAMAT.

134 Estruch et. al.

they are closed according to a certain distance measure used in the clustering
process.

Providing the possibility of this kind of descriptions for a distance-based
algorithm would imply to incorporate a pattern language and generalisation
operators [7]. But in this case, the model (expressed in a hopeful comprehensible
pattern language) which generalises a set of elements could be inconsistent with
the distance employed. The idea was initially considered in [4] by introducing the
notion of distance-based binary generalisations. In [5], a more general framework
in order to handle n-ary generalisation operators and to introduce the notion of
minimal distance-based generalisations is presented.

In this paper, we use some of the concepts introduced in [5], to study gen-
eralisation operators and pattern languages for graph-based representations em-
bedded in metric spaces. For this purpose, we consider two graph distance func-
tions: the first one is described in [2, 8], and then we propose a second distance
which is a bit more general. Next, a pattern language for graphs is introduced.
This language is utilised to represent, in a comprehensible way, the generalisa-
tion computed by the generalisation operator. Next, for each metric space, a
distance-based generalisation operator is defined according to our framework.
Studying these generalisation operators will let us know how difficult extracting
consistent patterns can be in each metric space.

2 Preliminaries

In this section we briefly review some basic concepts about graphs and graph
distances. For any concept not explicitly included we refer the reader to [2].

A graph is a 4-tuple G = (V, E, µ, ν) where V is a finite set of vertices, E is
a set of edges (each one denoted as a pair of vertices belonging to V × V), and
µ and ν are functions which assign labels to vertices and edges respectively. The
number of nodes of a graph G = (V, E, µ, ν) is given by |V | and it is denoted as
|VG|. The number of edges of a graph G is given by |E| and is denoted as |EG|.
Given a graph G = (V, R, µ, ν), a subgraph of G is a graph S = (VS , ES , µS , νS)
such that VS ⊆ V , ES ⊆ E ∩ (VS × VS), and µS and νS are the restrictions of
µ and ν to VS and ES respectively, that is µS(v) = µ(v) (res. νS(e) = ν(e)) if
v ∈ VS (res. e ∈ ES) and undefined in otherwise.

A graph G1 is isomorphic to a graph G2 if there is an edge (and label)
preserving bijection between all vertices in G1 and G2. Let G, G1 and G2 be
graphs. G is a common subgraph of G1 and G2 if it is a subgraph of G1 and
G2. A common subgraph G of G1 and G2 is maximal, denoted as mcs(G1, G2),
if there exists no other common subgraph G′ such that G is a subgraph of G′.
A subgraph G1 of a graph G = (V, E, µ, ν) is said to be induced by a set of
vertices W ⊆ V if for any pair of vertices w1 and w2 of W , (w1, w2) is an edge
of G1 if and only if (w1, w2) ∈ E, that is, G1 is isomorphic to G. The concepts
of common subgraph and maximal common subgraph are trivially extended to
subgraphs induced by a set of vertices. We denote a maximal common subgraph
of G1 and G2 induced by a set of vertices as vimcs(G1, G2). That is, vimcs looks

Distance-Based Generalisation Operators for Graphs 135

for a common set of vertices W in G1 and G2 such that W induces the maximal
common subgraph and returns this common graph. Figure 1 illustrates with an
example the above concepts. Note that, in general, there can be more than one
maximal common subgraph induced by a set of vertices.

Fig. 1. G1 is the maximal common subgraph of G1 and G2 whereas the subgraphs
marked with dashed points and lines are the two maximal common subgraphs of G1

and G2 induced by a set of vertices.

We denote as d1 and d2 the distances we are working with. The first one is defined
in terms of the minimal cost mapping transforming one graph into other. It is
shown that d1 can be expressed as d1(G1, G2) = |VG1 |+ |VG2 | − 2|Vvimcs(G1,G2)|
(see [2]). By modifying the definition of cost mapping employed in [2] we have
derived a more general distance d2 which can be calculated as d2(G1, G2) =
|VG1 |+ |VG2 | − 2|Vmcs(G1,G2)|+ |EG1 |+ |EG2 | − 2|Emcs(G1,G2)|.

Regarding the graphs G1 and G2 in Figure 1, we have |VG1 | = |VG2 | = 5,
|EG1 | = 5, |EG2 | = 6, Vmcs(G1,G2) = 5, Emcs(G1,G2) = 5 and Vvimcs(G1,G2) = 4.
Hence, d1(G1, G2) = 2 and d2(G1, G2) = 1.

The computation of both distances in a feasible time might be a difficult task
because the computation of mcs is needed and it is NP -complete. However, we
are not interested in its calculus but we will use them to illustrate that extracting
meaningful patterns in the metric space of graphs (G, d2) is easier than in (G, d1).
The reason is that, as we will see, unlike mcs, the vicms of two graphs is not
unique, and we would have to take all of them into account in order to define a
distance-based generalisation operator in (G, d1).

3 Distance-based generalisation operators

In this section we present the main concepts related to our proposal of a gener-
alisation framework based on distances. For more details see [5].

Our approach aims to define generalisation operators for data embedded in a
metric space (X, d). These operators are denoted as ∆(E), where E is a finite set
of elements (|E| > 2) of X to be generalised. In principle, a generalisation of E
will be a particular set in 2X containing E. But, for the sake of comprehensibility,
the generalisation computed by ∆(E) will be expressed by a pattern p belonging
to a pattern language L. In fact, every pattern p represents a set of elements of
X and it is denoted by Set(p). In this way, we can say that an element x ∈ X is
covered by a pattern p, if x ∈ Set(p).

136 Estruch et. al.

Additionally, if for every E, ∆(E) computes a generalisation of E “explain-
ing” the distances among the elements of E, we will say that ∆ is a distance-based
generalisation operator. Then, the objective will be to find possible distance-
based generalisation operators for the metric space (X, d).

For this purpose, we will focus on a particular kind of metric spaces, the con-
nected ones. Informally speaking, this property means that given two elements
in the metric space, we can always go from one to the other through elements
belonging to the space such that these elements are at a minimal distance. In
order to formally define what a connected space is, we need to introduce the
notion of δ-path and the length of a δ-path.

Given a metric space (X, d), I(X) = inf{d(x, y) : ∀x, y ∈ X, x 6= y} denotes
the infimum distance of X. Let δ be a real positive number such that δ = I(X).
Then, if I(X) > 0, a δ − path is a sequence of elements P = {xi}n>0

i=0 , ∀xi ∈ X,
if d(xi, xi+1) ≤ δ for all 0 ≤ i ≤ n− 1. Informally, if (I(X) = 0), a δ − path is a
continuous finite curve belonging to X. We also need the concept of the length of
a δ-path P which is denoted by L(P). If P = {xi}n>0

i=0 , L(P) =
∑n−1

i=0 d(xi, xi+1).
If P is a curve, L(P) is just the length of the curve.

Let (X, d) be a metric space, two elements x, y ∈ X are connected by a δ-path
or equivalently, are δ-path connected, if there exists a δ-path P = {xi}n>0

i=0 such
that x0 = x and xn = y. Next, we will say that X is a connected metric space,
if for every pair of elements x and y belonging to X, they are δ-path connected
with δ ≥ I(X). From this definition, we can say that a set S ⊆ X is connected,
if for every pair of elements in S they are δ-path connected, being δ = I(X). In
what follows, we will use the term of x-connected space meaning that the metric
space is connected and its I(·) = x.

The notion of connected spaces and sets plays a key role in our approach
since much too specific generalisations can be rejected (see Example 1).

Example 1. Let us suppose we are clustering graphs with the distance d1 defined
in Section 2. Imagine that each graph represents an organic compound and we
would be interested in extracting some patterns saying which kind of molecules
can be found in a cluster. One of the obtained clusters consists of two molecules
m1 and m2 which are depicted in Figure 2.

CH2CH2

CH2

X1

pattern p

CH2CH2

CH2

CH2CH2

CH2

Br

CH2

Cl

CH2

CH2

Bromine−cyclopropane CyclopropaneChlorine−cyclopropane

Fig. 2. The pattern p does not cover the cyclopropane molecule.

Let us obtain a pattern explaining the data distribution in this cluster. For
this purpose, one could think of the pattern p (see Figure 2) saying “all the
molecules with a cyclopropane structure and an extra atom”. But this pattern
might be much too specific. Considering that the molecules are really graphs

Distance-Based Generalisation Operators for Graphs 137

in the space (G, d1), we could think that the pattern p overfits the data since
the cyclopropane molecule, which would be placed “between” 1 m1 and m2,
that is, d1(m1, cyclopropane) = d1(cyclopropane, m2) = 1, is not covered by
this pattern. Perhaps, a more natural pattern would be that one saying “all the
molecules built from cyclopropane”.

The last reasoning can be modelled in terms of connections. We know that
(G, d1) is a 1-connected space [6], and clearly, the set given by Set(p) is not
connected because the elements m1 and m2 are not connected by means of a
1-path included in Set(p). That is, m1 and m2 are, at least, 2-path connected
since d1(m1,m2) = 2. However, Set(“all the molecules built
from cyclopropane”) would be connected.

Finally, in order to define distance-based generalisation operators, the con-
cept of “nerve” of a set of elements E is needed. A nerve of E, denoted by N(E),
is simply a connected2 graph whose nodes are the elements belonging to E. Now,

Definition 1. (Distance-based generalisation operator) Let (X, d) be a
connected metric space and let L be a pattern language. Given a mapping ∆ :
E → p ∈ L, we will say that ∆ is a (proper or hard) distance-based generalisation
operator if, for every E ⊆ X, E ⊂ Set(p), Set(p) is a connected set and there
exists a nerve N(E) such that,

– (proper) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes some I(X)-path P connecting x and y such
that d(x, y) = L(P).

– (hard) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes all I(X)-path P connecting x and y such
that d(x, y) = L(P).

Definition 1 can be difficult to understand. Let us see an example with a
binary sets of elements E = {x, y}. In this case a proper distance-based operator
will be that one computing a generalisation of E which includes some of the paths
built from the elements placed “between” x and y. The generalisation is hard,
if it includes all the paths built from the elements placed “between” of x and y.
In what follows, we will refer to them as proper or hard operators. On the other
hand, independently to the operator, we can say that a pattern generalises E
in a proper or a hard way if Set(p) satisfies the conditions above (for further
details see [5]).

The distinction between proper and hard is due to the fact that hard gener-
alisations explains the distance among the elements better than the proper ones
because it takes into account all the elements “between” two given elements
and not only some of them as proper generalisations do. In fact, in some cases,
proper generalisations do not always have an intuitive interpretation in terms of
the distance involved [5].
1 Formally, given three elements x, y and z belonging to a metric space (X, d), we say

that z is in “between” of x and y if d(x, y) = d(x, z) + d(z, y).
2 Here, the term connected refers to the well-known property for graphs.

138 Estruch et. al.

4 Generalising set of graphs

In this section, we study some distance-based generalisation operators for graphs
embedded in the metric spaces (G, d1) and (G, d2). First, for each metric space
and using the pattern language L that will be defined below, we try to charac-
terise the hard operators. From these hard operators, we will see how complicated
the metric space is in order to compute distance-based patterns.

The pattern language L we are working with is composed of two types of
patterns: the first-kind (L1) and the second-kind (L2) patterns. The so-called
first-kind patterns will be a set of graphs built from an alphabet of labels contain-
ing constant and variable symbols. Regarding the second-kind patterns, these are
expressed in terms of the first ones and they are specially introduced to improve
the expressiveness of (L1).

Definition 2. (First-kind patterns (L1)) Given G the set of all the graphs
over an alphabet of constant symbols A. If X is a set of variable symbols such
that for all Xi ∈ X, Xi represents any constant symbol in A, then the language
of first-kind patterns (L1) is defined as the set of all the graphs over the alphabet
A ∪X.

Roughly speaking, the first-kind pattern is the intensional representation of a
set of graphs sharing a particular topological structure, just as we show in the
following example.

Example 2. Given the first-kind pattern language (L1) defined from the set of
constant symbols A = {a, b} and the set of variable symbols X = {X1, . . . , Xn, . . .},
consider the patterns p1 in Figure 3.

P1 a
X1

2X=

Fig. 3. An example of first-kind pattern.

This pattern represents only those graphs g in G made up of one edge and
two vertices such that one of the vertices is labelled by the symbol a.

Although L1 permits quite interesting patterns, it still possesses some limita-
tions. That is, imagine that we want to denote all the graphs in G having a
subgraph in common. Despite the fact that this request seems usual, there is no
pattern in L1 expressing it. For this reason, the class of the second-kind patterns
is introduced.

Definition 3. (Second-kind patterns L2) Given the language of the the first-
kind patterns L1, the language of the second-kind patterns L2 is defined as, L2 =
{[p] : ∀p ∈ L1} ∪ {>}, where [p] denotes all the graphs g in G having a subgraph
covered by p and > denotes the whole space G.

Example 3. The second-kind pattern p depicted in Figure 4 represents the set
of all the graphs in G containing the path3 a− a− b.

Next, let us define distance-based generalisation operators for (G, d1) and (G, d2).
3 The concept of path referred here, is the well-known concept of path of a graph.

Distance-Based Generalisation Operators for Graphs 139

a a

b

a a

b

e1

a a

ba

e4
a a

b

e2

a a

ba

e3

...=])[=Set(P

Fig. 4. An example of second-kind pattern using the notation [·].

4.1 Generalisation operators for (G, d1)

Before defining a generalisation operator, we have proved that the metric space
(G, d1) is a 1-connected metric space [6]). Now, let us characterise hard gener-
alisation operators in (G, d1) using L. Note that, for every finite set of graphs
{gi}n>2

i=1 in G, an operator ∆({gi}n>2
i=1) will return a pattern belonging either to

L1 or to L2. It can be shown that first-kind patterns do not represent connected
sets (see [6]) and therefore, according to Definition 1 they cannot represent a
set computed by a generalisation operator. Then, the only possibility is that ∆
computes a second-kind pattern. Thus, a hard operator is given by (see [6]):

∆({gi}n>2
i=1) =

{
[p] if conditions (1) and (2) hold
> otherwise.

where conditions (1) and (2) are:
(1) p is a subgraph of the mcs({ri}n

i=1), where mcs({ri}n
i=1) 6= ∅ and each

ri denotes one of the possible vimcs({gi}n
i=1).

(2) there exists a nerve N({gi}n
i=1) such that for every pair of graphs, gi and

gj , directly linked in the nerve N , all the possible vimcs(gi, gj) are included in
{ri}n

i=1.
As we can appreciate, the above conditions are extremely restrictive. For

instance, regarding the two graphs depicted in the Figure 1, the pattern [a− b]
generalises G1 and G2 since they have the edge a − b in common. However,
this pattern is not hard because the common squared subgraph is an element
“between” G1 and G2 but it is not covered by the pattern. In fact, p does not
satisfy condition (1) since [a−b] is not a common subgraph of the vicms(G1, G2).
This fact gives us an idea about how difficult is computing hard operators in
this space. Imaging an algorithm implementing ∆, this would have to check if
a subgraph of a set of graphs G is in its turn a subgraph of the vicms(G).
According to this observation, the algorithms in the literature approaching the
maximum common subgraph among a set of graphs [1] cannot be used as an
implementation of ∆ because it can not be ensured that the returned subgraph
belongs to the intersection of the vicms.

4.2 Generalisation operators for (G, d2)

The metric space (G, d2) is 1-connected as well [6]. One of the advantages of
working with this metric space is that hard generalisation operators can be
characterised in a more natural way using L. Doing a similar analysis that in
the previous subsection, hard operators can be defined in (G, d2) as (see [6]):

∆({gi}n>2
i=1) =

{
[p] if p is a subgraph of the mcs({gi}n≥2

i=1)
> otherwise.

140 Estruch et. al.

Unlike the space (G, d1), the hard operators can be defined easier and imple-
mented by using one of the several algorithms in the literature for searching
common subgraphs among a set of graphs since now ∆ directly uses the mcs of
the set of graphs instead of the vicms of the set of graphs. Any subgraph returned
by these algorithms can be perfectly used to define a hard generalisation.

5 Conclusions

Graph based learning is a challenging field due to the growing interest shown by
several disciplines in mining data represented by means of graphs. However, most
of the algorithms dealing with graphs, specially distance-based, do not return a
model using graph features (e.x. common paths, walks, etc.) explaining why a
sample has been labelled or grouped in one way. Although this kind of models
is useful from a comprehensibility point of view, obtaining them could lead to
inconsistency problems with the distance employed. In this work, we use some
of the concepts of [5] to analyse which consistent models can be obtained when
graphs are embedded in metric spaces.

References

1. E. Bengoetxea. Inexact graph matching using estimation of distribution algorithms,
PhD thesis, 2003.

2. H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, 18(8):689–694, 1997.

3. S. Dzeroski and N. Lavrac, editors. Relational Data Mining. 2001.
4. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Distance

based generalisation. In Proc. of the ILP, pages 87–102, 2005.
5. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. On the

relationship between distance and generalisation. Technical report, DSIC,UPV,
2006.

6. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Some
results about generalisations of graphs embedded in metric spaces. Technical report,
DSIC,UPV, 2006.

7. A. Hotho and G. Stume. Conceptual clustering of text clusters. In Proc. of the WS
on Frachgruppentreffen Maschinelles Lernen, FGML, pages 37–45, 2002.

8. A. Robles-Kelly and E.R. Hancock. Graph edit distance from spectral seriation.
IEEE Trans. Pattern Anal. Mach. Intell., 27(3):365–378, 2005.

Conditional Random Fields for XML Trees

Florent Jousse1, Rémi Gilleron2, Isabelle Tellier2, and Marc Tommasi2

INRIA Futurs and Lille University, LIFL, Mostrare Project
http://www.grappa.univ-lille3.fr/mostrare

1jousse@grappa.univ-lille3.fr, 2first.last@univ-lille3.fr

Abstract. We present xml Conditional Random Fields (xcrfs), a frame-
work for building conditional models to label xml data. xcrfs are Con-
ditional Random Fields over unranked trees (where every node has an
unbounded number of children). The maximal cliques of the graph are
triangles consisting of a node and two adjacent children. We equip xcrfs
with efficient dynamic programming algorithms for inference and param-
eter estimation. We experiment xcrfs on tree labeling tasks for struc-
tured information extraction and schema matching. Experimental results
show that labeling with xcrfs is suitable for these problems.

1 Introduction

We address the task of labeling xml documents with Conditional Random Fields
(crfs). Many different problems in information science, such as information
extraction, data integration, data matching and schema matching, are performed
on xml documents and can be dealt with using xml labeling.

Lafferty et al have introduced crfs in [4]. A crf represents a conditional
distribution p(y|x) with an associated graphical structure. crfs have been suc-
cessfully used in many sequence labeling tasks such as those arising in part-
of-speech tagging [11], shallow parsing [10], named entity recognition [5] and
information extraction [6, 8]; for an overview, see Sutton and McCallum’s sur-
vey [9]. The idea of defining crfs for tree structured data has shown up only
recently. Basically, the propositions differ in the graphical structure associated
with the crfs. In [7], the output variables are independent. Other approaches
such as [2, 12] define the graphical structure on rules of context-free or catego-
rial grammars. Viola and Narasimhan in [14] consider discriminative context-free
grammars, trying to combine the advantages of nongenerative approaches (such
as crfs) and the readability of generative ones. All these approaches apply to
ranked rather than unranked trees. As far as we know, their graphical models
are limited to edges.

We develop xcrfs, a new instance of crfs that properly accounts for the
inherent tree structure of xml documents. In an xml document, every node
has an unlimited number of ordered children, and a possibly unbounded number
of unordered attributes. The graphical structure for xcrfs is defined by: for
ordered (parts of the) trees, the maximal cliques of the graph are all triangles

142 Jousse et al

consisting of a node and two adjacent children; for unordered (parts of the) trees,
the maximal cliques are edges consisting of a node and one child.

We define efficient dynamic programming algorithms for the inference prob-
lem and the parameter estimation problem in xcrfs. Because of the unranked
property of xml trees, algorithms for xcrfs implement two recursions: an hor-
izontal recursion following the child ordering and a vertical recursion following
the sibling ordering.

We have implemented xcrfs in a system for labeling xml trees (treecrf.
gforge.inria.fr). The system allows to label elements, attributes and text
nodes of xml trees. In a first set of experiments, we show that attribute features
and triangle features significantly improve the performance of xcrfs in xml tree
labeling tasks. To the best of our knowledge, no alternative system for labeling
trees exists, because so far only ad hoc solutions have been used. Nevertheless,
in a second set of experiments, we have applied xcrfs on xml tree labeling
tasks for schema matching and structured information extraction. For instance,
for schema matching on the real estate domain, we show that the xcrf system
performs really well although it does not use domain constraints or integrity
constraints like the lsd system [3].

2 Conditional Random Fields

We refer to [9] for a complete introduction to crfs. A crf is a conditional
distribution with an associated graphical structure. Let X and Y be two random
fields, let G be an undirected graph over Y . Let C be the set of all cliques of G.
The conditional probability distribution is of the form:

p(y|x) =
1

Z(x)

∏

c∈C

ψc(yc,x)

where ψc is the potential function of the clique c and Z(x) is a normalization
factor. Each potential function has the form:

ψc(yc,x) = exp
(

∑

k

λkfk(yc,x, c)
)

for some real-valued parameter vector Λ = {λk}, and for some set of real-valued
feature functions {fk}. This form ensures that the family of distributions param-
eterized by Λ is an exponential family. The feature function values only depend
on yc, i.e. the assignments of the random variables in the clique c, and the whole
observable x. The two main problems that arise for crfs are:

Inference: given an observable x, find the most likely labeling ŷ for x, i.e.

compute ŷ = argmax
y
p(y|x).

Training: given a sample set S of pairs {(x(i),y(i))}, learn the best real-valued
parameter vector Λ according to some criteria. In this paper, the criterion
for training is the maximum conditional penalized log-likelihood.

Conditional Random Fields for XML Trees 143

table

tr

td td

tr

td td td @class

account

client

name address

product

name price number id

Yǫ

Y1

Y1.1 Y1.2

Y2

Y2.1 Y2.2 Y2.3 Y2.4

Fig. 1. An ordered unranked tree, its labeling and its graph.

3 CRFs for XML Trees

xml documents are represented by their dom tree. We only consider element
nodes, attribute nodes and text nodes of the dom representation. Other types
of nodes1 are not concerned by labeling tasks. Attribute nodes are unordered,
while element nodes and text nodes are ordered. We identify a node by a po-
sition which is a sequence of integers n and we denote by xn the symbol in
position n in the tree x. The k ordered children of a node in position n are iden-
tified by positions n.1 to n.k. The unordered children are identified by positions
n.(k + 1) and higher. As a running example, consider the two xml trees x (on
the left) and y (on the right) in Figure 1. The set of nodes for both trees is
{ǫ, 1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, 2.4}, ǫ being the root. The symbol in position 2.1 in
x is td; in its labeling y, the label in position 2.1 is name. {2.1, 2.2, 2.3, 2.4} is
the set of children of 2, where 2.1, 2.2 and 2.3 are ordered children and 2.4 is an
unordered child of 2.

With every set of nodes, we associate a random field X of observable variables
Xn and a random field Y of output variables Yn where n is a position. The
realizations of Xn will be the symbols of the input trees, and the realizations
of Yn will be the labels of their labelings. In the following, we freely identify
realizations of these random fields with ordered unranked trees.

For their ordered parts, the structure of xml trees is governed by the sibling
and the child orderings. We translate this structural property into xcrfs, by
defining triangle feature functions that have the form:

fk

(

yn, yn.i, yn.(i+1),x, n.i
)

. (3.1)

Their arguments are the labels assigned to the node n and to two consecutive
children of it (n.i and n.(i+1)), the whole observable x, and the identifier of the
clique in the tree n.i. For unordered parts of xml trees there is no next-sibling
ordering, feature functions are thus only defined over nodes (node features) and
pairs of nodes (edge features).

In Figure 1 (bottom), we show the graph for our running example. We denote
by C the set of cliques in the dependency graph. We use fk to index every

1 comments, processing instructions...

144 Jousse et al

feature function. To shorten the presentation, node, edge and triangle feature
are all written like in (3.1). Each fk is associated with a real-valued parameter
λk, defining the vector Λ = {λk}. It is worth pointing out that the same set of
feature functions with the same parameters is used for every clique in the graph.
The conditional probability distribution for an xcrf can be written as:

p(y|x) =
1

Z(x)

∏

n.i∈C

exp
(

∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i)
)

where Z(x) =
∑

y

(

∏

n.i∈C

exp
(

∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i)
)

)

Inference xcrfs are a particular case of graphical models. The treewidth of
undirected graphs for xcrfs is 2. For every graph associated with an xcrf, a
junction tree can be computed in linear time. Then the belief propagation algo-
rithm can be applied [13, 11]. However using the knowledge of the tree-shaped
graphical structures associated with xcrfs, we propose a dynamic program-
ming algorithm for inference in xcrfs. The algorithm is based on the dynamic
programming algorithm for probabilistic context-free grammars but introduces
another set of variables due to the possibily large number of children.

Training Training an xcrf means learning its parameter vector Λ. We are
given iid training data S of pairs of the form (observable tree, labeled tree).
Parameter estimation is performed by penalized maximum likelihood. The con-
ditional log-likelihood, defined as LΛ =

∑

(x,y)∈S log p(y|x;Λ), is used. This
function is concave and the global optimum is the vector of parameters with
which the first derivative is null. However, finding analytically this derivative
with respect to all the model parameters is impossible. The L-BFGS gradient
ascent [1], which requires the computation of the partial derivatives of LΛ for
each parameter, is therefore used. To make these computations tractable, we
introduce a dynamic programming algorithm using both forward-backward vari-
ables and inside-outside variables.

Z(x) can be computed in O(N ×M3) where N is the number of nodes of
x and M is the number of distinct labels in Y. This result can be extended to
the computation of the marginal probabilities in the gradient. This leads to an
overall complexity for training in O(N ×M3 ×G) where N is the total number
of nodes of the trees in the input sample S, M is the number of distinct labels
in Y, and G is the number of gradient steps. For linear chain crfs only a factor
M2 occurs.

Conditional Random Fields for XML Trees 145

4 Experiments with the XCRF System

4.1 The XCRF System

The xcrf model is implemented by a freely available JAVA library2. For training,
the parameters are estimated by maximizing the penalized log-likelihood. This
implementation is a stochastic system which allows to label element, attribute
and text nodes of xml trees. It provides the ability to not label some nodes
by assigning them a label which means “not labeled”. Labeling a medium-sized
(about 1000 nodes) xml tree with an xcrf built on 100 features is almost
immediate. An xcrf is specified by an xml file. Feature functions are 0-1 valued
functions defined by xpath expressions. There are node features, edge features,
attribute features (edge features for unordered children) and triangle features.

4.2 Feature Generation

Users can easily introduce domain knowledge via the definition of feature func-
tions in xcrfs. But to be fair, in all our experiments, feature functions are
automatically generated from the training set, using a syntactic and domain-
independent procedure. Structure features are node features, edge features
and triangle features which are based on node symbols and labels. For instance,
let 1p be 1 if and only if p is true. Consider a tree x = tr(td, td) and its
labeling y = 0(1, 2). The triangle feature f(yn, yn.i, yn.(i+1),x, n.i) = 1{yn=0}

1{yn.i=1} 1{yn.(i+1)=2} 1{xn=tr} 1{xn.i=td} 1{xn.(i+1)=td} is generated together with
two edge features and three node features. Attribute features are based on
attribute values. We also preprocess documents: additional information on the
structure (number of children, depth, etc.) or on the textual content of a leaf
(ContainsComma, ContainsColon, IsANumber, etc) are encoded into attributes.
Attribute features are therefore generated from both original and preprocessed
attributes. Consider a node n of x which is labeled with 0 and has an at-
tribute a at position i whose value is 2 labeled with 1. An attribute feature
f(yn, yn.i,x, n.i) = 1{yn=0} 1{yn.i=1} 1{xn.i=2} is generated.

4.3 Interest of Triangle Features

We first want to experimentally evaluate the significance of the triangle features,
and to show that learning is successful with small datasets.

To evaluate our system we provide recall, precision and F1-measure over the
number of nodes. Precision and recall are the ratio of the number of correctly
labeled nodes to respectively the total number of labeled nodes and the total
number of nodes which had to be labeled. Using a simple accuracy measure
would take into account the nodes which are not labeled. The results would
therefore be biased.
Triangle features. The “Courses” dataset4 collected by Doan consists of 960
xml documents of about 20 nodes each, containing course information from five

2 http://treecrf.gforge.inria.fr/

146 Jousse et al

Features F1 %docs

Edge 52.19 0
Edge & Attribute 84.91 26.51

Triangle 93.62 62.24
Triangle & Attribute 99.84 98.93

Nb Docs F1 %docs

5 82.15 50.97
10 91.34 69.14
20 96.65 82
50 98.77 93.82

Table 1. Left: Triangle features versus edge features. Right: Varying the size of the
training set

universities. All xml tags are removed and replaced with a unique and therefore
uninformative one. The task consists in relabeling the xml documents with the
original 14 distinct tags. We train xcrfs with node and edge structure features
then with node, edge and triangle features. In both cases, we also train the xcrfs
with or without attribute features. Results of Table 1 are means of 5 iterations in
which xcrfs are trained on one fifth of the corpus and evaluated on the other 4
fifths. They show the F1-measure on document nodes and the percentage of xml

documents that were completely correctly labeled. They confirm the relevance
of triangle features. Indeed, results are far better with triangle features than
when attribute features (containing also structural information) are added to
edge features. Labeling is almost perfect with triangle and attribute features.
Number of examples. We consider the same task using structure features and
attribute features. This time, we want to evaluate the impact of the number of
examples in the learning set. Experimental results in Table 1 show that with
only 20 documents for learning (192 in the previous experiment), the system
already achieves more than 96% in F1-measure. When using more documents,
the performances still rise, but very slowly. It is also interesting to note that
when the xcrf has about 300 feature functions, the labeling of these documents
is still immediate.

4.4 Experiments on Applicative Domains

Now, we apply our tree-labeling learning system to two applicative domains.
The first one is structured information extraction, the second one is schema
matching, both considered as a labeling task.

film

title date directors

director director . . .

actors

actor actor . . .

Structured Information Ex-

traction. For this experiment,
we take 558 xml documents
from the MovieDB corpus used
for the xml Document Mining Challenge5. The average number of nodes in these
documents is 170. The task is to extract data according to the target dtd shown
on the right. This purpose can be achieved by labeling the input xml documents
according to this dtd. Note that two nodes with the same input tag might be
labeled with different output tags, depending on the context. For instance, the
tag name can be labeled either by actor or by director. To evaluate the xcrf

4 http://anhai.cs.uiuc.edu/archive

Conditional Random Fields for XML Trees 147

Nb docs Recall Precision F1 % docs

5 100 97.91 98.94 71.32
10 100 99.55 99.77 89.84
20 100 99.99 99.99 99.63

Table 2. Results on MovieDB Structured IE.

system on this task, we run 10 experiments, each time randomly choosing 5, 10 or
20 labeled documents on which an xcrf is trained and tested on the remaining
documents. The results, very promising, are provided in Table 2.
Schema Matching. For the problem of schema matching, we evaluate xcrfs
on the “Real Estate I” dataset4, collected by Doan. This corpus, built from
five real estate websites, describes house listing information and contains about
10000 documents of about 35 nodes each. Each of the five sources has its own
schema. A unique mediated schema with 16 tags is also known. The task thus
consists in labeling the nodes of the documents in their source schema with their
corresponding tag in the mediated schema. As in [3], for every experiment, it is
supposed that mappings are known for three sources out of the five ones and that
documents labeled according to the mediated schema are the training set. We run
20 experiments, each time choosing at random 3 sources with which an xcrf

with structure and attribute features is learnt. We took 5 labeled documents
from each source. All the documents from the remaining 2 sources are used to
evaluate the xcrf. The system achieved an excellent recall of 99%, and 88%
of F1-measure. Unfortunately, these results can not be compared to the ones
achieved by the lsd system given in [3]. Indeed, [3] measure the ratio of correct
mappings between a tag in the source schema and its corresponding tag in the
mediated schema. Since we are using a conditional model to label tree nodes, the
same tag in the source schema can be mapped to different tags in the mediated
schema depending on the context. Therefore, we can not provide this measure.
However, it is still worth noting that we achieve very good results without using
the domain knowledge, such as domain constraints or integrity constraints, that
was used in the lsd system.

5 Conclusion

We have shown that xcrfs are a very relevant model for labeling xml trees.
Experimental results show the significance of attribute and triangle features.
Also, preliminary experimental results show that xcrfs perform very well on
tasks such as structured information extraction or schema matching. Various
extensions are being considered.

First, when labeling an xml tree, one can be interested in labeling inside the
text nodes, i.e. assigning different labels to different parts of text. To do so, the
use of both the tree structure and the text sequence is needed. Thus, combining

5 http://xmlmining.lip6.fr/Corpus

148 Jousse et al

linear chain crfs and xcrfs could be a good way of taking advantage of both
the structured and the linear view of xml documents.

Second, in the xcrf system, parameter estimation is done by maximizing
the conditional probability p(y|x), meaning we try to maximize the number of
completely correctly labeled xml documents. Sometimes, for instance in schema
matching, one might instead prefer to maximize the number of correctly labeled
nodes. To do so, another criterion for learning could be the maximum pseudo-
likelihood, which consists in maximizing the marginal probabilities p(yn|x).

References

1. Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-
ory algorithm for bound constrained optimization. SIAM Journal on Computing,
16(5):1190–1208, 1995.

2. Stephen Clark and James R. Curran. Parsing the WSJ using CCG and log-linear
models. In Proc. of ACL, pages 103–110, 2004.

3. AhHai Doan, Pedro Domingos, and Alon Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In Proc. of the ACM SIGMOD Con-

ference, pages 509–520, 2001.
4. John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data. In
Proc. of ICML, pages 282–289, 2001.

5. A. McCallum and W. Li. Early results for named entity recognition with condi-
tional random fields. In Proc. of CoNLL’2003, 2003.

6. David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction
using conditional random fields. In Proc. of the ACM SIGIR, pages 235–242, 2003.

7. S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell, and M. Johnson. Pars-
ing the wall street journal using a lexical-functional grammar and discriminative
estimation techniques. In Proc. of ACL, pages 271–278, 2002.

8. Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields
for information extraction. In Proc. of NIPS, pages 1185–1192, 2004.

9. Charles Sutton and Andrew McCallum. Introduction to Statistical Relational

Learning, chapter An Introduction to Conditional Random Fields for Relational
Learning. MIT Press, lise getoor and ben taskar edition, 2006.

10. Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In
Proc. of HLT-NAACL, pages 213–220, 2003.

11. Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum. Dynamic con-
ditional random fields: Factorized probabilistic models for labeling and segmenting
sequence data. In Proc. of ICML, pages 783–790, 2004.

12. Charles Sutton. Conditional probabilistic context-free grammars. Master’s thesis,
University of Massachusetts, 2004.

13. Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models
for relational data. In Proc. of UAI02, pages 485–492, 2002.

14. Paul Viola and Mukund Narasimhan. Learning to extract information from
semistructured text using a discriminative context free grammar. In Proc. of the

ACM SIGIR, pages 330–337, 2005.
15. Hanna Wallach. Efficient training of conditional random fields. Master’s thesis,

University of Edinburgh, 2002.

Relational Sequence Alignment

Andreas Karwath and Kristian Kersting

University of Freiburg, Institute for Computer Science, Machine Learning Lab
Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany

{karwath,kersting}@informatik.uni-freiburg.de

Abstract. The need to measure sequence similarity arises in informa-
tion extraction, music mining, biological sequence analysis, and other
domains, and often coincides with sequence alignment: the more similar
two sequences are, the better they can be aligned. Aligning sequences
not only shows how similar sequences are, it also shows where there are
differences and correspondences between the sequences.
Traditionally, the alignment has been considered for sequences of flat
symbols only. Many real world sequences such as protein secondary struc-
tures, however, exhibit a rich internal structures. This is akin to the
problem of dealing with structured examples studied in the field of in-
ductive logic programming (ILP). In this paper, we propose to use well-
established ILP distance measures within alignment methods. Although
straight-forward, our initial experimental results show that this approach
performs well in practice and is worth to be explored.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, user modeling, speech recognition, empirical natural lan-
guage processing, activity recognition, information extractions, etc. Therefore,
it is not surprising that sequential data has been the subject of active research
for decades. One of the many tasks investigated is that of sequence alignment.
Informally speaking, a sequence alignment is a way of arranging sequences to
emphasize their regions of similarity. Sequence alignments are employed in a va-
riety of domains: in bioinformatics they are for instance used to identify similar
DNA sequence, to produce phylogenetic trees, and to develop homology models
of protein structures; in empirical language processing, they are for instance used
for automatically summarizing, paraphrasing, and translating texts.

Most of the alignment approaches assume sequences of flat symbols. Many
sequences occurring in real-world problems such as in computational biology,
planning, and user modeling, however, exhibit internal structure. The elements
of such sequences can be seen as atoms in a relational logic. The application of
traditional alignment algorithms to such sequences requires one to either ignore
the structure of the atoms, which results in a loss of information, or to take all
possible combinations of arguments into account, which leads to a combinatorial
explosion in the number of parameters.

150 Andreas Karwath and Kristian Kersting

The main contribution of the present paper is a general approach to align re-
lational sequences, i.e., sequences of ground atoms. In particular, we propose to
use well-established ILP distance measures within traditional alignment meth-
ods. Although straight-forward, our preliminary experimental results show that
this approach performs well in practice and is worth to be explored.

We proceed as follows. After briefly reviewing alignment algorithms in Sec-
tion 2, we discuss relational sequences and relational distance measures in Sec-
tion 3. Before concluding, we present experimental results.

2 Sequence Alignment Algorithms

Alignment plays a major role in analyzing biological sequences. Consider e.g. the
protein fold recognition problem, which is concerned with how proteins fold in
nature, i.e., their three-dimensional structures. This is an important problem as
the biological functions of proteins depend on the way they fold. Given a sequence
of an unknown protein (query sequence) all approaches work in principle in a
similar fashion: they scan an existing database of amino acids sequences (from
more or less known proteins) and extract the most similar ones with regard to
the query sequence. The result is usually a list, ordered by some score, with
the best hits at the top of this list. The common approach for biologists, is to
investigate these top scoring alignments or hits to conclude about the function,
shape, or other features of query sequence.

One of the earliest alignment algorithm is that for global alignment by
Needleman and Wunsch in 1970 [15]. The algorithm is based on dynamic pro-
gramming, and finds the alignment of two sequences with the maximal overall
similarity w.r.t. a given pairwise similarity model. In the biological domain, this
similarity model is typically represented by pair-wise similarity or dissimilarity
scores of pairs of amino acids. These scores are commonly specified by using a
so-called similarity matrix, like the PAM [3] or BLOSUM [6] families of sub-
stitution matrices. The scores, or costs, associated with a match or mismatch
between two amino acids, reflect to some extent the probability that this change
in amino acids might have occurred over time of evolution.

More precisely, the Needleman-Wunsch algorithm proceeds as follows: ini-
tially, for two sequences of length m and n, a matrix with m + 1 columns and
n + 1 rows is created. The matrix then is filled with the maximum score as
follows:

Mi,j = max

Mi−1,j−1 + Si,j : a match or mismatch
Mi,j−1 + w : a gap in the first sequence
Mi−1,j + w : gap in the second sequence

(1)

where Si,j is pairwise similarity of amino acids and w reflects a linear gap (insert
step) penalty. The overall score of the alignment can be found in cell Mm,n.

To calculate the best local alignment of two sequences, one often employs
the Smith-Waterman local alignment algorithm [19]. The main difference in this

Relational Sequence Alignment 151

algorithm when compared to the Needleman-Wunsch algorithm, is that all nega-
tive scores are set to 0. When visualizing the resulting alignment matrix, strands
of non negative numbers correspond to a good local alignment. For both algo-
rithms versions using affine gaps costs exist, i.e. one employs different kind of
gap costs for opening a gap or for extending one. To discourage the splitting of
connected regions due the enforcement of a gap in the middle of the alignment,
commonly extra gaps are allowed to be inserted at the end and at the beginning
at either no additional costs or relatively low costs (padding costs).

In general, the alignments resulting from an global or local alignment, show
then the more conserved regions between two sequences. To enhance the de-
tection of these conserved regions, commonly multiple sequence alignments are
constructed. Given a number of sequences belonging to the same class, i.e. in
biological terms believed to belong to the same family, fold, or are otherwise
somehow related, alignments are constructed aligning all sequences in one sin-
gle alignment, a so-called profile. A common approach for the construction of a
multiple alignment is a three step approach: First, all pairwise alignments are
constructed. Second, using this information as starting point a phylogenetic tree
is created as guiding tree. Third, using this tree, sequences are joined consecu-
tively into one single alignment according to their similarity. This approach is
known as the neighbour joining approach [18].

A good overview of alignment algorithms, including construction of multiple
alignments and the generation of phylogenetic trees, can be found in Durbin et
al. [4].

3 Alignment of Sequences of Relational Objects

The alignment algorithms discussed in the previous section assume a given sim-
ilarity measure Si,j . Typically, this similarity measure is flat because the consid-
ered sequences consist of flat symbols. Many sequences occurring in real-world
problems such as in computational biology, planning, and user modeling, how-
ever, exhibit internal structure. The elements of such sequences can elegantly be
represented as objects in a relational logic (see e.g. [13] for an introduction to
logic). For example, the secondary structure of the Ribosomal protein L4 can be
represented as

st(null, short), he(h(right, alpha), long), st(plus, short), . . . ,

representing helices of a certain type and length, he(HelixType,Length), and
strands of a certain orientation and length, st(Orientation,Length). The sym-
bols st, null, short, he, h, . . . have an associated arity, i.e., number of argu-
ments such as st/2, he/2, and h/2 having arity 2, and plus/0, 1/0, . . . having
arity 0. A structured term is a placeholder or a symbol followed by its argu-
ments in brackets such as h(right, X), medium, and he(h(right, X), medium). A
ground term is one that does not contain any variables such as st(null, short),
he(h(right, alpha), long),

152 Andreas Karwath and Kristian Kersting

Relational sequence alignment simply denotes the alignment of sequences
of such structured terms. More precisely, let x = x1, . . . , xn, n > 0, and y =
y1, . . . , ym, m > 0, two sequences of logical objects and d(i, j) a similarity mea-
sure indicating the score of aligning object xi with object yj . Then, the global
alignment problem seeks to find the match with highest score of both sequences in
their entirety. The local alignment problem seeks to find the subsequence match
with highest score.

Indeed, the only required task needed is to define the similarity measure Si,j

in Equation (1). We propose to use one of the many distance measures developed
within ILP [14]. As en example, consider one of the most basic measures proposed
by Nienhuys-Cheng [16]. It treats ground structured terms as hierarchies, where
the top structure is most important and the deeper, nested sub-structures are less
important. Let S denote the set of all symbols, then Nienhuys-Cheng distance
d is inductively defined as follows:

∀c/0 ∈ S d(c, c) = 1
∀p/n, q/m ∈ S : p/n 6= q/m d(p(t1, . . . , tn), q(s1, . . . , sm)) = 0
∀p/n ∈ S d(p(t1, . . . , tn), p(s1, . . . , sn)) = 1

2n

∑n
i=1 d(ti, si)

To solve the corresponding relational alignment problem, we simply set Si,j =
1−d(xi, yi) in Equation (1). For sequences of more complex logical objects such
as interpretations and queries, a different, appropriate similarity function has to
be chosen. We refer to Jan Ramon’s PhD Thesis [17] for a nice review of them.

4 Preliminary Experiments

Our intention here is to investigate to which extent relational sequence alignment
is useful in real-world data sets. More precisely, we investigated the following
two questions: (Q1) Does the Nienhuys-Cheng measure provide better and more
interesting alignments of sequences than a propositional one? (Q2) Is it possible
to use relational sequence alignment for prediction purposes? To this aim, we
implemented the alignment method and the Nienhuys-Cheng distance measure in
Python. In the following, we will describe some preliminary experiments carried
out to investigate Q1 and Q2 and present their results.

4.1 Alignment of Protein Sequences

Here, we considered as real-world application the same data set as by Gutmann
and Kersting [5], representing the five most populated folds in the SCOP class
Alpha and beta proteins (a/b). The examples are sequences of secondary struc-
ture elements of proteins which are similar in their three dimensional shape, but
in general do not share a common ancestor (i.e. are not homologous). We have
performed the experiments on the complete set of example proteins, as well as
on a subset of proteins which do not share more than 40 per cent amino acid se-
quence identity (cut 40). This subset was generated using the ASTRAL database
for the SCOP version 1.63 1. Overall, there are 2082 example sequences.
1 http://astral.berkeley.edu/scopseq-1.63.html

Relational Sequence Alignment 153

Seq4 - - he r a m st n m he r a m he r a m st p s he r a s he r a l st p l
Seq3 he r a l he r 3 s he r a l st n s he r a s he r a m st p s he r a l st p s he r a s
Seq2 he r 3 s st n s he r a m st n m - - - - - -
Seq1 st n m st p m he r a l - st p m he r a m st p s he r a m st p s he r a s

(a) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(b) ∗ ∗ he(r,a,∗) ∗ ∗ ∗ ∗ ∗ ∗ ∗

Seq4 - - he(r,a,m) st(n,m) he(r,a,m) he(r,a,m) st(p,s) he(r,a,s) - -
Seq3 he(r,a,l) he(r,3,s) he(r,a,l) st(n,s) he(r,a,s) he(r,a,m) st(p,s) he(r,a,l) st(p,s) he(r,a,s)
Seq2 he(r,3,s) st(n,s) he(r,a,m) st(n,m) he(r,3,s) he(r,a,l) st(p,m) he(r,a,l) - -
Seq1 st(n,m) st(p,m) he(r,a,l) st(p,m) - he(r,a,m) st(p,s) he(r,a,m) st(p,s) -

(c) ∗ ∗ he(r,a,∗) st(∗,∗) ∗ he(r,a,∗) st(p,∗) he(r,a,∗) ∗ ∗

Table 1. An alignment of four sequences using (a) the flat, (b) the back-
translated flat, and (c) the relational approach. All symbols are abbreviated
and the original alignment is truncated. The relational approach captures the
conserved region much better than the flat ones as shown by the lgg-consensus
sequences denoted in bold.

To answer question Q1 we aligned sequences from one fold into a multi-
ple alignment. Here we used the global alignment algorithm Needleman-Wunsch
with affine gap penalties and seek to find conserved regions, i.e. subsequences
in the multiple alignment, which express close similarity over all examples. The
question of finding the appropriate gap costs in computational Biology is com-
monly answered by a trial and error approach. Here, we have solely concentrated
on global alignments with affine gap costs using low padding costs. We have ar-
bitrarily chosen the following gap costs: gap opening cost 1.5, gap extention cost
0.5, and padding cost 0.25.

To visualize the conserved regions, we have extracted the consensus sequence
in form of the lgg (least general generalization) of all atoms in each particular
position in the multiple alignment. An example of such a multiple alignment and
the consensus sequence can be found in Table 4.1 (c). Clearly, the consensus
sequence reflects a conserved region of the four sequences.

The complete alignment possessed two conserved regions with a number
of mismatches and gaps between. These conserved regions were not discov-
ered when treating the sequence propositionally, i.e., each structured symbol
st(null, short) is treated as a flat symbol st null short. In this case, using
the Nienhuys-Cheng distance, only exact matches and pure mismatches are pos-
sible. Because none of the aligned flat symbols matches exactly, the resulting
consensus sequence consist only of variables ∗, cf. Table 4.1 (a). Even, when
treating each of the aligned flat symbols as structured symbols again, the lgg
consensus sequence does reveal much information, cf. Table 4.1 (b). This affir-
matively answers Q1.

The more informative consensus sequences, however, come at an expense:
even apparent unrelated sequences get higher similarity scores. For instance,
in our data set, we found sequences from different folds, where the relational
alignment score is 4.75 times higher than the flat one. This could explain the

154 Andreas Karwath and Kristian Kersting

slightly lower predictive accuracy of the relational approach: a 10-fold cross-
validated nearest neighbour classification (k=7) yielded 90.17% accuracy for the
relational and 93.86% accuracy for the flat alignment approach for the complete
dataset.

In any case, the predictive performances themselves are interesting. They are
comparable to more sophisticated statistical relational learning results on similar
data: LoHHMs 74.0% [8], Fisher kernels 84% [9], CRFs 92.96% [5]. This tends
to affirmatively answer Q2.

For the cut 40 subset, i.e. proteins in the five most populated classes not
sharing more than 40 % amino acid sequence identity, the predictive performance
decreases substantially for both representations: for the flat representation to
74.33 % and for the relational to 68.01 %. The reason for the decrease are
obviously in the missing of close homologues in the cut 40 subset.

4.2 Alignment of Natural Language Sentences

Automatically paraphrasing sentences is of great practical importance for text-
to-text NLP systems. Applications include text summarization and translation.
For this task, Barzilay and Lee [1] proposed to use multiple (propositional)
sequence alignment within clusters of similar sentences. Consider the following
five sentences adapted from the example given by Barzilay and Lee:

1. A purple latex balloon blew himself up in a southern city Wednes-
day, bursting two other balloons and deforming 27.

2. A latex balloon blew himself up in the area of Freiburg, on Sunday,
bursting itself and disfiguring seven balloons.

3. A latex balloon blew himself up in the coastal resort of Cuxhaven,
bursting three other balloons and deforming dozens more.

4. A purple latex balloon blew himself up in a garden cafe on Saturday,
bursting 10 balloons and deforming 54.

5. A latex balloon blew himself up in the centre of Berlin on Sunday,
bursting three balloons as well as itself and disfiguring 40.

The underlined sub-structures show the conserved regions computed by a propo-
sitional sequence alignment using the same gap costs as in the protein exper-
iment; the bold parts denote the conserved regions of the relational sequence
alignment; and italic parts denote the use of lggs. The relational representation
allows to encode additional information for each sentences. In particular, we used
Brill’s rule-based part of speech tagger, cf. [2], which is one of the most widely
used tools for assigning parts of speech to words, to annotate each word with its
part of speech tag. This yielded sequences such as

dt(a), jj(purple), nn(latex), nn(balloon), vbd(blew), prp(himself), in(up),
in(in), dt(a), jj(southern), nn(city), nnp(wednesday), comma, vbg(bursting),

cd(two), jj(other), nns(balloons), cc(and), vbg(deforming), cd(27)

Relational Sequence Alignment 155

Decreasing the gap opening costs to 0.5 resulted in

1. A purple latex balloon blew himself up in a southern city Wednes-
day , bursting two other balloons and deforming 27.

2. A latex balloon blew himself up in the area of Freiburg, on Sunday ,
bursting itself and disfiguring seven balloons.

3. A latex balloon blew himself up in the coastal resort of Cuxhaven,
bursting three other balloons and deforming dozens more.

4. A purple latex balloon blew himself up in a garden cafe on Saturday ,
bursting 10 balloons and deforming 54.

5. A latex balloon blew himself up in the centre of Berlin on Sunday ,
bursting three balloons as well as itself and disfiguring 40.

In both cases, the consensus regions of the propositional sequence alignments
are proper sub-regions of the relational ones. This affirmatively answers Q1.

5 Related Work and Conclusions

Surprisingly few works investigated sequences of complex objects. Ketterlin [11]
considered the clustering of sequences of complex objects but did not employ
logical concepts. Likewise, Weskamp et al. [21] proposed an alignment algorithm
for graphs. Lee and De Raedt [12] and Jacobs [7] introduced ILP frameworks for
reasoning and learning with relational sequences. Recently, Tobudic and Wid-
mer [20] used relational instance-based learning for mining music data, where
sequential information is employed. To the best of our knowledge, however, the
present paper proposes the first alignment approach for relational sequences,
i.e., sequences of logical objects. The preliminary experimental results indicate
that the relational sequences alignment reveals useful information in practice for
different domains. That they are indeed more informative has been recently con-
firmed by Kersting and Karwath [10] using an information-theoretic, empirical
argument on the protein data set.

The approach presented suggests a very interesting line of future research,
namely to address the alignment of more complex logical objects such as interpre-
tations, i.e., graphs. This has interesting applications e.g. in activity recognition,
music mining, and plan recognition.

Acknowledgments: The authors thank Luc De Raedt for his support and Ross
King for helpful discussions. The research was supported by the EU IST pro-
gramme: FP6-508861, Application of Probabilistic ILP II ; FP6-516169, Inductive
Queries for Mining Patterns and Models.

References

1. R. Barzilay and L. Lee. Learning to Paraphrase: An Unsupervised Approach Using
Multiple-Sequence Alignment. In Proc. of HLT-NAACL-03, pages 16–23, 2003.

156 Andreas Karwath and Kristian Kersting

2. E. Brill. Some advances in rule-based part of speech tagging. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), 1994.

3. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change
in proteins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure,
volume 5, chapter 22, pages 345–352. Nat. Biomedical Research Foundation, 1978.

4. R. Durbin, S. Eddy, A. Krogh, and G. Mitchinson. Biological Sequence Analysis.
Cambridge University Press, 1998.

5. B. Gutmann and K. Kersting. TildeCRF: Conditional Random Fields for Logical
Sequence. In Proceedings of the 15th European Conference on Machine Learning
(ECML-06), 2006. (To appear).

6. S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein
blocks. Proc. Natl Acad. Sci., 89:10915–10919, 1992.

7. N. Jacobs. Relational Sequence Learning and User Modelling. PhD thesis, Com-
puter Science Department, Katholieke Universiteit Leuven, Belgium, 2004.

8. K. Kersting, L. De Raedt, and T. Raiko. Logial Hidden Markov Models. Journal
of Artificial Intelligence Research (JAIR), 25:425–456, 2006.

9. K. Kersting and T. Gärtner. Fisher Kernels for Logical Sequences. In Proc. of 15th
European Conference on Machine Learning (ECML-04), pages 205 – 216, 2004.

10. K. Kersting and A. Karwath. On Relational Sequence Alignments and Their Infor-
mation Content. Short paper to be presented at the 16th International Conference
on Inductive Logic Programming (ILP06), 2006.

11. A. Ketterlin. Clustering Sequences of Complex Objects. In Proc. of the 3rd Int.
Conf. on Knowledge Discovery and Data Mining (KDD-97), pages 215–218, 1997.

12. S. D. Lee and L. De Raedt. Constraint Based Mining of First Order Sequences in
SeqLog. In R. Meo, P. L. Lanzi, and M. Klemettine, editors, Database Support for
Data Mining Application, pages 155–176. Springer, July 2004.

13. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2. edition, 1989.
14. S. H Muggleton and L. De Raedt. Inductive Logic Programming: Theory and

Methods. Journal of Logic Programming, 19(20):629–679, 1994.
15. S. Needleman and C. Wunsch. A general method applicable to the search for sim-

ilarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453,
1970.

16. S.-H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure for
approximations to a target concept. In Proc. of the 8. International Conference
on Inductive Logic Programming (ILP-97), pages 250–260, 1997.

17. J. Ramon. Clustering and instance based learning in first order logic. PhD thesis,
Department of Computer Science, K.U. Leuven, Leuven, Belgium, October 2002.

18. N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Evol. Biol, 4(4):406–425, 1987.

19. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

20. A. Tobudic and G. Widmer. Relational IBL in Classical Music. Machine Learning,
2006. (To be published).

21. N. Weskamp, E. Hllermeier, D. Kuhn, and G. Klebe. Graph Alignments: A New
Concept to Detect Conserved Regions in Protein Active Sites. In R. Giegerich
and J. Stoye, editors, Proceedings German Conference on Bioinformatics, pages
131–140, 2004.

Unbiased Conjugate Direction Boosting for
Conditional Random Fields

Kristian Kersting and Bernd Gutmann

University of Freiburg, Institute for Computer Science, Machine Learning Lab,
Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany

{kersting,bgutmann}@informatik.uni-freiburg.de

Abstract. Conditional Random Fields (CRFs) currently receive a lot
of attention for labeling sequences. To train CRFs, Dietterich et al. pro-
posed a functional gradient optimization approach: the potential func-
tions are represented as weighted sums of regression trees that are in-
duced using Friedman’s gradient tree boosting method. In this paper,
we improve upon this approach in two ways. First, we identify an expec-
tation selection bias implicitly imposed and compensate for it. Second,
we employ a more sophisticated boosting algorithm based on conjugate
gradients in function space. Initial experiments show performance gains
over the basic functional gradient approach.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, speech recognition, activity recognition, information ex-
traction. Consider the protein secondary structure prediction problem [10], where
the task is to assign a secondary structure class to each amino acid residue in the
protein sequence. This is an instance of the general sequence labeling problem:
assign labels Y = 〈y1 . . . yn〉 to a sequence X = 〈x1 . . . xn〉 of objects.

One appealing approach to label sequences are Lafferty et al.’s conditional
random fields (CRFs) [6]. They are undirected models encoding the conditional
dependency P (Y |X) and have outperformed HMMs [11] on language processing
tasks such as information extraction and shallow parsing. In contrast to genera-
tively trained HMMs, the discriminatively trained CRFs are designed to handle
non-independent input features such as such as the molecular weight and the
neighboring acids of an amino acid.

The great flexibility to include a wide array of features raises one important
questions: where do the features and the parameters come from? In many practi-
cal situations, even extremely simple undirected models such as the linear-chain
CRFs considered in the present paper models can have severe training costs.
Early approaches built large sets of feature conjunctions according to hand-built,
general heuristics. This can result in extremely large feature sets, with millions
of parameters trained on hundreds of thousands of training examples; parameter

158 Kristian Kersting, Bernd Gutmann

estimation can literally take days [9]. Lafferty et al.’s [6] originally introduced it-
erative scaling algorithm for parameter estimation of a given CRF was reported
to be exceedingly slow. Naive implementations of gradient ascent methods for
maximizing the conditional likelihood P (Y |X) have been proposed but they are
typically quite slow too, because parameters highly interact. Therefore, it is not
surprising that fast and integrated feature induction and parameter estimation
techniques have been proposed.

McCallum’s Mallet system [9] employs the BFGS algorithm, which is a
second-order parameter optimization method that deals with parameter inter-
actions, and induces features iteratively. Starting with a single feature, conjunc-
tions of features are iteratively constructed that significantly increase conditional
log-likelihood if added to the current model. Mallet’s method is akin to the
boosting idea [3] in that it creates new conjunctions (weak learners) based on
a collection of misclassified instances, and assigns weights to the new conjunc-
tions. Indeed, boosting has been applied to CRF-like models [1] and recently
Dietterich et al. [2] presented a boosting approach, which is competitive to Mal-
let. It follows Friedman’s gradient tree boosting algorithm [4], i.e., the potential
functions are represented by sums of regression trees, which are grown stage-wise
in the manner of Adaboost [3]. Each regression tree can be viewed as defining
several new feature combinations, one corresponding to each path in the tree
from the root to a leaf. Thus, the features can be quite complex; even relational
conjunctions [5].

Despite elegancy, good performance, and flexibility, the gradient tree boosting
approach, however, has two drawbacks. First, it imposes an expectation selec-
tion bias. In each boosting iteration, it generates functional gradient training
examples for all possible label-label pairs at a sequence position. Thus, there are
potentially quadratically many more expected than actually observed regression
examples. We propose to quadratically raise the empirical frequency of observed
label-label pairs. Second, only simple gradient ascent is employed so that maxi-
mization in one direction could spoil past maximizations. We propose the use of
a more sophisticated boosting algorithm using conjugate directions. This way,
we incorporate one of Mallet’s major advantages into the functional gradient
boosting approach: second-order information is used to adjust search directions
so that previous maximizations are not spoiled. Experiments show for both mod-
ifications performance gains over the basic functional gradient approach.

We proceed as follows. After briefly reviewing CRFs and Dietterich et al.’s
gradient tree boosting for training them, we show how to account for its expec-
tation selection bias in Section 3. In Section 4, we devise the conjugate gradient
variant. Before concluding, we experimentally evaluate our method in Section 5.

2 Linear-Chain CRFs

CRFs (see [6] for more details) are undirected graphical models that encode
conditional probability distributions using a given set of features. In the present
paper, we will focus on linear-chain CRF models.

Unbiased Conjugate Direction Boosting for Conditional Random Fields 159

Representation: Let G be an undirected graphical model over sets of ran-
dom variables X and Y . For linear-chain CRFs, X = 〈xi,j〉Ti

j=1 and Y = 〈Yi,j〉Ti
j=1

correspond to the input and output sequences such that Y is a labeling of an
observed sequence X. Now, they define the conditional probability of a state se-
quence given the observed sequence as P (Y |X) = Z(X)−1 exp

∑T
t=1 Ψt(yt, X) +

Ψt−1,t(yt−1, yt, X), where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential func-
tions1 and Z(X) is a normalization factor over all state sequences X. Due to
the global normalization by Z(X), each potential has an influence on the overall
probability.

Training: To apply CRFs, one most choose the representation for the po-
tentials Ψt(yt, X) and Ψt−1,t(yt−1, yt, X). Typically, it is assumed that the po-
tentials factorize according to a set of features {fk}, which are given and fixed,
so that Ψ(yt, X) =

∑
αkgk(yt, X) and Ψ(yt−1, yt, X) =

∑
βkfk(yt−1, yt, X) re-

spectively. The model parameters are now a set of real-valued weights αk, βk;
one weight for each feature. Furthermore, one must estimate the weights αk, βk.
To do so, a conditional maximum likelihood approach is typically followed. That
is, the (conditional) likelihood of the training data given the current parameter
Θm−1 is used to improve the parameters. Normally, one uses some sort of gra-
dient search for doing this. The parameter in the next iteration are the current
plus the gradient of the conditional likelihood function: Θm = Θ0 + δ1 + . . .+ δm

where δm = ηm−M ·∂/∂Θm−1

∑
i log P (yi|xi; Θm−1) is the gradient multiplied

by a constant ηm, which is obtained by doing a line search along the gradient.
Training via Gradient Tree Boosting: Dietterich et al.’s non-parametric

approach interleaves both steps. More precisely, one starts with some initial
potential Ψ0, e.g. the zero function, and adds iteratively corrections Ψm = Ψ0 +
∆1 + . . . + ∆m. In contrast to the standard gradient approach, ∆i denotes the
so-called functional gradient, i.e.,

∆m = ηm · Ex,y [∂/∂Ψm−1 log P (y|x; Ψm−1)] .

Since the joint distribution P (x, y) is unknown, one cannot evaluate the expec-
tation Ex,y. Dietterich et al. suggested to evaluate the gradient function at every
position in every training example and fit a regression tree to these derived ex-
amples. More precisely, setting F (yt−1, y,t,X) = Ψ(yt, X) + Ψ(yt−1, yt, X), the
gradient becomes (see [2, 5] for more details),

∂ log P (Y |X)
∂F (u, v, wd(X))

= I(yd−1 ⊆Θ u, yd ⊆Θ v)− P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)),

where I is the indicator function, ⊆Θ denotes that u matches/subsumes y, and
P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)) is the probability that class labels u, v fit the
class labels at positions d, d − 1. By evaluating the gradient at every known
position in the training data and fitting a regression model to these values, one
gets an approximation of the expectation Ex,y [∂/∂Ψm−1] of the gradient. In

1 A potential function is a real-valued function that captures the degree to which the
assignment yt to the output variable fits the transition from yt−1 and X.

160 Kristian Kersting, Bernd Gutmann

order to speed-up computations, not the complete input X is typically used but
only a window wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size.

In the following, we will present two improvements of the boosting approach.

3 Expectation Selection Bias

Reconsider the functional gradient. The expectation basically consist of two
terms. The first term is the expected value of the potential function under the
empirical distribution and the second term, which arises from the derivative of
the normalization constant Z(X), is the expectation of the potential function
under the current model distribution. Due to the second term, the set S of
generated examples the number K of given classes. For example, if we have 2
classes and 100 training sequences of length 200, then the number of training
examples is 22×200 = 80, 000. For 4 classes, there are already 42×200 = 320, 000
examples. Most of these examples are likely to have never been observed. In the
worst case, for each observed yt−1, yt pair, we additionally generate K2 − 1
expected examples. Thus, the regression tree learner is biased towards reducing
the variance of expected functional gradient training examples.

This suggests to quadratically raise the empirical frequency2 of observed
examples in S. To do so, we augment each functional gradient training example
(((wt(Xi), k′,∆(k, k′, t)) with an additional frequency weight f . We set f to
K2 − 1 if yt−1 = k′ and yt = k, and to 1.0 otherwise. Furthermore, as we get
more confident of the estimated model with increasing numbers of iterations t,
we impose a decay of f using the inverted logistic function (K2−2) ·exp[−c ·(t−
1)b] + 1, where c and b are constants; in our experiments C = 0.007 and b = 4.
Within the regression tree learner, these weights are treated strictly as example
multipliers. That is, the weighted variance is identical to the same analysis when
the examples are replicated the specific number f of time.

4 Conjugate Direction Boosting

Reconsider the basic gradient-ascent optimization approach. One of the prob-
lems with choosing the step size ηm doing a line search is that a maximization
in one direction could spoil past maximizations. This problem is solved by con-
jugate gradient boosting methods [7, 8]. Conjugate gradient boosting methods
compute so-called conjugate directions d1, d2, . . . in the function space, which
are orthogonal and hence do not spoil previous maximizations. The step size is
estimated along these directions doing line searches.

More precisely, following Li et al.’s notation [7], conjugate gradient boosting
iteratively performs two steps starting with setting the first direction to ∆1:
2 Weighting the empirical frequency has the appealing feature that it does not change

the functional gradient values ∆(k, k′, t). We only enforce a lower prediction variance
over ’observed’ training examples. This nicely fits our intuition that we are more
confident in observed training examples in early iterations.

Unbiased Conjugate Direction Boosting for Conditional Random Fields 161

Algorithm 1 Conjugated Gradient Tree Boosting with line search.
1: function CGTreeBoost(Data, L)
2: for 1 ≤ m ≤ M do . Iterate Functional Gradient
3: S := ∅
4: for 1 ≤ k ≤ K do . Iterate through the class labels
5: S := S∪GenWeightedExamples(k, Data, Fm−1, m) . Generate

examples
6: ∆m :=FitRelRegressTree(S, L) . Functional gradient
7: if m = 1 then
8: d1 = ∆1 . Initial conjugate direction
9: else

10: βm =
〈∆m,∆m−∆m−1〉
〈∆m−1,∆m−1〉 . Polak-Ribiére formula

11: dm = ∆m + βm · dm−1 . Next conjugate direction
12: ηm :=LineSearch(Data, Fm−1, dm) . Line Search along dm

13: Fm := Fm−1 + ηm · dm . Model udpate
14: return FM . Return Potential

1. (Conjugate directions) Given the current gradient ∆m, compute the em-
pirical angle βm between ∆m and ∆m−1 on the training examples. The
current gradient plus the old weighted gradient multiplied by the calculated
angle is added to the current model, dm = ∆m+βm ·dm−1. The angle βm can
be calculated by evaluating the Polak-Ribiére formula βm = 〈∆m,∆m−∆m−1〉

〈∆m−1,∆m−1〉
for each example. Every weighted gradient dm is a linear combination of
the gradients ∆1, . . . ,∆m. It can be shown that dt =

∑m
i=1 βi,m ·∆i where

βm,m = 1 and βi,m =
∏m

j=i+1 βj if i < m.
2. (Line search) Compute the next model Fm by maximizing along the direc-

tion of dm, i.e.

Fm =
∑m

k=1
ηk · dk =

∑m

i=1

(∑m

j=1
ηj · βi,j

)
∆i .

Training CRFs using conjugate gradient boosting is realized in CGTreeBoost
in Alg. 1. Note that it uses the example weighting scheme discussed in the
previous section. Furthermore, for the sake of simplicity and to stay close to
traditional conjugate gradient for function optimization, we present the model
update step as simply adding a single function. In fact, dm is a linear combination
of all previously computed functional gradients and one needs to keep track of
the βi,m. For a detailed discussion, we refer to [7, 8].

5 Preliminary Experiments

We implemented our approach in Yap 5.1.0 Prolog and investigate the following
two questions: Q1 Can unbiased boosting speed-up the training of CRFs, i.e.,
faster improvements of the objective score, which is the conditional log-likelihood?
Q2 Can conjugate gradient boosting improve the training of CRFs? To answer
both questions, we carried out experiments on two domains, traveling salesman
and protein secondary structure.

162 Kristian Kersting, Bernd Gutmann

act 1 2 3 4 5 6 7 8

city(a) - 7 2 1 10 - - 2
city(b) 11 - 3 - 5 - - -
city(c) 12 8 - - 5 8 10 3
city(d) 13 9 - - 5 8 - 10

Extra

city(a) 22
city(b) 50
city(c) 12
city(d) 10

Fig. 1. Traveling salesman instance used in the experiment.(Left) The map where nodes
denote cities and edges transitions with associated costs. (Middle) Costs of activities.
(Right) Costs of doing an activity fast in one city.

(Traveling Salesman 3) There are n cities and actions A, which can be
done with normal speed or fast. All these actions have different costs. The
task is, given is a sequence of activities a1, . . . , aT , find a sequence of cities
c1, . . . , cT such that the overall costs are minimized. We considered the in-
stance with 4 cities and 8 actions as described in Figure 1. We randomly
generated 100 independent activity sequences of length 15 and searched brute
force for an optimal travel sequence. This yield relational sequences such
as X = 〈act(4, normal), act(1, fast), act(8, normal), act(7, normal), . . .〉 and
Y = 〈city(a), city(d), city(c), city(c), . . .〉. We refer to [5] for more details.

On a random 92/8 training/test split, we ran conjugate gradient tree (CGT)
and gradient tree (GT) boosting with and without (,i.e., ηm = 1.0) line search
on biased and unbiased examples. Figure 2 summarizes the results. As it can
readily be seen, both algorithms overfit on this data set when doing a line search,
cf. Fig 2 (b) and (d). However, compensating for the expectation selection bias,
cf. Fig 2 (d), prevents CGT in contrast to GT from overfitting. Without line
search, cf. Fig 2 (a) and (c), CGT yields better performance than GT. This
affirmatively answers Q2. More over, compensating for the expectation selection
bias, cf. Fig. 2 (c), results in larger improvements in early iterations of CGT
and again prevents CGT from overfitting. This affirmatively answers Q1. The
accuracies on the test set were in the same range across all algorithms.

(Protein Secondary Structure) This propositional data set was originally
published by Qian and Sejnowski [10]. A protein consists of a sequence of amino
acid residues. Each residue is represented by a single feature with 20 possible
values (corresponding to the 20 standard amino acids). There are three classes:
alpha helix, beta sheet, and coil (everything else). There is a training set of 111
sequences and a test set of 17 sequences. We used the same set up as in [5] and
ran several variants of the basic algorithms.

The results summarized in Figure 3 (a) support the results of the first ex-
periment: CGT performs better than GT and unbiased variants better than
biased ones. Although doing a line search did not yield overfitting, unbiased
CGT without line search still achieved the best predictive performance, partic-

2 This domain has originally been used in [5] to show that CRFs for sequences of
relational symbols can significantly outperform CRFs for sequences of flat symbols.

Unbiased Conjugate Direction Boosting for Conditional Random Fields 163

(a) Biased / No Line Search (b) Biased / Line Search

-150
-120

-90
-60
-30

 0 2 4 6 8 10 12 14 16 18 20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g
S

et
 C

LL

gradient tree boosting w/o line search
conjugate gradient tree boosting w/o line search

-150
-120

-90
-60
-30

 0 2 4 6 8 10 12 14 16 18 20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g
S

et
 C

LL

gradient tree boosting with line search
conjugate gradient tree boosting with line search

(c) Unbiased / No Line Search (d) Unbiased / Line Search

-150
-120

-90
-60
-30

 0 2 4 6 8 10 12 14 16 18 20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g
S

et
 C

LL

gradient tree boosting w/o line search
conjugate gradient tree boosting w/o line search

-150
-120

-90
-60
-30

 0 2 4 6 8 10 12 14 16 18 20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g
S

et
 C

LL

gradient tree boosting with line search
conjugate gradient tree bossting with line search

Fig. 2. Learning curves on the job scheduling domain. (c, d) compensated for the
expectation selection bias in contrast to (a, b). Cases (b, d) used a line search whereas
(a,c) did not

ularly compared to the original GT, cf. Figure 3 (b). This affirmatively answers
Q1 and Q2.

6 Conclusions

Training CRFs can be viewed as gradient ascent in function space. In this pa-
per, we devised a novel algorithm for training CRFs, which employs conjugate
directions in function space. Furthermore, we identified an expectation selection
bias when training CRFs and presented an example weighting approach to com-
pensate for it. Preliminary experiments are encouraging: the resulting approach
can indeed perform better than simple gradient tree boosting. To validate this,
further experiments should be conducted.

Acknowledgments The authors thank Luc De Raedt for his support, Alan
Fern for interesting discussions, and Tom Dietterich for providing his version of

164 Kristian Kersting, Bernd Gutmann

(a)Averaged (b) Biased GT vs. Unbiased CGT w/o ls

-1500

-2500

-3500
 1 2 3 4 5 6 7

T
es

t S
et

 C
LL

Iterations

-7000

-9000

-11000

-13000

-15000

T
ra

in
in

g
S

et
 C

LL

Biased
Gradient

Unbiased
Conjugate Gradient

0.65

0.6

0.55

0.5
 1 2 3 4 5 6 7

T
es

t S
et

 A
cc

Iterations

0.65

0.6

0.55

0.5

T
ra

in
in

g
S

et
 A

cc

gradient tree boosting w/o line search
conjugate gradient tree boosting w/o line search

Fig. 3. Learning curves on the protein secondary structure domain. (a) Average over
several variants of biased/unbiased and GT/CGT. (b) Predictive accuracies of unbi-
ased CGT and biased GT both w/o line search.

Qian and Sejnowski’s benchmark. The research was supported by the European
Union IST programme: FP6-508861, Application of Probabilistic ILP II.

References

1. Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for label sequences
via boosting. In Advances in Neural Inf. Proc. Systems (NIPS-15), 2003.

2. T. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields
via gradient tree boosting. In Proc. 21st International Conf. on Machine Learning,
pages 217–224. ACM, 2004.

3. Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In In
Proceedings of ICML-96, pages 148–156. Morgan Kaufman, 1996.

4. J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics, 29, 2001.

5. B. Gutmann and K. Kersting. TildeCRF: Conditional Random Fields for Logical
Sequences. In Proc. of the 17th European Conference on Machine Learning (ECML-
06), 2006. (To appear).

6. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th Int. Conf. on
Machine Learning (ICML-01), pages 282–289, 2001.

7. L. Li, Y. S. Abu-Mostafa, and A. Pratap. CGBoost: Conjugate Gradient in Func-
tion Space. Technical Report CaltechCSTR:2003.007, Calfornia Institute of Tech-
nology, August 2003.

8. R. W. Lutz and P. Bühlmann. Conjugate direction boosting. Journal of Compu-
tational and Graphical Statistics, 15(2):287–311, 2006.

9. A. McCallum. Effciently inducing features of conditional random fields. In Proc.
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI-03), 2003.

10. N. Quian and T. J. Sejnowski. Predicting the secondary structure of globular
proteins using neural network models. JMB, 202:865–884, 1988.

11. L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77, pages 257–285, 1989.

Tree Kernel Engineering for Proposition

Re-ranking

Alessandro Moschitti, Daniele Pighin, and Roberto Basili

Department of Computer Science
University of Rome ”Tor Vergata”, Italy
{moschitti,basili}@info.uniroma2.it

daniele.pighin@gmail.com

Abstract. Recent work on the design of automatic systems for semantic
role labeling has shown that such task is complex from both modeling
and implementation point of views. Tree kernels alleviate such complex-
ity as kernel functions generate features automatically and require less
software development for data pre-processing. In this paper, we study
several tree kernel approaches for boundary detection, argument classi-
fication and, most notably, proposition re-ranking. The comparative ex-
periments on Support Vector Machines with such kernels on the CoNLL
2005 dataset show that very simple tree manipulations trigger automatic
feature engineering that highly improves accuracy and efficiency in every
SRL phase.

1 Introduction

A lot of attention has been recently devoted to the design of systems for the
automatic labeling of semantic roles (SRL) as defined in two important projects:
FrameNet [1], inspired by Frame Semantics, and PropBank [2] based on Levin’s
verb classes. SRL is a complex task consisting in the recognition of predicate
argument structures within natural language sentences.

Research on the design of automatic SRL systems has shown that (shallow
or deep) syntactic information is necessary to achieve a good accuracy, e.g. [3,4].
A careful analysis of literature features encoding such information reveals that
most of them are fragments of syntactic trees of training sentences. Thus, a
natural way to represent them is the adoption of tree kernels as described in
[5]. Tree kernels show important advantages: first, we can implement them very
quickly as the feature extractor module only requires the writing of the procedure
for subtree extraction. In contrast, traditional SRL systems are based on the
extraction of more than thirty features [6], which require the writing of at least
thirty different procedures. Second, combining tree kernels with a traditional
attribute-value SRL system allows us to obtain a more accurate system. Usually
the combination of two traditional systems (based on the same machine learning
model) does not result in an improvement as their features are more or less
equivalent as shown in [4]. Finally, the study of the effective structural features

166 Alessandro Moschitti, Daniele Pighin, and Roberto Basili

can inspire the design of novel linear features, which can be used with a more
efficient model (i. e. linear SVMs).

In this paper, we carry out tree kernel engineering [7,8] to increase the ac-
curacy of the boundary detection, argument classification and proposition re-
ranking steps. In the first two cases (Section 2.1), the engineering approach
relates to marking the nodes of the encoding subtrees to generate substructures
more strictly correlated with a particular argument, boundary or predicate. For
the latter case (Section 2.2), i. e. proposition re-ranking, we try both marking
large parts of the tree that dominates the whole predicate argument structure
and utterly reworking the syntactic structure. Our extensive experimentation of
the proposed tree kernels with Support Vector Machines on the CoNLL 2005
data set provides interesting insights on the design of performant SRL systems
(Section 3).

2 A Model for Semantic Role Labeling

The SRL approach that we adopt is based on the deep syntactic parse [9] of
the sentence that we intend to semantically annotate. The standard algorithm
concerns the classification of tree node pairs 〈p, a〉, where p is the node that
exactly dominates the target predicate and a is the node dominating a potential
argument. If 〈p, a〉 is selected as an argument, then the leaves of the tree rooted in
a will be considered as the words constituting such argument. There are hundreds
of pairs in a sentence, thus, if we use training corpora containing hundreds of
thousands of sentences, we have to deal with millions of instances.

To limit such complexity, we can divide the problem in two subtasks: (a)
boundary detection, in which a single classifier is trained on many instances to
detect if a node is an argument or not, i. e. if the sequence of words dominated by
the target node constitutes a correct boundary; and (b) argument classification,
in which only the set of nodes corresponding to correct boundaries are consid-
ered. These can be used to train a multiclassifier that, for such nodes, selects
the most appropriate labeling. For example, n classifiers can be combined with a
One-vs-All approach, selecting for each argument node the role associated with
the maximum among the n scores provided by the individual role classifiers.

The main advantage of this approach is the use of just one computationally
expensive classifier, i. e. the one for boundary detection. Regarding the feature
representation of 〈p, a〉, we can extract syntactic fragments from the sentence-
parse tree proposed in [3], e.g. the Phrase Type or Predicate Word. An alternative
to the manual fragment extraction is the use of Tree Kernels as suggested in [5].
Tree kernels are especially useful when the manual design of features is made
complex by the use of a re-ranking module. This has been shown to be essential
to obtain state-of-the-art performance [10].

The next sections describe our tree kernel approaches for the classification of
boundaries and arguments and the re-ranking of complete predicative structures.

Tree Kernel Engineering 167

S

NP

NNP

Paul

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

(a) A parse tree

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

(b) AST1

VP

VBZ

delivers

NP

NP-B

DT

a

NN

talk

(c) AST
m

1

Fig. 1. Syntactic parse tree of the sentence John delivers a talk in formal style (a),
AST1 (b) and AST

m

1 (c) for the argument A1 a talk.

2.1 Kernels for Boundary Detection and Argument Classification

Once a basic kernel function is defined, we need to characterize the predicate-
argument pair with a subtree. This allows the function to generate a large number
of syntactic features related to such pair. The approach proposed in [5] selects
the minimal subtree that includes a predicate with one of its arguments. For
example, Figure 1(a) shows the parse tree of the sentence Paul delivers a talk in

formal style whereas Frame (b) illustrates the AST1 subtree that characterizes
the predicate to deliver with its argument A1 a talk.

AST1s are very effective for argument classification but not for boundary
detection since two nodes that encode correct and incorrect boundaries may
generate very similar AST1s [5]. To solve this problem, we simply mark the
argument node with the label B, denoting the boundary property. This new
subtree is called a marked argument spanning tree (AST m

1) and it is shown in
Figure 1(c). A positive example for the AST m

1 classifier is a subtree in which the
marked node exactly covers the boundaries of an argument, whereas the marking
of any other node within the same subtree results in a negative example.

2.2 Tree Kernels for the Proposition Re-ranking Task

Our re-ranking mechanism is similar to that described in [11], where a Viterbi al-
gorithm is used to evaluate the most likely labeling schemes for a given predicate
and a re-ranking mechanism selects the best annotation. The re-ranker is a bi-
nary classifier trained with pairs 〈si, sj〉 where si and sj are taken from the set of
the most m probable prepositions output by the Viterbi algorithm for the same
target predicate. The classifier is meant to output a positive value if si is more

168 Alessandro Moschitti, Daniele Pighin, and Roberto Basili

S

NP-A0

NNP-A0

Paul

VP

VBZ

delivers

NP

NP-A1

DT-A1

a

NN-A1

talk

(a) AST
cm

n

TREE

ARG0

A0

NNP

ARG1

rel

deliver

ARG2

A1

NP

ARG3

null

ARG4

null

ARG5

null

ARG6

null

(b) PAS
tl

Fig. 2. AST
cm

n
and PAS

tl representations of the example proposition.

accurate that sj and a negative value otherwise. Each candidate proposition si

can be described by a structural feature ti and by a vector of linear features
vi representing information that cannot be captured by ti, e.g. the probability
associated with the annotation output by the Viterbi algorithm. As a whole,
each classifier example ei is described by a tuple 〈t1i , t

2
i , v

1
i , v2

i 〉, where 〈t1i , v
1
i 〉

and 〈t2i , v
2
i 〉 describe the first and second candidate annotations, respectively.

Using the above tuple, we can define the following kernels:

Ktr(e1, e2) = Kt(t
1
1, t

1
2) + Kt(t

2
1, t

2
2) − Kt(t

1
1, t

2
2) − Kt(t

2
1, t

1
2)

Kpr(e1, e2) = Kp(v
1
1 , v1

2) + Kp(v
2
1 , v2

2) − Kp(v
1
1 , v

2
2) − Kp(v

2
1 , v1

2)

where Kt is a tree kernel function defined in [12] and Kp is a polynomial kernel
applied to the feature vectors. The final kernel that we use for re-ranking is the
following:

K(e1, e2) =
Ktr(e1, e2)

|Ktr(e1, e2)|
+

Kpr(e1, e2)

|Kpr(e1, e2)|
.

Among the many different structural features that we tested with our re-
ranker, the most effective are the completely marked argument structure span-
ning tree (AST cm

n) and the lemmatized type-only predicate argument structure
(PASt).

An AST cm
n (see Figure 2(a)) consists of the node spanning tree embracing

the whole argument structure: each argument node’s label is enriched with the
role assigned to the node by the role multiclassifier, the labels of the descendants
of each argument node being accordingly modified down to pre-terminal nodes.
Marking the nodes’ descendants is meant to force substructures to match only
among homogeneous argument types. This representation is meant to provide
rich syntactic and lexical information about the parse tree encoding the predicate
structure.

Tree Kernel Engineering 169

A PAStl (see Figure 2(b)) is a completely different structure that repre-
sents the syntax of the predicate argument structure, i. e. the number, type
and position of each argument, minimizing the amount of lexical and syntactic
information derived from the parse tree. The syntactic links between the argu-
ment nodes are represented as a fake 1-level tree, which is shared by any PAStl

and therefore does not influence the evaluation of similarity between pairs of
structures. Such structure accommodates sequentially all the arguments of an
annotation, each slot being attached a pre-terminal node standing for the node
type and a terminal symbolizing the syntactic type of the argument node. In
general, a proposition consists of m arguments, with m < 7. In this case, all the
nodes ARGi, i ≤ m ≤ 6 are attached a dummy descendant marked null. The
predicate is represented by means of a pre-terminal node labeled rel to which
the lemmatization of the predicate word is attached as a leaf node.

Table 1. Correct (+), incorrect (-) and overall (tot) number of potential argument
nodes from sections 2, 3 and 24 of the PropBank.

Section 2 Section 3 Section 24

+ - tot + - tot + - tot

12,741 185,178 197,919 7,023 139,823 146,846 8,234 130,489 138,723

Table 2. Performance improvement on the boundary detection and argument classifi-
cation tasks using engineered tree kernels.

Boundary detection Argument classification

AST1 75.24 82.07
AST

m

1 75.06 77.17

3 Experiments

In these experiments we evaluate the impact of our proposed kernels on the
different phases of the SRL task. The resulting accuracy improvement confirms
that the node marking approach enables the automatic engineering of effective
SRL features.

The empirical evaluations were carried out within the setting of the CoNLL-
2005 Shared Task [4] described in www.lsi.upc.edu/∼srlconll/ by means of
SVM-light-TK available at http://ai-nlp.info.uniroma2.it/moschitti/ which
encodes fast tree kernel evaluation [12] in SVM-light [13]. We used a regulariza-
tion parameter (option -c) equal to 1 and λ = 0.4 (see [5]).

3.1 Boundary Detection and Argument Classification Results

For the boundary detection experiments we used Section 02 for training and
Section 24 for testing, whereas for argument classification also Section 03 was

170 Alessandro Moschitti, Daniele Pighin, and Roberto Basili

used for training. Their characteristics in terms of potential argument nodes1

are shown in Table 1.

Table 3. Number of distinct annotations output by the Viterbi algorithm and of pair
comparisons (i. e. re-ranker input examples) in the PropBank sections used for the
experiments.

Section 12 Section 23 Section 24

Annotations 24,494 26,325 16,240
Comparisons 74,650 81,162 48,582

Table 4. Summary of the proposition re-ranking experiments with different training
sets.

Training section AST
cm

n
PAS

tl

PAS
tl + STD

12 - 78.27 77.61
24 76.47 78.15 77.77

12+24 - 78.44 -

The results obtained using the AST1 and the AST m
1 based kernels are re-

ported in Table 2 in rows 2 and 3, respectively. Columns 2 and 3 show their
respective performance (in terms of F1 measure) on the boundary detection and
argument classification phases. We note that: (1) on boundary detection, AST m

1 s
improve the F1 over AST1 by about 7 points, i. e. 82.07 vs. 75.24. This suggests
that marking the argument node simplifies the generalization process; (2) using
an engineered tree kernel also improves the argument classification task by about
2 points, i. e. 77.17 vs. 75.06. This confirms the outcome on boundary detection
experiments and the fact that we need to distinguish the target node from the
others.

3.2 Proposition Re-ranking Results

For our proposition re-ranking experiments, Section 23 was used for testing. On
such test set, considering the first 5 alternatives output by the Viterbi algorithm,
our model has a lower bound of the F1 measure of 75.91 (corresponding to
the selection of the first alternative, i. e. the most likely with respect to the
probabilistic model) and an upper bound of 84.76 (corresponding to the informed
selection of the best among the 5 alternatives, i. e. the theoretical output of a
perfect re-ranker). The number of distinct annotations output by the Viterbi

1 As the automatic parse trees contain errors, some arguments cannot be associated
with any covering node. This prevents us to extract a tree representation for them.
Consequently, we do not consider them in our evaluation. In sections 2, 3 and 24
there are 454, 347 and 731 such cases, respectively.

Tree Kernel Engineering 171

algorithm for each section that we used is shown in Table 3, Row 2. In Row 3,
the number of pair comparisons, i. e. the number of training/test examples for
the classifier.

Table 4 summarizes the outcome of our experiments. First, we compared the
accuracy of the AST cm

n and PAStl classifiers trained on Section 24 (in Row 3,
Columns 2 and 3) and discovered that the latter structure produces a notice-
able F1 improvement, i. e. 78.15 vs. 76.47. Second, we added the local (to each
argument node) linear features commonly employed for the boundary detection
and argument classification tasks, as in [10] to the PAStl kernel (Column 4).
The comparison with the simple PAStl on 2 different training sets (Rows 2
and 3) shows that the introduction of the standard linear features produces a
performance decrease on both sections 12 and 24 . Finally, we trained our best
re-ranking kernel, i. e. the PAStl, with both sections 12 and 24 achieving an F1

measure of 78.44 (Row 4).
These results suggest that: (1) the

F180818
28384
Thousandsoftrainingexamples20040060080010001200AST1msplitclassifierAST1splitclassifier

Fig. 3. Learning curve comparison for
the boundary detection phase between
the AST1 and AST m

1 F1 measures.

re-ranking task is very difficult from
a ML point of view: in fact, adding
or removing thousands of training ex-
amples has only a small impact on the
classification accuracy; (2) the PAStl

kernel is much more effective than the
AST cm

n one, which is always outper-
formed. This may be due to the fact
that two AST cm

n s always share a great
number of substructures, since most
alternative annotations tend to be very
alike and the small differences among
them only affect a small part of their
enriched syntactic parse trees; (3) on
the other hand, the little amount of
local parsing information encoded in
the PAStls allows for a good generalization process; (4) the introduction of the
standard, local linear features in our re-ranking model caused a performance loss
of about 0.5 points on both Sections 12 and 24. This fact, which is in contrast
with what has been shown in [10], might be the consequence of the small training
sets that we employed. In fact, local linear features tend to be very sparse and
their effectiveness should be evaluated against a larger data set.

4 Conclusions

The design of automatic systems for the labeling of semantic roles requires the
solution of complex problems. Among others, feature engineering is made difficult
by the structural nature of the data, i. e. features should represent information
contained in automatic parse trees. A system based on tree kernels alleviate such
complexity as kernel functions can automatically generate effective features.

172 Alessandro Moschitti, Daniele Pighin, and Roberto Basili

In this paper, we have improved tree kernels by studying different strategies,
e.g. AST m

1 s highly improve accuracy in both the boundary detection (about 7%)
and argument classification subtasks (about 2%). We have also engineered dif-
ferent structured features for the re-ranking module, which improves our system
of about 2.5 percent points. This is quite a good results as it approaches the
state-of-the-art using only a small fraction of all the available data. In the near
future, we would like to use more such data along with other kernels described
in [12].

Acknowledgments

This research is partially supported by the European project, PrestoSpace (FP6-
IST-507336).

References

1. Johnson, C.R., Fillmore, C.J.: The framenet tagset for frame-semantic and syn-
tactic coding of predicate-argument structure. In proceedings of NAACL 2000,
Seattle WA. (2000)

2. Kingsbury, P., Palmer, M.: From Treebank to PropBank. In proceedings of
LREC’02, Las Palmas, Spain (2002)

3. Gildea, D., Jurasfky, D.: Automatic labeling of semantic roles. Computational
Linguistic 28(3) (2002) 496–530

4. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: Semantic
role labeling. In proceedings of CoNLL-2005, Ann Arbor, Michigan, (2005)

5. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In
proceedings of ACL’04, Barcelona, Spain (2004)

6. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H., Jurafsky, D.:
Support vector learning for semantic argument classification. Machine Learning
Journal (2005)

7. Moschitti, A., Coppola, B., Pighin, D., Basili, R.: Engineering of syntactic features
for shallow semantic parsing. In proceedings of the ACL Workshop on Feature
Engineering for Machine Learning in Natural Language Processing, Ann Arbor,
Michigan, (2005)

8. Moschitti, A., Pighin, D., Basili, R.: Tree kernel engineering in semantic role
labeling systems. In proceedings of the EACL Workshop on Learning Structured
Information in Natural Language Applications, Trento, Italy, (2006)

9. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the 1st
Meeting of NAACL. (2000)

10. Haghighi, A., Toutanova, K., Manning, C.: A joint model for semantic role labeling.
In proceedings of CoNLL-2005, Ann Arbor, Michigan. (2005)

11. Moschitti, A., Pighin, D., Basili, R.: Semantic role labeling via tree kernel joint
inference. In proceedings of CoNLL-X. (2006)

12. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In proceedings of ECML 2006, Berlin, Germany. (2006)

13. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)

Frequent Subgraph Miners:
Runtimes Don’t Say Everything

Siegfried Nijssen1 and Joost N. Kok2

1 Albert-Ludwidgs-Universität, Georges-Köhler-Allee, Gebäude 097, D-79110,
Freiburg im Breisgau, Germany.

2 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands.
snijssen@informatik.uni-freiburg.de

Abstract. In recent years several frequent subgraph miners were pro-
posed. The authors of these new algorithms typically compared the run-
times of their implementations with those of previous implementations
to confirm the efficiency of their methods. To get a better perspective on
the mutual benefits of the algorithms, Wörlein et al. [9] performed an ex-
perimental evaluation of re-implementations of several depth-first graph
miners, where also some statistics beyond runtimes were compared. In
this paper we present results of an additional experimental comparison of
several graph miners, which differs in the following aspects from this pre-
vious study: (1) we compare original implementations; (2) we compare
these implementations on a larger set of measures than runtimes, thus
providing further insight in the benefits of the algorithms; (3) we include
breadth-first graph miners and free tree miners in the comparison.

1 Introduction

Given a database consisting of small graphs, for example, molecular graphs, the
problem of mining frequent subgraphs is to find all subgraphs that are subgraph
isomorphic with a large number of example graphs in the database. References
to applications can be found in [2, 4, 8, 3]. The first frequent subgraph miner was
Inokuchi et al.’s AGM algorithm (2000), for unconnected subgraphs. The algo-
rithm was followed by the FSG algorithm of Kuramochi and Karypis [7] (2001),
and an adaption of AGM, AcGM, for mining connected subgraphs [6] (2002).
These initial algorithms performed the search breadth-first; the first depth-first
graph miners were MoFA [2] and gSpan [10] (2002), followed by FFSM [5] (2003)
and Gaston [8] (2004). In parallel, also free tree (cycleless graph) miners were
developed: both the breadth-first FreeTreeMiner (2003) and the depth-first
HybridTreeMiner (2004) by Chi et al. (see [3] for references). The develop-
ment of new graph miners was motivated by the supposed inefficiency of earlier
graph miners. In this paper, we perform a large set of experiments with the im-
plementations of the graph and free tree miners that were used in most of these
original publications.

We have several aims by doing these experiments. First, our study veri-
fies earlier studies, both the studies of the original implementers, as the re-
implementation study of [9]. This provides either additional evidence for the

174 Siegfried Nijssen and Joost N. Kok

results obtained in these studies, or will allow us to refute claims made in these
studies, in both cases providing us additional insights in the effects of, for in-
stance, implementation optimizations. Second, by computing additional mea-
sures, we wish to obtain a deeper understanding in the true benefits of the graph
mining algorithms. It can be observed that most graph mining algorithms can
be separated in separate components for ‘candidate generation’ and ‘candidate
evaluation’. Until now, most algorithms provide a unique combination for each of
these elements. By performing additional experiments, we can provide insight in
the question if it is useful to try out different combinations of these components.
Thus, this study is complementary to the earlier graph mining study of [9], and
our earlier study on the efficiency of frequent tree miners [3].

The paper is organized as follows. First, we shortly review the problem of
frequent subgraph mining and the frequent subgraph miners. The main part of
the paper consists of a large number of experiments. Finally, we conclude.

2 Concepts and Algorithms

In this section we briefly recall the most important concepts and algorithms.
Concepts A labeled undirected graph is a quadruple (V,E, λ,Σ), where V is

a set of vertices, E ⊆ {e ⊆ V : |e| = 2} is a set of edges, and λ : V ∪ E → Σ is
a function that assigns labels to the vertices and edges. In this paper, we only
consider connected graphs, in which there is a path between every pair of nodes.
Graph G′ = (V ′, E′, λ′, Σ′) is a subgraph of graph G if V ′ ⊆ V , E′ ⊆ E, for all
x ∈ V ′∪E′ : λ′(x) = λ(x) and Σ′ ⊆ Σ. Graph G and G′ are isomorphic iff there
is a bijective function φ : V → V ′ such that (1) ∀{v1, v2} ∈ E : {φ(v1), φ(v2)} ∈
E′ and λ({v1, v2}) = λ′(φ({v1, v2})), (2) ∀v ∈ V : λ(v) = λ′(φ(v)). Graph
G is subgraph isomorphic with G′, denoted by G′ º G, iff G is isomorphic
with a subgraph of G′. The corresponding function φ, which maps nodes from
the subgraph to the supergraph, is called an embedding. Given a multiset of
graphs D (also referred to as database graphs), the frequency (or support) of
a graph G, denoted by freq(G) is the cardinality of the set {G′ ∈ D|G′ º G}.
Assuming that each database graph has an identifier, this set could alternatively
consist of identifiers; we refer to this set as the transaction identifier (TID) list
of the subgraph. Given a threshold minsup, a (pattern) graph G is frequent
iff freq(G) ≥ minsup; frequent subgraph miners find all such subgraphs. An
important property is the antimonotonicity property that states that if G º
G′, freq(G) ≤ freq(G′). If we start searching from the smallest subgraphs, a
consequence of this property is that we do not need to consider supergraphs of
infrequent graphs; we can cut parts of the search space.

Two different subgraphs can be isomorphic with each other; let V = {v1, v2},
E = {{v1, v2}} and Σ = {a, b}; then the graph G1 = (V, E, λ1, Σ) with λ1(v1) =
a and λ1(v2) = b is isomorphic with the graph G2 = (V, E, λ2, Σ) having
λ2(v1) = b and λ2(v2) = a. Care has to be taken that frequent subgraph miners
do not find such isomorphic subgraphs multiple times. All algorithms address
this issue by determining a canonical string for a graph. The idea is that every

Frequent Subgraph Miners: Runtimes Don’t Say Everything 175

graph has a corresponding string representation, for example, (v1, v2, a, b) for G1

and (v1, v2, b, a) for G2. By imposing a total order on the strings of isomorphic
graphs, for example, lexicographically, we can decide that one representation
is the highest. This string is considered to be the canonical representation of
the isomorphic graphs. As no polynomial algorithm is known to compute graph
isomorphism or subgraph isomorphism, all graph mining algorithms use expo-
nential search algorithms to find the canonical label or embeddings; free tree
mining algorithms, on the other hand, can exploit polynomial algorithms.

Breadth-First Algorithms The breadth-first algorithms have the same
setup as the original Apriori algorithm for mining frequent itemsets [1]. They
iterate a process of generating candidate subgraphs and determining their sup-
port in the database. Candidates are generated by joining two subgraphs that
were previously found to be frequent. After the joined subgraph is obtained, it is
checked whether all its subgraphs are frequent; if not, the candidate is pruned.

To represent candidates, AcGM and FSG use a canonical string that is ob-
tained from an adjacency matrix. FSG’s code allows for the quick computation of
the canonical string for any given graph. AcGM’s representation is optimized to
minimize the generation of non-canonical graphs. Chi et al.’s FreeTreeMiner
is similar to AcGM, but uses a polynomially computable canonical string.

The search for embeddings is improved by exploiting the observation that
an embedding for a supergraph is also an embedding for its subgraphs. In FSG
and the FreeTreeMiner, a TID list is stored with every pattern graph. AcGM
takes the idea a step further by also storing one embedding for each database
graph in the TID list, and using it as the start of the exponential search.

Depth-First Algorithms The depth-first algorithms do not subdivide the
search into strict candidate generation and candidate evaluation phases. Es-
sentially, each of these algorithms scans all embeddings of a subgraph in the
database, and collects from that scan the support of the refinements, i.e., the
individual edges and nodes that can be connected to the subgraph. The search
recurses immediately on each of the frequent refinements.

To avoid duplicate subgraphs in the output, all depth-first graph miners use
a special kind of canonical string, which has the property that every prefix of
the string is also canonical. A refinement corresponds to extending a canonical
string. For each extended string, it is checked whether it is canonical; any non-
canonical string can be removed immediately. Although for every refined string
it has to be checked with an exponential algorithm if the resulting string is really
canonical, an interesting property of most codes is that it often easy to decide
that a code is not canonical. As a small example, almost all codes sort sibling
nodes in the order of their labels. This order limits which new siblings can be
added; we will call this the ‘label trick’. Such simple tricks limit which nodes in
the data have to be scanned for extensions. gSpan, FFSM and Gaston differ
in their canonical string, and consequently, also in the ‘easy’ rules that can be
used to eliminate strings that are not canonical:

176 Siegfried Nijssen and Joost N. Kok

– gSpan uses a code that consists of a list of edges in the order of a depth-first
traversal tree of the subgraph. Canonical refeinements can only connect to
a node on the rightmost path of this tree. The ‘label trick’ applies to gSpan.

– FFSM uses a code that consists of a concatenation of columns of an adjacency
matrix. The last column of the adjacency matrix restricts to which nodes
new nodes can be connected; ‘label tricks’ can also be applied in FFSM.

– Gaston uses a code that consists of a concatenation of a code for paths,
trees and cycles. The code allows to determine in O(1) time if a refinement
leads to a non-canonical code for a tree. The ‘label trick’ can not be applied.

– The HybridTreeMiner uses another code to represent free trees. The code
is efficiently computable, and guarantees that trees or paths are never enu-
merated more than twice.

To evaluate the frequency of subgraphs, several alternatives have been proposed.
In gSpan and Gaston (RE variant) a TID list is maintained with every sub-
graph. All embeddings are recomputed for graphs in the TID list. For each
embedding, refinements that are not pruneable by easy rules, are counted. Non-
canonical refinements are pruned later.

An alternative is to not to recompute embeddings, but to store them, as only
embeddings of subgraphs can lead to embeddings of supergraphs. Although the
frequency of refinements could be collected from the data, FFSM and Gaston
(OS variant) use a more elaborate approach, in which the embeddings of some
refinements are obtained by joining the embeddings of other subgraphs. The
motivation is that this reduces the chances of building embedding lists for graphs
that are not frequent, as at least two subgraphs need to be frequent before an
embedding list is constructed. However, to reduce the number of subgraphs for
which the embedding list has to be stored at the same time, it is necessary
that joining is performed in a ‘local’ way in the search tree. To this purpose, all
algorithms require an additional set of embedding lists for graphs that are not
canonical.

3 Experiments

For our comparison, we obtained source code of the FreeTreeMiner, the Hy-
bridTreeMiner and Gaston (RE, OS), and binaries of gSpan, FFSM, FSG
and AcGM. The source code was compiled using the GNU C compiler and the O3
compiler option. We used a range of 6 different datasets: (1) three tree datasets
(A1, A3, A4) were generated using Zaki’s tree dataset generator [11]. A4 is equal
to A1, except for the node labels. Most frequent trees in dataset A3 have diam-
eter 2, and differ mainly in degree of the nodes; (2) two molecular datasets. The
PTE dataset was used in [10, 8], and includes hydrogens in the graph encoding;
the Cancer datasets is a similar, although larger, dataset obtained from the Na-
tional Cancer Institute, and does not include hydrogen in the encoding3; (3) a
protein secondary structure dataset of Huan et al. [4].
3 We performed further experiments with molecular datasets and real-world tree

datasets. Results on these datasets are similar and omited due to space constraints.

Frequent Subgraph Miners: Runtimes Don’t Say Everything 177

A
1

A
3

A
4

P
TE

C
an

ce
r

P
ro

te
in

N
um

be
ro

fg
ra

ph
s

50
00

10
00

0
50

00
34

0
32

55
7

40
N

um
be

ro
fn

od
es

62
93

6
18

37
43

62
93

6
91

89
85

71
26

95
02

N
um

be
ro

fe
dg

es
57

93
6

17
37

43
57

93
6

93
17

92
20

81
22

01
6

A
vg

m
ax

nu
m

be
r

eq
ua

lly
la

be
le

d
no

de
s

2.
7

3.
9

12
.6

11
.9

19
.2

25
.6

A
vg

nu
m

be
ro

fn
od

es
12

.6
18

.4
12

.6
27

.0
26

.3
23

7.
6

A
vg

m
ax

nu
m

be
r

eq
ua

lly
la

be
le

d
ne

ig
hb

or
s

1.
7

3.
2

5.
2

2.
6

2.
7

1.
1

N
um

be
ro

fn
od

e
la

be
ls

10
10

1
66

67
20

N
um

be
ro

fe
dg

e
la

be
ls

1
1

1
4

3
1

F
ig

.
1
.
C

h
a
ra

ct
er

is
ti

cs
o
f
th

e
d
a
ta

se
ts

.

P
TE

C
an

ce
r

A
lg

or
ith

m
2%

3%
4%

5%
4%

G
a
st

o
n

(O
S

)
9.

1M
B

4.
4M

B
3.

4M
B

3.
0M

B
43

0M
B

G
a
st

o
n

(R
E

)
1.

5M
B

1.
3M

B
1.

3M
B

1.
3M

B
23

M
B

FF
S

M
8.

2M
B

4.
1M

B
3.

7M
B

3.
2M

B
25

7M
B

gS
pa

n
3.

8M
B

2.
8M

B
2.

8M
B

2.
8M

B
46

M
B

A
cG

M
33

.9
M

B
5.

3M
B

2.
2M

B
1.

6M
B

43
4M

B
FS

G
12

3.
5M

B
25

.8
M

B
25

.8
M

B
25

.8
M

B
10

7M
B

F
ig

.
2
.
M

em
o
ry

u
sa

g
e

o
f
th

e
a
lg

o
ri

th
m

s.

 1 1
0

 1
00

 1
00

0 0.
6

0.
8

1
1.

5
2

3
4

5

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

A
1

G
as

to
n

(R
E

)
G

as
to

n
(O

S
)

gS
pa

n
F

F
S

M
H

yb
rid

T
re

eM
in

er
F

re
eT

re
eM

in
er

F
S

G
A

cG
M

 1 1
0

 1
00

 1
00

0

2
2.

5
3

4
5

7.
5

10
20

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

A
3

G
as

to
n

(R
E

)
G

as
to

n
(O

S
)

gS
pa

n
F

F
S

M
H

yb
rid

T
re

eM
in

er
F

re
eT

re
eM

in
er

F
S

G

 1
0

 1
00

 1
00

0

26
26

.5
27

27
.5

28
29

30
31

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

A
4

G
as

to
n

(R
E

)
gS

pa
n

F
re

eT
re

eM
in

er
F

S
G

 0
.1 1 1
0

 1
00

 1
00

0

 7
 6

 5
 4

 3
 2

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

P
T

E

G
as

to
n

(R
E

)
G

as
to

n
(O

S
)

gS
pa

n
F

F
S

M
F

S
G

A
cG

M

 3
0

 4
0

 6
0

 8
0

 1
00

 2
00

 3
00

 4
00

 6
00

 8
00

 1
00

0

 2
00

0

3
4

6
10

15
20

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

C
an

ce
r

G
as

to
n

(R
E

)
G

as
to

n
(O

S
)

gS
pa

n
F

F
S

M
F

S
G

A
cG

M

 1 1
0

 1
00

 1
00

0 7
0

 7
5

 8
0

 8
5

 9
0

Run Time (Seconds)

M
in

im
um

 S
up

po
rt

 (
%

)

P
ro

te
in

G
as

to
n

(R
E

)
G

as
to

n
(O

S
)

F
F

S
M

F
S

G
A

cG
M

F
ig

.
3
.
R

u
n
ti

m
e

ex
p
er

im
en

ts
o
n

a
ll

d
a
ta

se
ts

.

A
1

A
3

M
in

im
um

su
pp

or
t

30
%

10
%

8%
6%

7.
5%

4%
3%

2.
5%

Fr
eq

ue
nt

gr
ap

hs
83

8
18

55
2

36
94

5
93

97
9

15
6

18
26

54
05

10
45

1
gS

pa
n

—
S

ub
op

tim
al

ity
10

3%
10

7%
10

8%
10

8%
10

7%
10

1%
10

1%
10

1%
FF

S
M

—
S

ub
op

tim
al

ity
31

0%
23

1%
21

3%
19

5%
25

4%
28

9%
25

4%
23

4%
Jo

in
ef

fic
ie

nc
y

99
%

70
%

62
%

55
%

10
0%

99
%

91
%

85
%

G
a
st

o
n

—
S

ub
op

tim
al

ity
20

7%
13

6%
12

5%
11

5%
21

2%
21

4%
16

1%
13

6%
Jo

in
ef

fic
ie

nc
y

27
%

41
%

43
%

47
%

11
%

29
%

44
%

52
%

Jo
in

ne
ce

ss
ity

97
%

95
%

96
%

97
%

10
0%

98
%

98
%

99
%

H
y
b
r
id

T
r
e
e
M

in
e
r

—
S

ub
op

tim
al

ity
16

0%
16

8%
17

3%
10

4%
10

1%
10

1%
Jo

in
ef

fic
ie

nc
y

21
%

20
%

21
%

33
%

39
%

42
%

Jo
in

ne
ce

ss
ity

96
%

96
%

94
%

10
0%

10
0%

10
0%

P
TE

P
ro

te
in

C
an

ce
r

M
in

im
um

su
pp

or
t

20
%

6%
3%

2%
80

%
75

%
70

%
9%

5%
3%

Fr
eq

ue
nt

gr
ap

hs
19

0
23

26
22

75
8

13
69

49
26

74
0

27
62

97
27

09
33

1
18

18
56

63
15

56
6

gS
pa

n
—

S
ub

op
tim

al
ity

13
9%

13
4%

13
7%

12
9%

-
-

-
16

1%
15

8%
15

9%
FF

S
M

—
S

ub
op

tim
al

ity
19

2%
15

2%
13

3%
13

4%
16

6%
14

4%
13

2%
-

-
-

Jo
in

ef
fic

ie
nc

y
61

%
50

%
45

%
41

%
38

%
35

%
35

%
-

-
-

G
a
st

o
n

—
O

ve
ra

ll
su

bo
pt

im
al

ity
17

6%
14

9%
15

1%
16

5%
18

0%
21

9%
24

1%
17

0%
15

7%
14

7%
Fr

ee
tre

e
su

bo
pt

im
al

ity
16

0%
12

5%
10

9%
10

3%
12

9%
11

1%
10

4%
15

6%
13

9%
12

6%
C

yc
lic

jo
in

ef
fic

ie
nc

y
10

0%
10

0%
94

%
89

%
70

%
75

%
80

%
39

%
29

%
28

%
C

yc
lic

jo
in

ne
ce

ss
ity

10
0%

10
0%

94
%

90
%

82
%

68
%

61
%

94
%

93
%

93
%

Fr
ee

tre
e

jo
in

ef
fic

ie
nc

y
52

%
37

%
64

%
75

%
38

%
49

%
55

%
27

%
27

%
27

%
Fr

ee
tre

e
jo

in
ne

ce
ss

ity
83

%
73

%
86

%
90

%
10

0%
99

%
99

%
96

%
95

%
95

%

F
ig

.
4
.
C

h
a
ra

ct
er

is
ti

cs
o
f
th

e
g
S
p
a
n
,
F
F
S
M

a
n
d

G
a
st

o
n

a
lg

o
ri

th
m

s
o
n

th
e

A
1
,
A

3
,
P

T
E

,
P

ro
te

in
a
n
d

C
a
n
ce

r
d
a
ta

se
ts

.

178 Siegfried Nijssen and Joost N. Kok

Properties regarding the number of equally labeled nodes, edges and neigh-
bors, are listed in Figure 1. These properties are important, as they yield a
higher branching factor in algorithms that perform an exponential search for
embeddings. The datasets represent a broad range of such properties.

To perform our experiments we used two computers: all cyclic graph datasets
were mined on an AMD Athlon XP1600+ with 512MB main memory, running
Mandrake Linux 10; all free tree datasets were mined on an Intel Pentium IV
2.8Ghz with 512MB main memory, running Red Hat Linux 7.3.

The results of runtime experiments are given in Figure 3. The experiments
are measured using the Unix time command and are averaged over 3 runs.

The experiments show the importance of the branching factor of subgraph
isomorphism algorithms. The depth first graph mining algorithms fail miserably
on the A4 dataset, which has a high branching factor (they run too long, or
consume too much memory); only the breadth-first FreeTreeMiner performs
well. Otherwise, however, the FreeTreeMiner usually performs worse than
FSG. The A3 dataset shows the difference between breadth-first algorithms that
have to find one embedding per database graph (like FSG), and depth-first
algorithms that have to find all embeddings. In some cases the breadth-first
graph miners run out of memory, which is caused by extremely large sets of
candidates.

The results on the cyclic datasets are similar to those on the tree datasets,
and confirm the observations of previous publications.

The runtime experiments however do not show whether differences are due to
a ‘better’ canonical form, as claimed by several authors, or due to more optimized
implementations or memory-runtime trade-offs. Results of experiments to assess
the quality of the canonical form are listed in Figure 4. The following statistics
are listed in this table:

– frequent graphs: the number of frequent subgraphs resulting from the runs
of all algorithms;

– suboptimality: the number of frequent subgraphs for which the canonical
string test is computed, divided by the number of frequent subgraphs; the
higher this number is, the less well does the code prevent isomorphic graphs
using easy rules, and thus more redundant supports are computed;

– join efficiency: the number of joins that results in a frequent subgraph, di-
vided by the total number of joins that is performed; the closer to 100% this
value is, the better does the algorithm succeed in only computing embedding
lists that are really frequent; in the case of Gaston, there is a distinction
between the joins between embedding lists of trees and of cyclic graphs;

– join necessity: the number of joins that results in a subgraph with support
higher than zero, divided by the total number of joins that is performed; if
this number would not be close to 100%, joining of embedding lists would
not make much sense, as we are performing many computations that an
algorithm that collects extensions from data would not need to perform.

For Gaston and the HybridTreeMiner, we obtained these measures by chang-
ing the source code. For gSpan and FFSM, we used the Valgrind tool available

Frequent Subgraph Miners: Runtimes Don’t Say Everything 179

A1 1% PTE 2% Protein 75%
Algorithm 1× 3× 5× Regression 1× 2× 3× Regression 1× 2× 3×
Gaston (OS) 4.6s 14.8s 26.1s 5.5x-1.4s 7.9s 15.2s 23.0s 7.5x+0.4s 60s 116s 183s
Gaston (RE) 8.7s 27.7s 48.0s 9.9x-1.8s 39.9s 76.3s 112.4s 36.2x3.7s 148s 398s 643s

(78s) (166s) (290s)
FFSM 29.7s 55.7s 82.2s 26.3x+3.4s 177s 353s 554s

(148s) (398s) (643s)
gSpan 15s 47s 81s 16.6x-2.2s 100s 186s 271s 85.4x+14.9s
FSG 17s 35s 53s 9.1x+7.7s 316s 402s 489s 86.3x+229.8s 1253s 2264s 3275s
AcGM 107s 170s 234s 63.5x+43.3s
HybridTreeMiner 46s 146s 248s 48.9x-1.1s
FreeTreeMiner 243s 715s 238.9x+1.5s

Fig. 5. Scale-up experiments on several datasets; experiments between brackets were
obtained on an Intel Pentium IV.

at www.valgrind.org. Valgrind makes it possible to count numbers of function
calls, even with sufficient reliability for binaries that have been compiled without
debugging information. We counted the number of calls to the isCanonicalForm
(FFSM) and isDuplicate (gSpan) functions, allowing us to determine the sub-
optimality of the graph codes. The functionality of these functions was confirmed
by the authors of the binaries.

The tables provide a large amount of information. Most interesting is the
good performance of gSpan’s code. In terms of optimality, this code performs
best in almost all cases. This result suggests that if we combine the code of gSpan
with the evaluation mechanisms of the other algorithms, we might achieve similar
runtimes as for these other algorithms. Comparing Gaston to FFSM, Gaston
is less optimal than FFSM on cyclic graphs, but joins more efficiently. Only
considering trees in the molecular databases, Gaston’s code is more optimal.
The good result of the HybridTreeMiner on the A3 dataset can be explained
by the fact that most frequent subtrees in this database turn out to be (single)
centred; HybridTreeMiner’s tree code is optimized for such trees.

The most interesting observation is that there is no strong relation between
the runtime experiments and the efficiencies of the graph codes. Then what does
determine the efficiency of the graph miners?

More insights can be obtained from the experiments in Figure 5 and Fig-
ure 2. In Figure 5, we repeat the same mining experiments for increasingly
larger datasets that are obtained by concatenating the same dataset multiple
times. In general, the algorithms scale linearly. The constant in the linear re-
gression relates to the operations that are independent of the dataset size, such
as candidate generation. The time to count candidates is comparable in both
the breadth-first and depth-first graph miners that do not use embedding lists.
The effort to find all embeddings is apparently negligibly higher than the effort
to find only one. On the Protein dataset, however, the scale-up is not linear. If
we perform this experiment on two different computers, we can conclude that
he reason is the very small size of this dataset. Without using embedding lists,
the data fit all within the cache of the CPU, and the computation is extremely

180 Siegfried Nijssen and Joost N. Kok

fast. On a computer with less cache (like the Athlon) the advantage of in-cache
computations is lost more quickly as the dataset grows larger.

Finally, the memory usage experiments show that the runtime differences
between FFSM and gSpan are the result of a memory-CPU trade-off. Please
note that the differences in memory usage are strongly influenced by the choices
made in the binaries for the amount of bits used to represent node labels, etc.,
and are therefore only indicative.

4 Conclusions

In this study, we have confirmed that there is not a strong relation between the
canonical string that is used and the runtime behavior of the algorithms. Poly-
nomially computable codes, such as used in frequent tree mining, are often less
efficient from a practical point of view. Of the many canonical codes that have
been proposed, the DFS code that was introduced in gSpan perform consistently
most well. Given its conceptual simplicity, this code should be preferred.

The differences between breadth-first and depth-first graph mining are sig-
nificant. In most cases, the depth-first miners are faster and require less memory.

Many of the runtime differences between graph miners can be attributed to
two aspects. First, there are the typical high performance computing issues, such
as caching behavior; second, there is the memory usage-runtime trade-off.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, pages
307–328, 1996.

2. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant
substructures of molecules. In ICDM, pages 51–58, 2002.

3. Y. Chi, S. Nijssen, R. R. Muntz, and J. N. Kok. Frequent subtree mining—An
overview. In Fundamenta Informaticae, volume 66, pages 161–198, 2005.

4. J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha.
Mining family specific residue packing patterns from protein structure graphs. In
RECOMB, pages 308–315, 2004.

5. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the
presence of isomorphism. In ICDM, pages 549–552, 2003.

6. A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for mining
frequent connected subgraphs. Technical Report RT0448, IBM Research, 2002.

7. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages
313–320, 2001.

8. S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a
difference. In KDD, pages 647–652, 2004.

9. M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A quantitative comparison
of the subgraph miners MoFa, gSpan, FFSM, and Gaston. In PKDD, LNCS 3721,
pages 392–403, 2005.

10. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM,
pages 721–724, 2002.

11. M. J. Zaki. Efficiently mining frequent trees in a forest. In KDD, pages 71–80,
2002.

Graph Kernels versus Graph Representations: a
Case Study in Parse Ranking

Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski

Turku Centre for Computer Science (TUCS)
Department of Information Technology, University of Turku

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
firstname.lastname@it.utu.fi

Abstract. Recently, several kernel functions designed for a data that
consists of graphs have been presented. In this paper, we concentrate
on designing graph representations and adapting the kernels for these
graphs. In particular, we propose graph representations for dependency
parses and analyse the applicability of several variations of the graph ker-
nels for the problem of parse ranking in the domain of biomedical texts.
The parses used in the study are generated with the link grammar (LG)
parser from annotated sentences of BioInfer corpus. The results indicate
that designing the graph representation is as important as designing the
kernel function that is used as the similarity measure of the graphs.

1 Introduction

Structured data are a commonplace in areas such as natural language process-
ing (NLP). One of the most frequently encountered data structures in NLP
are graphs. Kernel methods (see e.g. [1, 2]) have been among the most success-
ful and computationally effective learning algorithms that can take advantage
of the structured representation of the data. Recently, kernel functions on in-
stances that are represented by graphs were introduced by [3–7]. Inspired by this
research, we propose graph representations for dependency parses and analyse
the applicability of the graph kernels for the problem of parse ranking in the
domain of biomedical texts.

The link grammar (LG) parser [8] used in our research is a full dependency
parser based on a broad-coverage hand-written grammar. The parses are gener-
ated by the LG parser applied to BioInfer corpus [9] containing 1100 annotated
sentences. Due to the complexity of the biomedical text, the number of parses
generated per sentence is large. Recently, we introduced a method for depen-
dency parse ranking [10] that uses regularized least-squares (RLS) algorithm [11]
and grammatically motivated features. The method, called RLS ranker, worked
notably better giving 0.42 correlation compared to 0.16 of the LG heuristics
measured with the Kendall’s τb correlation coefficient [12]. In [13], we further
developed the method by designing nonlinear kernel functions suitable for the
problem.

182 Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski

In this study, we concentrate on designing graph representations, which is
often overlooked. We demonstrate that designing an appropriate graph repre-
sentation has a notable influence on the final results, comparable to the influ-
ence of the kernel function. RLS using graph kernels is applied to the proposed
graph representations and the results indicate an improved correlation of 0.45.
A detailed description of the data, RLS algorithm and the experimental setup
used in this paper is given in [10]. We also show that the proposed approach can
be considered as a generalization over previously described method [10].

2 Graph Kernels

We now give a brief introduction to kernels considered in this study. Formally,
let X denote the input space, which can be any set, and H denote the feature
space. For any mapping Φ : X → H, k(x, z) = 〈Φ(x), Φ(z)〉 is a kernel function.
Following [3], we define a labeled graph representation of data points as follows.
Below, Mi×j(R) denotes the set of real valued matrices of dimension i× j and
[M]i,j denotes the element of matrix M in the i-th row and j-th column. Let
L = {l}r, r ∈ N+ be an enumeration of all possible labels. Let G = (V, E, h) be
a graph that consists of the set of vertices V , the set of edges E ⊆ V × V , and
a function h : V → L that assigns a label to each vertex of a graph. We assume
that the edge set of G is represented as an adjacency matrix A ∈ M|V |×|V |(R)
whose rows and columns are indexed by the vertices V , and [A]i,j is one if the
vertices vi ∈ V and vj ∈ V are connected with an edge, and zero otherwise.
We also assume that the function h is represented as a label allocation matrix
L ∈ M|L|×|V |(R) so that its element [L]i,j is one if vertex vj ∈ V has a label
li ∈ L and zero otherwise.

We also define the following relaxed version of the graph labeling. Let L be
a vector space, for example, L = Rp. We can then define h : V → L to be a
function that assigns a label vector to each vertex of a graph. Its correspond-
ing representation as a label allocation matrix is L ∈ M|L|×|V |(R) so that the
columns of the matrix are the label vectors of the vertices.

Again, we follow [3], and define a class of kernel functions on labeled graphs.
Let us consider the nth power An of the adjacency matrix of the graph G. Then,
[An]i,j is the number of walks of length n from vertex vi to vertex vj . When
we take the labels of the vertices into account, we observe that [LAnLT]i,j is
the number of walks of length n between vertices labeled li and lj . Let G and
G′ be labeled directed graphs and let 〈M, M ′〉F denote the Frobenius product
of matrices M and M ′, that is, 〈M,M ′〉F =

∑
i,j [M]i,j [M ′]i,j . Let further γ ∈

Mn×n(R) be a positive semidefinite matrix whose eigen decomposition is UΛUT,
where U is a matrix that contains the eigenvectors of γ and Λ is a diagonal matrix
containing the eigenvalues of γ. We define the kernels kn between the graphs G
and G′ as follows

kn(G, G′) =
∑n

i,j=0[γ]i,j〈LAiLT, L′A′jL′T〉F
=

∑|L|
k,l=1

∑n
i,j=0[γ]i,j [LAiLT]k,l[L′A′

j
L′T]k,l

=
∑|L|

k,l=1

∑n
i=0 φi,k,l(G)φi,k,l(G′)

(1)

Graph Kernels versus Graph Representations 183

where it is easy to see that, when γ is positive semidefinite, the features are
defined as φi,k,l(G) =

∑n
j=0[

√
ΛUT]i,j [LAjLT]k,l. By specializing [γ]i,j in (1),

we obtain several kernel functions with different interpretations. For example, if
we set [γ]i,j = θiθj , where θ ∈ R+ is a parameter, we obtain the kernel

k̂n(G,G′) = 〈L(
n∑

i=0

θiAi)LT, L′(
n∑

i=0

θiA′i)L′T〉F . (2)

This kernel can be interpreted as an inner product in a feature space in which
there is a feature φk,l per each label pair (k, l) so that its value φk,l(G) for a
graph G is a weighted count of walks of length up to n from the vertices labeled
l to the vertices labeled k. On the other hand, by setting [γ]i,j = θi when i = j
and zero otherwise, we obtain the kernel

k̃n(G, G′) =
n∑

i=0

θ2i〈LAiLT, L′A′iL′T〉F , (3)

which can be interpreted as an inner product in a feature space in which there
is a feature φi,k,l per each tuple (i, k, l), where l and k are labels and i is a
length of a walk. Its value φi,k,l(G) for a graph G is θi times the count of
walks of length i from the vertices labeled l to the vertices labeled k. Finally,
with certain conditions on the coefficients [γ]i,j , we can also define k∞(G,G′) =
limn→∞ kn(G,G′). One such kernel function is, for example, the exponential
graph kernel kexp(G,G′) = 〈LeβALT, L′eβA′L′T〉F , where β is a parameter and
eβA can be written as eβA = limn→∞

∑n
i=0

βi

i! Ai. In this case, the coefficients

[γ]i,j are determined by the parameter β as follows: [γ]i,j = βi

i!
βj

j! .

2.1 Graph Representations of the Parses

The output of the LG parser contains the following information for each input
sentence. The linkage consisting of pairwise dependencies between pairs of words
termed links. An example of a parsed sentence is presented in Fig.1. In addition
to the linkage structure, the parses contain information about the link types
(the grammatical roles assigned to the links) used to connect word pairs. The
link types present in Fig.1 are Mp, Js, Ss, etc. Further, the parse contains the
part-of-speech (PoS) tags of the words, such as verb (v), noun (n) and adjective
(a) categories. In Fig.1, the assigned PoS tags, for example, to the words ab-
sence, alpha-syntrophin, leads are n, n v, respectively. Different parses of a single
sentence have a different combination of these elements.

In our previous study [10], we proposed several grammatically motivated
features that could be extracted from the above described dependency parses,
namely the link type, link length, PoS, word & link type, word & PoS, link type &
link length, grammatical bigram, and link bigram features that we will describe
below in more detail. In this paper, we are using graph kernels as similarity
measures of the data points. Therefore, we now define a graph representation for
the parses. The representation is designed so that we are able to simulate the
previously proposed (and some additional) features with the graph kernel.

184 Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski

Absence.n of alpha-syntrophin.n leads.v to structurally aberrant.a neuromuscular.a synapses.n deficient.a in utrophin.n .

A
MVp A MVpMaJs

Jp

Mp
Ss

JsE

n n

1

Mp

1

Js

1

MVp

Absence

Ss

3of alpha-syntrophin leads

v

to

Jp

4

n Mp Ssn

1 Absenceof 1

Js

alpha-syntrophin 1

MVp

to

3

Jp

3

3

leads3

2 2 3

v

2

4

3 3 2

Fig. 1. Example of parsed sentence (top). Graph representation of the beginning of
the parse (middle). Walks of length 2 present in the parse (bottom). Note that some of
the loops (the edges starting from and ending to the same node) have weights larger
than one, that is, there are several repetitions of the corresponding walks.

Graph representation. Let p be a parse generated from a sentence s and let
G = (V,E, h) denote the graph representation of p. An example of the graph
representation is presented in Fig.1. Let us first define the vertices of p. For each
word in the sentence s, there is a corresponding vertex v ∈ V and the vertex is
labeled with the word (the word vertices and their labels do not depend from
the parse). Thus, if a word occurs several times in the sentence s, all of the
occurrences have their own vertices in the graph but the labels of the vertices
are equal. For each link in the parse p, there is a corresponding vertex in V that
is labeled with its link type. Similarly to the word vertices, a parse may have
several occurrences of the same link type. In p, each word is assigned a PoS, for
which there is a corresponding vertex in V labeled with the PoS. Further, each
link in p has a length (the number of words that a link in the sentence spans)
for which there is a corresponding vertex in V labeled with the length. In Fig.1,
they are the vertices labeled with integers, for example, 1, 1, 3, etc.

The edges of G are defined as follows. A word vertex and its corresponding
PoS vertex are connected with an edge. A link vertex and its corresponding
length vertex are connected with an edge. If two words are connected with a
link in the parse p, the corresponding link vertex is connected with an edge to
both of the corresponding word vertices. The connection of a word vertex in
the graph with a link vertex (for example in Fig.1: absence—Mp, absence—Ss,
of—Js, etc.) can be considered as the word & link type feature described in our
previous study. Below, we show how these connections are used to create also
word bigram and link bigram described previously [10].

Random walk features. Let G = (V,E, h) be a graph representation of a
parse. Let us consider the second power of the adjacency matrix A of G, that
is, the walks of length 2 in the graph representation of the corresponding parse.

Graph Kernels versus Graph Representations 185

Those walks in the graph representation are illustrated in Fig.1. Note that in-
tersection of the sets of the walks of length one and two is empty due to the
bipartite property of the graph. Also because of this property, all of the walks of
length 2 have both the start and the end vertices in the same subset. Among the
walks of length two there is, for example, a walk between two word vertices iff
they are connected with a link in the parse, and between two link vertices iff the
links are connected to the same word in the parse. Such connections were called
grammatical bigrams and link bigrams in [10]. We also obtain walks between be-
tween PoS vertices and link vertices, and between word vertices and link length
vertices. Finally, a vertex has as many cycles as there are edges connected to
it. If we consider the higher powers of the adjacency matrices, we obtain new
features, for example, link length pairs in the fourth power. In the higher pow-
ers, we also obtain word and link bigrams, where the words and links are not
connected to each other in the parse.

Vector labeled graph representation. Using multiple labels for vertices offers
a way to incorporate more information into the graph representation. This kind
of representations have been considered by [6], for example. In addition to the
graph representation presented above, we define the following vector labeled
representation. Again, let p be a parse generated from a sentence s and let
G = (V, E, h) denote the graph representation of p. For each word in the sentence
s, there is a corresponding vertex v ∈ V and the vertex is labeled with the word
and its PoS. In other words, all the elements of the label vector are zero except
the ones indexed by the word and its PoS. For each link in the parse p, there
is a corresponding vertex in V that is labeled with its link type and its length.
Thus, instead of having the PoS and link length vertices as in the previous graph
representation of parses, they are used as vertex labels in this representation.
We refine the representation further using the following five labels for the link
length instead of just one. Let l be the length of a link. Instead of using only l,
we use l − 2, l − 1, l, l + 1, l + 2. Using this set of labels, we are able to match
similarities between links whose lengths are close to each other, while the single
label is useful only for exact matching of the link lengths. This representation has
certain connections that the previous one does not have, such as the connections
between word and link length as well as between PoS and link type. On the
other hand, it misses the connections between word and PoS as well as between
link type and link length that are in the previous representation.

When we consider the walks of length 2, that is, the label connections ob-
tained using the second power of the adjacency matrix, we observe that the
missing connections between word and PoS, for example, are among those walks.
Note, however, that there are also connections between words and the PoS of
their neighboring words, and there is no way to distinguish between these con-
nections and the connections between words and their own PoS. The same prob-
lem arises from the connections between link type and link length that are also
among the walks of length 2.

186 Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski

3 Experiments

We give a detailed description of the problem and the data in [10]. We evalu-
ate the different variations of the graph kernel by performing a 10-fold cross-
validation on the sentence level so that all the parses generated from a sentence
would always be in the same fold (see [14] for a fast n-fold cross-validation al-
gorithm for RLS). The RLS algorithm has the regularization parameter λ that
controls the trade-off between the minimization of the training error and the
complexity of the regression function. The appropriate values of this parameter
is determined together with the kernel parameters by grid search with 10-fold
cross-validation.

In our experiments, we evaluate the kernels k̂n and k̃n up to the third power
with different parameters. In addition, we evaluate the following version of the
exponential graph kernel k̄exp(G,G′) = 〈LAeβALT, L′A′eβA′L′T〉F . We multiply
the exponentiated adjacency matrix eβA by A, because then by setting β = 0,
we obtain the original adjacency matrix A as a special case, and we can set the
preferred weight of the higher powers by a grid search on β.

We start by evaluating the graph kernel k0 with [γ]0,0 = 1, that is, the
zeroth power of the adjacency matrix. The obtained performance of the RLS
ranker with k0 is 0.377. This corresponds to a kernel that counts the elementary
features that are present in both parses, that is, the words, link types, PoS tags,
and link lengths. Recall that the word vertices only depend on the sentence, and
therefore they are useless for the parse ranking. In our previous study [10], we also
found out that the other elementary features are not as good as the combination
features. We continue by evaluating k1 with [γ]i,j = 1 when i = j = 1 and zero
otherwise. In other words, we use only the original adjacency matrices of the
graphs determined by the edges defined in Sect.2. The result of this experiment
is 0.406 correlation points. The performance differences in these two experiments
are in correspondence to our previous study [10], in which we observed that the
ranking performances with the four elementary features were low compared to
their combinations that are present in the first power of the adjacency matrices.

The second powers of the adjacency matrices contain the elementary features
present in the zeroth power, the rest of the combination features proposed in the
previous study that are present in the first and the second powers, and also some
new combination features in the second power. To get a weighted combination of
the first and the second power features, we evaluate the following kernel function

k(G,G′) = 〈L(A + θA2)LT, L′(A′ + θA′2)L′T〉F , (4)

where θ is a parameter for which we perform a grid search in range 2−5, 2−4, . . . , 25.
The above kernel is equal to k̂2 in (2) except that we exclude the zeroth power.
Note that due to the bipartite property, the kernel is also equal to k̃2 in (3) with
the zeroth power excluded. The performance with the best θ parameter is 0.429
correlation points.

Graph Kernels versus Graph Representations 187

To analyse the usefulness of the walk features of length longer than 2, we
evaluate the following two kernels

k(G,G′) = 〈L(A + θA2 + θ2A3)LT, L′(A′ + θA′2 + θ2A′3)L′T〉F , (5)

and
k(G,G′) = 〈LALT, L′A′L′T〉F + θ〈LA2LT, L′A′2L′T〉F

+θ2〈LA3LT, L′A′3L′T〉F ,
(6)

where the best θ parameters are found with a grid search. The first kernel is
similar to k̂3 in (2) with the zeroth power excluded, and the second kernel is
similar to k̃3 in (3) with the zeroth power excluded. The performance using
the first and the second kernels with the best parameters are 0.422 and 0.429
correlation points, respectively. We also performed some experiments with the
fourth powers of the adjacency matrices but the results were worse than the
above two. The performance with the exponential graph kernel k̄exp(G,G′) is
0.425 correlation points. According to the results, is seems that the walks of
length larger than 2 are not useful features when this kind of graph representation
is used. In fact, they seem to be even harmful when they are mixed with the
lower order features, for example, in the kernel (5).

We also evaluate the vector labeled graph representation presented in Sect.2.
The results with the original adjacency matrix and with the kernel (4) are 0.364
and 0.377, respectively. They are clearly worse than the ones with the single
labeled graph representation and therefore we do not conduct more experiments
with the vector labeled representation. The low performance is probably due to
the noisy combination features that we discuss in Sect.2.1. The results indicate
that designing the graph representation is as important as designing the kernel
function.

In order to validate the results with an unseen test set, we conduct a final
validation experiment on 600 sentences reserved for that purpose. We select the
single labeled graph representation and the kernels (4) and (6) with the best
performing parameter combinations, that is, the settings that give the highest
ranking performance in the parameter estimation experiments. The ranker is
trained with the parameter estimation data and the results with the kernels (4)
and (6) are 0.444 and 0.447 correlation points, respectively.

4 Conclusion

We propose graph representations for dependency parses and analyse the ap-
plicability of several variations of the graph kernels for the problem of parse
ranking in the domain of biomedical texts. We use the graph kernels to generate
features that are based on the start and end labels of random walks between
vertices in the graphs. The feature vector corresponding to a data point is de-
termined by its graph representation and the kernel function. Both of them have
to be selected carefully in order to ensure a good performance of the machine
learning method. Several kernel functions have already been proposed for a data

188 Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski

that consists of graphs. In addition, our results underline the importance of the
design of a good graph representation for the data points. The performance
achieved is promising when compared to our previous studies [10] and could be
even further improved by designing representations capturing additional prior
knowledge about the problem to be solved.

Acknowledgments

This work has been supported by Tekes, the Finnish Funding Agency for Tech-
nology and Innovation. We would like to thank CSC, the Finnish IT center
for science, for providing us extensive computing resources and the anonymous
reviewers for their insightful comments.

References

1. Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press (2002)
2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
3. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop

on Unreal Data: Principles of Modeling Nonvectorial Data. (2002)
4. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and

efficient alternatives. In Schölkopf, B., Warmuth, M.K., eds.: COLT’03, Springer
(2003) 129–143

5. Kashima, H., Inokuchi, A.: Kernels for graph classification. In: ICDM Workshop
on Active Mining. (2002)

6. Suzuki, J., Sasaki, Y., Maeda, E.: Kernels for structured natural language data.
In Thrun, S., Saul, L.K., Schölkopf, B., eds.: NIPS 16, MIT Press (2003)

7. Vishwanathan, S., Smola, A.J., Vidal, R.: Binet-cauchy kernels on dynamical
systems and its application to the analysis of dynamic scenes. International Journal
of Computer Vision (2006) To appear.

8. Sleator, D.D., Temperley, D.: Parsing english with a link grammar. Technical
Report CMU-CS-91-196, Carnegie Mellon University, Pittsburgh, PA (1991)

9. Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., Salakoski,
T.: Bioinfer: A corpus for information extraction in the biomedical domain (2006)
Submitted.

10. Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.:
Regularized least-squares for parse ranking. In Famili, A.F., Kok, J.N., Peña, J.M.,
Siebes, A., Feelders, A.J., eds.: IDA’05, Springer (2005) 464–474

11. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of
the American Mathematical Society (AMS) 50(5) (2003) 537–544

12. Kendall, M.G.: Rank Correlation Methods. 4. edn. Griffin (1970)
13. Tsivtsivadze, E., Pahikkala, T., Boberg, J., Salakoski, T.: Locality-convolution

kernel and its application to dependency parse ranking. In Ali, M., Dapoigny, R.,
eds.: IEA-AIE’06, Springer (2006) 610–618

14. Pahikkala, T., Boberg, J., Salakoski, T.: Fast n-fold cross-validation for regularized
least-squares. In: Proceedings of the Ninth Scandinavian Conference on Artificial
Intelligence (SCAI 2006). (2006) To appear.

The Kingdom-Capacity of a Graph: On the Difficulty of
Learning a Graph Labeling

Kristiaan Pelckmans1, Johan A.K. Suykens1, and Bart De Moor1

K.U. Leuven, ESAT, SCD/SISTA, Kasteelpark Arenberg 10, Leuven, B-3001, Belgium
e-mail:kristiaan.pelckmans@esat.kuleuven.be

WWW home page:http://www.esat.kuleuven.ac.be/scd/

Abstract. This short paper1 establishes a measure of capacity of a fixed graph
which can be used to characterize the complexity of learninglabels of a graph.2

We denote it as the Kingdom-capacity (K-capacity) of a graph. It is shown how
this notion is implied by the definition of an out-of-sample extension rule predict-
ing the labels of unobserved nodes. An efficient way to compute the K-capacity
of a given graph is derived, based on the analogy with a simplestrategy game. It
is shown how this measure of capacity can be used to constructa nontrivial gen-
eralization bound for transductive inference of the labelsof the nodes of a given
graph.

The aim of learning over graphs received increasing attention in recent years, see
e.g. [3]. Such tasks can often be abstracted in terms of associating a+1 or −1 label to
the respective nodes. Such problems can be related to the task of looking for a minimal
cut and variations, see e.g. [11]. Capacity concepts are commonly used in graph theory,
they mostly focus on issues of connectedness or are based on maximal matching or col-
oring results. The Shannon capacity for example characterizes the maximal information
which can be transmitted through a network. An efficient SDP relaxation was devised,
see e.g. [7]. This work aims at a similar result in the contextof learning over graphs.

Therefor, a capacity measure is defined and analyzed, characterizing the complexity
of learning the labels of a fixed graph. This notion is analoguous to results of maximal
margin classifiers, and can directly be related to the VC dimension in learning theory
[6, 12]. The naming convention is intentionally kept different to avoid confusion with
theVC-dimension of a graph which is defined differently, see e.g. [5].

The Kingdom-Capacity (K-capacity) expresses how many nodes can choose their
own label at will (’are king to a neighborhood’).Although this capacity is combinatorial
in nature (and hence difficult to compute), it is indicated how a nontrivial upper- and
lower-bound respectively can be computed efficiently. Morespecifically, linear pro-
gramming problems are formulated yielding such a bound. Theformulation of those
problems is explained by analogy to a simple strategy game inwhich one determines
the maximal number of king nodes who can all defend their territory (potentially) suc-
cessfully. This notion can be directly related to capacity concepts of networks, see e.g.
[1].

1 (KP): BOF PDM/05/161, FWO grant V4.090.05N; - (JS) is an associate professor and (BDM)
is a full professor at K.U.Leuven Belgium, respectively. (SCD:) GOA AMBioRICS, CoE
EF/05/006, (FWO): G.0407.02, G.0197.02, G.0141.03, G.0491.03, G.0120.03, G.0452.04,
G.0499.04, G.0211.05, G.0226.06, G.0321.06, G.0553.06, (ICCoS, ANMMM, MLDM);
(IWT): GBOU (McKnow), Eureka-Flite2 IUAP P5/22,PODO-II,FP5-Quprodis; ERNSI;

2 We like to thank professor J. Shawe-Taylor and the anonymousreviewers for constructive
remarks.

190 Pelckmans et al.

The following Section formulates this capacity, and motivates this capacity in learn-
ing theory. Section 3 discusses a practical approach to efficiently assess this measure of
complexity. Section 4 discusses a numerical example, and reviews some further conse-
quences of this line of thought.

1 GRAPH CUTS AND HYPOTHESIS SET

Let a graphG be defined as a set of nodesV = (v1, . . . , vn) and corresponding edges
{wij ≥ 0 betweenvi andvj }

n
i,j=1. Let the nodes have a corresponding label{qi ∈

{−1, 1}}n
i=1. Let the vector of positive weightswi be defined as(wi1, . . . , win)T ∈

R
n
+. Define the neighborhood functionf(v∗) of any nodev∗ as

f(v∗) =

n
∑

j=1

w∗jqj = wT
∗ q, (1)

whereq = (q1, . . . , qn)T ∈ {−1, 1}n. Then the neighborhood rule becomes ’sign(f(v∗))’
as suggested e.g. in [3, 4]. Labelyi is defined to be consistent with its prediction rule if

qif(vi) = qi

n
∑

j=1

wijqj = qi(w
T
i q) ≥ 0, (2)

and consistent with a marginρ > 0 if qi(w
T
i q) ≥ ρ. The set of different hypothical

labellingsq ∈ {−1, 1}n where each labeling is consistent with corresponding neigh-
borhood rules with a certain marginρ > 0 is thus defined as

Hρ =
{

q ∈ {−1, 1}n
∣

∣

∣
qi(w

T
i q) ≥ ρ, ∀i = 1, . . . , n

}

. (3)

Let |Hρ| denote the cardinality of the setHρ. It is seen intuitively that this mechanism
of self-consistency may be used to reduce the number of permitted labels:|Hρ| can be
expected to be smaller than2n. Before making this statement more precise, a motivation
for this restriction of the hypothesis set is given for the case of transductive learning
graph labels.

1.1 TRANSDUCTIVE INFERENCE ON GRAPHS

We show how the rate of learning of labels of the deterministic graphG can be ex-
pressed in terms of (a bound on) the cardinality of this set. Therefor, the setting of trans-
ductive learning is adopted: let a graphG = (W ,V) with n nodesV = {v1, . . . , vn}
and connectionsW = {w1, . . . , wn} ⊂ R

n be fixed beforehand. Let to each node
a deterministic labelyi ∈ {−1, 1} be associated. The random mechanism becomes
apparent through the choice of which nodes are seen during the training phase. Let
the random variableSi for an i = 1, . . . , n denote a randomly chosen node, gov-
erned by a fixed but unknown distribution functionFS . Then we study sets of samples
S = {S1, . . . ,Sny

} which do not contain a node twice or more(sampled without re-
placement). The algorithm observes the graphG and the labels of a subset of nodesyS

defined asYS = {ySj
}

ny

j=1 whereSj ⊂ {1, . . . , n} andny < n. We observe a spe-
cific setS0 ∈ S with corresponding sampleYSo = {ySo

1
, . . . , ySo

ny

}. Now, a crucial

Kingdom Capacity 191

assumption is that this sampleSo is taken i.i.d. from the nodes. Formally, let the actual
classification risk be defined as

R(FS ; q) =
1

ny

∫

∑

i∈s

I(yiw
T
i q < 0) dFS(s), (4)

where the indicator functionI(z < 0) is defined as one ifz < 0 and zero otherwise.
The empirical counterpart becomes

R̂(So; q) =
1

ny

∑

i∈So

I(yiw
T
i q < 0). (5)

Application of Serfling’s tail inequality as in [9, 8] gives the following result.

Theorem 1 (Complexity of Learning) With probability0 < 1 − δ < 1, the following
inequality holds for all labelingsq ∈ Hρ:

R(FS ; q) ≤ R̂(So; q) +

√

(

n − ny + 1

n

)

ln |Hρ| − ln δ

2ny

. (6)

Proof: Since only a finite number of hypothesis can be chosen as stated previously,
the bound follows directly from application of the Union bound on Serfling’s inequality,
see e.g. [12], Ch. 4.
It becomes apparent that a good upper-bound to|Hρ| is important for the usefulness of
the bound. This theorem yields the formal motivation for thefollowing statementsthe
expected loss of using the rule ’sign(wT q)’ on ny randomly sampled nodes would not
be too different from the loss observed. The learning problem computing a hypothesis
q ∈ Hρ which corresponds maximally with theny provided labels becomes

min
q∈{−1,1}n

∑

i∈So

I(yiqi < 0) s.t. q ∈ Hρ. (7)

Since the predictor rule ’sign(wT q)’ is to be constraint to be consistent on all nodes
with the labels (see definition ofHρ in (3)), this rule can be used to predict the label
of nodes which are not inSo. The study of an efficient algorithm to solve this learning
problem, and a formal relation to approaches based on a minimal cut is the topic of a
forthcoming paper.

1.2 KINGDOM CAPACITY

We now advance to a more complex way to characterize the complexity of the class
Hρ. The Kingdom capacity (K-capacity) - denoted asϑ(ρ) - is defined as the maximal
number of nodes which can chose their label at will (’king’) such that remaining nodes
(’vassals’) can be labeled making the king nodes consistentwith theirselves. Letqs be
defined as the restriction of a vectorq ∈ {−1, 1}n to the set of indicess ⊂ {1, . . . , n}.
Let q\s denote the set differenceq\qs (q\s is also denoted as the completion ofq).

Definition 1 (Kingdom Capacity) Given a fixed graphG = (V ,W), the K-capacity
ϑ(ρ) is defined as follows

ϑ(ρ) = max
s⊂{1,...,n}

|s| s.t. ∀qs ∈ {−1, 1}|s|, ∃q\s ∈ {−1, 1}n−|s|
∣

∣

∣

qi(w
T
i q) ≥ ρ ∀i ∈ s. (8)

192 Pelckmans et al.

This definition is motivated by the following bound on the cardinality of the setHρ.

Theorem 2 (Bound to Cardinality) For any graphG with n nodes and a K-capacity
of ϑ(ρ), the hypothesis classHρ contains at most a finite number of hypotheses. This
number is bounded as follows The above reasoning yields

|Hρ| ≤

ϑ(ρ)
∑

d=0

(

n

d

)

2d. (9)

Proof: At first, consider a fixed graphG with n nodes and corresponding con-
nections{wij ≥ 0}i6=j. Let s be a subset of{1, . . . , n} of maximal cardinalitysuch
that for every assignment of+1 either−1 to the nodesqs, one can find a completion
q\s ∈ {−1, 1}n−|s| such that for the nodes ins the ruleqi(w

T
i q) ≥ ρ holds. Formally

s ⊂ {1, . . . , n} : ∀qs ∈ {−1, 1}|s|, ∃q\s ∈ {−1, 1}n−|s| : qi(wiq) ≥ ρ, ∀i ∈ s.
(10)

Remark that there may be more than one such setss ⊂ {1, . . . , n} of the same (max-
imal) cardinality. More precisely, there may be maximally

(

n
|s|

)

such a sets. This def-

inition implies that the graphG permits at most
(

n
|s|

)

2|s| different hypotheses. Indeed,

assume that|Hρ| >
(

n
|s|

)

2|s|. As q can only take two different values, there is at least

one subsets′ ⊂ {1, . . . , n} with higher cardinality (|s| < |s′|) such that all2|s
′| possible

combinationsqs′ ∈ {−1, 1}|s
′| satisfy the self-consistency, contradicting the assump-

tion of maximality.
By definition, the K-capacity equals the cardinality of thismaximal sets, hence we

denote such a set assϑ(ρ). Since we do not restrict the maximal number of setssϑ(ρ),
this bound holds for any given graph withn nodes and a K-capacity ofϑ(ρ), yielding
(9).
It is seen that this reasoning is similar in spirit to Sauer’slemma and extensions as
discussed e.g. in [2].

2 ASSESSING THE K-CAPACITY

2.1 UPPER-BOUND TO THE K-CAPACITY: THRESHOLDING EDGES

A first method gives an intuitive bound on the K-capacity based on neglecting the non-
important connections. More precisely, if a certain connection wij is larger than all
other connections{wik}k 6=j , (i.e.wij ≥

∑

k 6=j wik − ρ) a cut of the former cannot be
corrected by any combination of latter weights. Thus a necessary condition is that no
cut may occur between nodevi and nodevj , hence reducing the maximal set of free
nodes by a unit.

Proposition 1 (Bound by Thresholding Edges)Let ϑ̃(ρ) be defined as

ϑ̃(ρ) , max
s⊂{1,...,n}

|s| s.t. ∀i 6= j ∈ s : wij <
∑

k 6=j

wik−ρ, AND wij <
∑

k 6=i

wkj−ρ.

(11)
Thenϑ(ρ) ≤ ϑ̃(ρ) ≤ n.

Kingdom Capacity 193

Proof: We show thatϑ(ρ) ≤ ϑ̃(ρ). Supposewij ≥
∑

k 6=j wik − ρ andqiqj = −1
(i.e. cut betweenvi andvj), then the following inequality holds

qi

wijqj +
∑

k 6=j

wikqk

 ≤ −wij +
∑

k 6=j

wik ≤ ρ, (12)

hence contradicting the condition of the K-capacity in (8).This implies that no cut
can be made between nodes with too strong a connection. Maximizing with this (only)
necessary condition gives the upper-bound.
To compute this quantity, construct a graphGρ with the samen nodesv as previously,
and weightswρ such thatwij,ρ = wij if wij ≥

∑

k 6=j wik −ρ or wij ≥
∑

k 6=i wkj −ρ,

for all i 6= j, or zero otherwise. Theñϑ(ρ) simply equals the number of disconnected
components inGρ. Remark that this notion is related to the classical notion of capacity
of a graph defined as follows (see e.g. [7])

cap(G) = max
s⊂{1,...,n}

|s| s.t. ∀i 6= j, wsi,sj
= 0. (13)

This approach of thresholding often yields however overly pessimistic estimations (̃ϑ(ρ) ≈
n) of the K-capacity, especially when all non-zero weights take values of similar mag-
nitude.

2.2 UPPER-BOUND TO THE K-CAPACITY: LAZY KINGS
A thighter upper-bound can be obtained from a convex optimization problem as fol-
lows. To introduce the methodology, we encode the problem based on the analogy with
a simple strategy game. Here, we set a node to aking if it can chose its own label freely.
The remaining nodes are avassal, as they are to support their king’s will. This is en-
coded as a binary variableξi for each nodevi: ξi = 1 means thatvi is a king,ξi = 0
means thatvi is a vassal. Now it is clear that we look for the maximal numberof kings
which can be supported by a given graph. The first formulationassumes the kings are
lazy: they are happy as long as their are enough vassal neighbors which can be enslaved
when needed. This means that they need not be suspicious and vassals are thus not gov-
erned by a single king. This idea implements a necessary condition for the bound to
hold, resulting in an upper-bound. Making this idea formal,we obtain that the number
of vassals (ξi = 0) multiplied by their connection weight should majorate theweighted
number of kings in a king’s vicinity, or for alli = 1, . . . , n:

vi king ⇒
n

∑

j=1

wijξj ≤
n

∑

j=1

wij(1 − ξi) − ρ. (14)

Reformulating the left hand side and forcing the constraintto be trivial whenξi = 0
yields the expressions2

∑n
j=1 wijξj ≤ (2 − ξi)

∑n
j=1 wij − ρ for all i = 1, . . . , n.

Combining the above reasoning gives the integer programming problem

max
ξi∈{0,1}

n
∑

i=1

ξi s.t. 2
n

∑

j=1

wijξj ≤ (2 − ξi)
n

∑

j=1

wij − ξiρ, ∀i. (15)

Relaxing the integer constraints toξi ∈ [0, 1] for anyi = 1, . . . , n can only increase the
maximum, motivating the upper-bound

θ(ρ) = max
ξi

n
∑

i=1

ξi s.t.

{

2
∑n

j=1 wijξj ≤ (2 − ξi)
∑n

j=1 wij − ξiρ

0 ≤ ξi ≤ 1
∀i. (16)

194 Pelckmans et al.

Remark that since (15) may only take integer values, the integer part of this value may
be considered as the upper-bound without loss of generalitysuch that⌊θ(ρ)⌋ ≥ ϑ(ρ).
The upper-bound is not tight as in typical situations (i.e. choice of label of the king
node), a king may not win all its neighboring vassal nodes forits personal sake. At
the time of labeling, competition of the vassal nodes will divide the vassal nodes over
the kings. The following section uses a fixed assignment of vassals to a unique king to
obtain a lower-bound.

2.3 LOWER-BOUND TO THE K-CAPACITY: SUSPICIOUS KINGS

We show how one can compute efficiently a lower-bound to the K-capacity. what is the
highest number of suspicious kings who can govern their own disjoint subgraph simul-
taneously and independently. To formalize this problem, let again the binary variable
ξi ∈ {0, 1} denote whether a nodevi is a vassal(ξi = 0), or aking (ξi = 1). Then,
define for every nodevj a vector of binary variablesβj = (βj1, . . . , βjn)T ∈ {0, 1}n

encoding to which king node it will be dedicated: exactly oneelement ofβj is to be
one, the others are zero. This property may be encoded as follows

∑

j 6=i

βij ≤ (1 − ξi), ∀i = 1, . . . , n. (17)

Furthermore, a node might be a king (ξi = 0), if it governs enough neighbors to possess
a superiority over the remaining nodes when they would gather against the king (hence
the denominator ’suspicious’).

vi is a king⇒
n

∑

j=1

wjiβji ≥

n
∑

j=1

wji(1 − βji) + ρ. (18)

If not, it might thrown in its lot with a neighboring king (vassal), and the above con-
straint becomes obsolete. This reasoning results in the following integer programming
problem

θ(ρ) = max
(

βij ∈ {0, 1}
ξi ∈ {0, 1}

n
∑

i=1

ξi s.t.

{∑

j 6=i βij ≤ (1 − ξi) ∀i

2
∑n

j=1 wjiβji ≥ ξi

(

∑n

j=1 wji + ρ
)

∀i,

(19)

where the binary variableξi determines whether the corresponding second constraint is
restrictive or trivially satisfied. A suboptimal solution to this problem is still a lower-
bound. This motivates the following approximative methodology: In the first step, a
convex linear programming problem is solved:

(β̂ij , ξ̂i) = argmax
βij,ξi

n
∑

i=1

ξi s.t.

∑

j 6=i βij ≤ (1 − ξi) ∀i

2
∑n

j=1 wjiβji ≥ ξi

(

∑n
j=1 wji + ρ

)

∀i

ξi ∈ [0, 1] ∀i

βij ∈ [0, 1] ∀i, j.

(20)

Kingdom Capacity 195

In the second stage, the estimatesβ̂ andξ̂ are rounded to the nearest integer solutions
satisfyingβij ∈ {0, 1} andξi ∈ {0, 1} gives a suboptimal solution. The cost resulting
from this suboptimal procedure associates to the rounded arguments (saỹθ(ρ)) is guar-
anteed to be lower or equal toθ(ρ) by construction. This reasoning is summarized in
the following proposition:

Proposition 2 (Lower-bound to K-Capacity)

ϑ(ρ) ≥ θ(ρ) ≥ θ̃(ρ). (21)

3 ARTIFICIAL EXAMPLE

We discuss the merit of the K-capacity measure, based on a numerical case study. Con-
sider a random graph consisting of 100 nodes, where the first fifty have a label+1 and
the last 50 label−1. The weights are generated by the following mechanism:

wij ∼

{

B(p) iff C(vi) = C(vj)
B(1 − p) otherwise,

(22)

whereB(p) denotes a Bernoulli distribution with parameter0.5 < p < 1, andC(vi)
denotes the class label of nodevi. This generating mechanism is motivated as follows:
nodes from the same class are likely to be strongly connected(within), while connec-
tions between the two classes are depreciated. Remark that this is another mechanism
as the one discussed in the transductive setting in Subsection 2.1. The second example
employs the same mechanism, but generalizes to a range of different classes.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

ρ

K
−

ca
pa

ci
ty

lazy kings
K−capacity
suspicious kings

(a)
0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Number of classes

K
−

ca
pa

ci
ty

lazy kings
K−capacity
suspicious kings

(b)

Fig. 1. Results of an artificial example.(a) Display of the K-dimension, the lower- and upper-
bound in function of the marginρ for a random graph with 100 nodes.(b) Display of the K-
dimension, the lower- and upper-bound in function of the number of different classes in the
generating mechanism. It is seen that increasing both the margin ρ as well as the number of
underlying different classes will make the lower- and upper-bound more tight.

Figure 1.a gives the result of a simulation study where one graph was generated as
indicated, for various parametersρ ranging from0 to 50, and for100 nodes. Here we
consider the case of two different classes, a parameterp = 0.75. The figure displays

196 Pelckmans et al.

the K-capacity as a function of the parameterρ. The actual capacity was computed by
naive (and time-consuming) enumeration, while the upper- and lower-bound respec-
tively follow from the linear programming formulation as discussed in the previous
section. Figure 1.b gives the result of a study of a set of random graph with 100 nodes,
and a ranging number of classes ranging from 1 to 25. Again, both the actual K-capacity
as the lower- and upper-bound discussed above are displayedas a function of the num-
ber of underlying classes.

4 DISCUSSION

We discussed a measure of capacity of a graph which characterizes the range of label-
ings which are self-consistent with a certain margin. Furthermore, this paper indicated
how this capacity measure can be used to give probabilistic guarantees for learning in
a transductive setting. In general, we described a relationship between a probabilistic
approach of learning on the one hand, and combinatorial tasks such as graph cut on the
other. Specifically, we indicated how the crucial concept ofcapacity control and regu-
larization in learning can be mapped to graph labeling and graph cuts by using a proper
extension operator. This paper is conceived as an exercise before approaching the more
challenging task of proving the learnability of a MINCUT-based algorithm of the labels
of anygraph with given size. This would require an integration of the above ideas with
the luckiness framework as described in [10].

References

1. Y.S. Abu-Mostafa and J.-M. St. Jacques. Information capacity of the Hopfield model.IEEE
trans. on Inf. Theory, 31:461–464, 1985.

2. M. Anthony and P.L. Bartlett.Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

3. A. Blum and S. Chawla. Learning from labeled and unlabeleddata using graph mincuts. In
Proceedings of the Eighteenth International Conference onMachine Learning, pages 19–26.
Morgan Kaufmann Publishers, 2001.

4. A. Blum, J. Lafferty, M.R. Rwebangaria, and R. Reddy. Semi-supervised learning using
randomized mincuts.24e International Conference on Machine Learning (ICML), 2004.

5. C. Cooper, M. Anthony, and G. Brightwell. The Vapnik-Chervonenkis dimension of a ran-
dom graph.Discrete Mathematics, 138:43–56, 1995.

6. L. Devroye, L. Györfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, 1996.

7. L. Lovasz. On the Shannon capacity of a graph.IEEE Transactions on Information Theory,
25:1–7, 1979.

8. R. El-Yaniv P. Derbeko and R. Meir. Explicit learning curves for transduction and applica-
tion to clustering and compression algorithms.Journal of Artificial Intelligence Research,
22:117–142, 2004.

9. R.J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons,
1980.

10. J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M.Anthony. Structural risk min-
imization over data-dependent hierarchies.IEEE Transactions on Information Theory,
44(5):1926–1940., 1998.

11. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE transactions on Pattern
Recognition and Machine Intelligence, 22(8), aug. 2000.

12. V.N. Vapnik.Statistical Learning Theory. Wiley and Sons, 1998.

Wrapper Induction: Learning (k,l)-Contextual Tree
Languages Directly as Unranked Tree Automata

Stefan Raeymaekers and Maurice Bruynooghe

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium
{stefanr,maurice}@cs.kuleuven.ac.be

Abstract. A (k, l)-contextual tree language can be learned from positive exam-
ples only; such languages have been successfully used as wrappers for informa-
tion extraction from web pages. This paper shows how to represent the wrapper
as an unranked tree automaton and how to construct it directly from the exam-
ples instead of using the(k, l)-forks of the examples. The former speeds up the
extraction, the latter speeds up the learning.

1 Introduction

The class of(k, l)-contextual tree languages is a subclass of the class of regular un-
ranked tree languages. Similar tok-contextual string languages, it can be learned from
positive examples only. It was introduced in [3] to represent wrappers that extract spe-
cific information from structured documents such as web-pages.

Here, we use unranked tree automata to represent(k, l)-contextual tree languages
and describe how to learn such an automaton from the examplesinstead of using the
(k, l)-forks of the examples. The former improves the efficiency ofthe extraction; the
latter improves the efficiency and reduces the memory needs of the learning phase.

After some preliminaries (Section 2),(k, l)-contextual tree languages are recalled in
Section 3 and automata in Section 4. Section 5 describes the construction of an automa-
ton that accepts a fork belonging to a given set and Section 6 that of an automaton that
accepts a tree belonging to a(k, l)-contextual tree language. We conclude in Section 7.

2 Preliminary Definitions

We define the alphabetΣ as a finite set of symbols. The setT (Σ) of all finite, unranked
trees with nodes labelled by elements ofΣ can be recursively defined asT (Σ) =
{f(w) | f ∈ Σ, w ∈ T (Σ)∗}. We usually denotef(ǫ), whereǫ is the empty se-
quence, byf . The subtrees of a tree are inductively defined assub(f(t1, . . . , tn)) =
{f(t1, . . . , tn)} ∪

⋃

i sub(ti). A tree languageis any subset ofT (Σ). The set of(k,l)-
rootsof a treef(t1, . . . , tn) is the singleton{f} if l=1; otherwise, it is the set of trees
obtained by extending the rootf with (k, l − 1)-roots ofk successive children oft (all
children ifk > n). Formally:

R(k,l)(f(t1, . . . , tn)) =

if l=1 then{f}
if l>1 andk>n thenf(R(k,l−1)(t1), . . . , R(k,l−1)(tn))

else
⋃n−k+1

p=1 f(R(k,l−1)(tp), . . . , R(k,l−1)(tp+k−1))
.

198 Stefan Raeymaekers and Maurice Bruynooghe

In this formula,f(S1, . . . , Sn), denotes the set{f(s1, . . . , sn) | si ∈ Si}. In a similar
notational extension,R(k,l)(T) denotes

⋃

t∈T R(k,l)(t), the (k, l)-roots of a setT of
trees. Finally, a(k, l)-fork of a treet is a(k, l)-root of any subtree oft. Thus, the set of
(k, l)-forks oft can be written asR(k,l)(sub(t)) and we denote it byF(k,l)(t). Then the
(k, l)-forks of a set of treesT are defined asF(k,l)(T) =

⋃

t∈T F(k,l)(t).

3 (k,l)-Contextual Tree Languages

3.1 Language and Learning

Definition 1. The (k,l)-contextual tree language based on the setG of trees is defined
asL(k,l)(G) = {t ∈ T (Σ) | F(k,l)(t) ⊆ G}.

As shown in [3], the languageL(k,l)(F(k,l)(E)) is the most appropriate(k, l)-
contextual tree language that can be learned from a set of positive examplesE as it
is the most specific(k, l)-contextual language that accepts all the examples. General-
ization is controlled by the choice of the parameters; they determine the minimal gran-
ularity of the building blocks (the forks from the examples)that can be used in defining
the language. Negative examples can be used to adjust the parameter values [3].

Example 1.Below we show graphically the(3, 3)-forks of a treet. The first three of
these forks are the(3, 3)-roots oft. Two trees from the languageL(k,l)(F(k,l)({t})) are
shown on the right.

b c b c

a

b c b c b

a
t

a

b c b

a

a

c b c

a

a

b c b

a

b c b

a

b

c b c

a

b

b c b

a

c b c

a b c b c b c b c b c b

a

c b c

a

c b c

a

c b c

a

3.2 Wrapper Induction

To extract information from (semi)structured documents like HTML, we need to be
able to select specific nodes (be it leaves or internal nodes)from a given tree. This
selection is represented by marking the tree. A marked tree is an element ofT (ΣX)
with Σ a given alphabet andX a marker. The marked alphabetΣX is defined asΣX =
Σ ∪ {sX | s ∈ Σ}. Hence the nodes of a marked tree have either a marked or an
unmarked label. Marking a nodes consists of replacing it by a marked equivalentsX .

A marking of a tree is correct (with regard to the extraction task) iff the nodes to be
selected are the marked ones. A marking is partially correctif every node that is marked
is a node to be selected. Given a tree and a tree language that accepts partially correct
markings for a given task, we can retrieve all the target nodes in a way that is linear
in the number of nodes as follows: In each run, a single node ofthe tree is marked;
if this marked tree is accepted, the marked node is a target node. Using an automaton

Wrapper Induction: Learning (k,l)-Contextual Tree Languages 199

representation for the language, a more efficient method, that extracts all the nodes in a
single run, exists ([2]).

To learn a wrapper, we need to learn a language that accepts the partially correct
marked trees for the given task. The training examples consist of trees with a single
node marked. Each marked node corresponds to an example of a target node of the
task. As there are an infinite number of possible text nodes, all text nodes in the trees
that are not recognized as a distinguishing context are generalized in a preprocessing
step by replacing them with a special symbol (@) (See [3] for more details). As argued
in [3], a further useful generalization is obtained by discarding all forks that do not
contain a marker. As a result, typical extraction tasks require less than 5 examples.

4 String and Tree Automata

4.1 Finite String Automata

Traditionally [1], a deterministic Finite String (or Sequence) Automaton (FSA) is a
tupleA = (Σi, Σo, QS , q0, δS , φS) whereΣi is a set of input symbols, called the input
alphabet,Σo is a set of output symbols, called the output alphabet,QS is a finite set
of states,q0 ∈ QS is the initial state,δS : (QS × Σi) → QS is a transition function
from a pair consisting of a (current) state and an input symbol to a (next) state and
φS is an output functionQS → Σo. We extend the transition function to a function
δ̂S : (QS × Σ∗

i) → QS, that is defined aŝδS(q, ǫ) = q, and∀w ∈ Σ∗
i anda ∈ Σi,

δ̂S(q, wa) = δS(δ̂S(q, w), a). The result of applying an automaton on a given sequence
s of symbols from the alphabet is defined asφS(δ̂S(q0, s)). Hence an FSA is a function
from sequences over an input alphabet to elements of an output alphabet. Automata that
have as output alphabetΣo = {accept, reject} are called acceptors. A state for which
every prefix ending in that state and all strings starting with that prefix are rejected,
is called a dead state. If a state does not contain a transition for an input symbol, a
transition to an implicit dead state is assumed.

4.2 Bottom-up Finite Tree Automata.

A bottom-up tree automaton works similar to an FSA. The stateof a given tree is calcu-
lated by calculating the state of its children, and then getting the state from the transition
function that is associated with the resulting sequence of states of the children, and the
symbol in the root of the tree. The evaluation recursively descends the tree to calculate
first the states of the leafs and the lower trees, hence the name bottom-up. The automa-
ton is deterministic when the evaluation of each tree leads to a unique state. Henceforth
any tree automaton mentioned will be a deterministic bottom-up tree automaton.

Formally we define a deterministic bottom-up Finite Tree Automaton (FTA) as a
tuple T = (Σi, Σo, QT , δT , φT) whereΣi is a set of input symbols,Σo is a set of
output symbols,QT is a set of tree states,φT is an output functionQT → Σo and
δT : (Σi × Q∗

T) → QT is a transition function from a pair consisting of an input
symbol and a sequence of (child) states to a (next) state, such that for eacha ∈ Σ, the
set{w ∈ Q∗

T | ((a, w) → q) ∈ δT } is a regular set of strings over the alphabetQT .

200 Stefan Raeymaekers and Maurice Bruynooghe

We extend the transition functionδT to a functionδ̂T : (QT × T (Σi)) → QT . Given
af(s) ∈ T (Σi), δ̂T (f(s)) = δT (f, map(δ̂T , s)). The functionmap(func, seq) returns
a sequence formed by the results of applying the functionfunc on each element of the
sequenceseq. The result of applying a FTA on a given treet is defined asφT (δ̂T (t)).

4.3 Representation of the Transition Function.

The transition function of a unranked tree automaton cannotbe defined by enumeration,
as the number of different (a, w) pairs can be infinite. The set of state-strings leading
to a given state for a given input symbol can be represented asa string automaton. We
merge all these automata into a single special FSAAT . Instead of one single initial
state, a functionα is used, that maps an input symbola of the tree automaton into
an initial stateα(a) of the FSA. The outputs for this FSA are tree states, such that
φS(δ̂S(α(a), w) = δT (a, w). Note thatAT = (QT , QT , QS , α, δS , φS) (QT is as well
input as output alphabet). WhenT is an acceptor, andφS has no value for a given
element ofQS , it is assumed to return the dead tree state. A dead tree stateis a rejecting
state; for every input symbola, and every sequencew containing a dead state, it holds
thatδT (a, w) returns a dead state.

Example 2.Below is a tree automaton represented in the above formalism.

b c b

a

b

2 c b

a

b

2 3 b

a

b

2 3 2

a

b

a

b
5

a) b)

The nodes in the graph represent string states (fromQS) of AT . The node also
shows the value of the output function. If the node is a black dot, the output is a dead
state, otherwise, the number in the circle shows the tree state that is the output. A double
circle indicates an accepting tree state. A transition is shown by an edge between two
string states. The label is the tree state (fromQT) that triggers the transition. This tree
acceptor accepts the set of forks from Example 1. The b-part illustrates the bottom-up
run of this automaton on a tree. The run ends in a state that outputs the accepting state
5, hence the given tree is accepted.

5 Fork Set Acceptor

Here, we develop an acceptor for a set of forks. A first step introduces a constructing
framework for tree automata. The initial automaton isT0 = (Σi, Σo, QT , δT , φT), with
Σi = ∅, Σo = {accept, reject}, QT = φT = ∅. AT = (QT , QT , QS , α, δS , φS)
with QS = α = δS = φS = ∅ is an FSA used to representδT . We define alternative

Wrapper Induction: Learning (k,l)-Contextual Tree Languages 201

Algorithm 1 GetForks
Input: A treet = f(w), the valuesk andl

Output: An arrayresult of l elements;result[i] (i < l) is the set of states from the(k, i)-
roots of the input tree;result[l] the set of states from the(k, l)-forks (as a side effect the
automaton is updated).

1: defineRecFunc(x) asGetForks(x, k, l)
2: childstates = map(RecFunc,w)
3: result[l] = ∪c∈childstatesc[l] % the(k, l)-forks from the subtrees oft
4: result[1] = {φ′

S
(α′(f))} % the(k, 1)-root of t is the only(k, 1)-fork

5: if w == ǫ then
6: for i: 2 .. l do result[i] = {φ′

S
(α′(f))} % the(k, 1)-root is the only(k, i)-root

7: else
8: for i: 2 .. l − 1 do result[i] = ∅ % initialisation
9: for i = l downto2 do

10: if length(childstates[i − 1]) < k then
11: sequences = {childstates[i − 1]}
12: else
13: sequences = all sequences ofk consecutive sets inchildstates[i − 1]
14: end if
15: for all seq ∈ sequences do
16: for every tupletup obtained by taking one element from each set ofseq do
17: result[i] = result[i] ∪ {φ′

S
(δ̂′

S
(α′(f), tup))}

18: end for
19: end for
20: end for
21: end if

functionsα′, δ′S , andφ′
S for respectivelyα, δS , andφS . The functionα′ is defined such

thatα′(a) = α(a) for everya ∈ Σi. For everya /∈ Σi, the following side effects are
performed:a is added toΣi, a new states is added toQs, andα is extended withα(a) =
s; finally the states is returned as function value. Similarly,δ′S(s, t) returnsδS(s, t),
when the latter is defined. Otherwise a new stateq is added toQS , δS is extended with
δS(s, t) = q, andq is returned as function value. Finally,φ′

S(s) = φS(s) when defined,
otherwise a new tree statet is added toQT , φT is extended withφT (t) = reject, φS

is extended withφS(s) = t, andt is returned as function value. Below we assume that
the functionδ̂T is defined based on these alternative functions.

To construct a fork set acceptor, we create an initial automaton and, for every fork
in the example trees of our language, we callδ̂T and change the output of the final tree
state fromreject to accept. To create an acceptor for the set of marked forks of a tree,
we discard forks that are not marked. As forks from the same example tree have parts
in common, some redundant work is done.

To avoid the redundancy, the algorithm GetForks below processes all forks from
an example tree at once. Besides updating the automaton, it outputs an array ofl sets
of output states. Fori < l, the ith element contains the states associated with all the
(k, i)-roots of the input tree while thelth element contains the states associated with all
the(k, l)-forks of the input tree. Thanks to the recursive call, the states for the children

202 Stefan Raeymaekers and Maurice Bruynooghe

of a node are calculated only once and reused in the differentcombinations in which
they form the(k, p)-roots of a node (for2 ≤ p ≤ l).

Note that the automaton of Example 2 is a (3,3)-fork set acceptors for the forks from
the treet of Example 1. It is the minimization of the output from our algorithm.

Marked Fork Set AcceptorThe fork set acceptor can be further refined to disregard
forks without a marked node. With only one node in the tree marked, only the roots
from the marked node itself, and the roots from itsl − 1 direct ancestors that contain
the marker are to be processed. Hence from the children of every ancestor, only the k-1
siblings before and after the child that is also an ancestor (or the marked node itself)
need to be considered. Starting from the marked node, and using a data structure where
one has access to the parent, one can construct a variant of the algorithm that disregards
the irrelevant parts of the input tree.

6 (k, l)-Contextual Tree Acceptor

To check whether a tree belongs to a(k, l)-contextual tree language defined by a set
of forks, we need to run the associated fork set acceptor on each of the forks of that
tree (and stop as soon as one is rejected). As different forksoverlap, such an acceptor
will perform a lot of redundant work. Instead, we use the forkset acceptor to construct
a tree automaton that can process any tree bottom-up. To do so, we need to encode in
the automaton the transitions the fork set acceptor can do inall possible runs and to
organize it in such a way that it can simulate the fork acceptor runs for the forks in a
given tree. Note that the number of possible runs of a fork setacceptor is finite as the
set of(k, l)-forks is finite. Below, we sketch the construction of such anautomaton.

Note that our(k, l)-contextual tree acceptor will associate an accepting state with
each node of an accepted tree. Indeed, if a tree is accepted, also its subtrees are accepted
as the forks of a subtree are a subset of the forks of the original tree. Hence, every tree
state of the(k, l)-contextual tree acceptor will be either an accepting stateor the dead
tree state.

6.1 Construction

The state associated with a tree node by the(k, l)-contextual tree acceptor corresponds
to different states in different runs of the fork set acceptor because the node under
consideration belongs to different forks. Therefore, during construction, we have to
maintain “internal” information about the state of the forkset acceptor in each of the
possible runs. The internal representation of the string states (used to represent the
transition function of the automaton under construction) is a two dimensional array.
Elements in columni contain states of nodes that are theith child of its parent in the
runs of the fork set acceptor represented by the element, while elements in rowj contain
states of nodes that arej levels deep in the runs of the fork set acceptor represented by
the element. In fact, one can do withk−1 rows (if extending the internal representation
with a control bit that indicates whether one has already hadk children in the sequence)
and withl−1 columns, because the root need not be considered as a child. The internal

Wrapper Induction: Learning (k,l)-Contextual Tree Languages 203

representation of the tree states is a one dimensional array. The position corresponds
to the level of the node in the represented runs of the fork setacceptor, i.e., similar to
output of GetForks, the first element contains the states of the forks of which the node
is root, while the other rows contain states of the node when it is a(k, p)-root (p < l);
info to be used for computing the states of its parent node.

A high level description of the algorithm is shown in Algorithm 2. In what follows,
we add a superscriptF when referring to functions of the fork set acceptor. The main
loop processes elements from an agenda. It contains string states for which the possible
transitions (represented by the fork set acceptor) have yetto be computed. This agenda
is initialised with a states for every symbolf in Σi. The internal representation of such
a states is the empty matrix (and a false control bit). The tree state that is the output of
s is a dead state when,φF

S (αF (f)) is a rejecting state. Otherwise,φS is extended with
φS(s) = t with t a new tree state . Its internal representation is a one element array
containing the singletonφF

S (αF (f)) (it is not yet inserted inQT).

Algorithm 2 Create(k, l)-contextual tree acceptor
Input: A (k, l)-forks set acceptorTF and an empty(k, l)-contextual tree acceptor
Output: The(k, l)-contextual tree acceptorT = (Σi, Σo, QT ,AT , φT).
1: visited = ∅; initialize agenda

2: while agenda 6= ∅ do
3: current = get and remove string state from agenda
4: if φS(current) /∈ QT then
5: addφS(current) to QT .
6: for all s ∈ visited do
7: q = result of transition froms, givenφS(current) (simulated byTF).
8: if q /∈ (agenda ∪ visited) then
9: extendAT with δS(s, φS(current)) = q

10: addq to agenda

11: end if
12: end for
13: end if
14: for all t ∈ QT do
15: q = result of transition fromcurrent, givent (simulated byTF).
16: if q /∈ (agenda∪ visited) then
17: extendAT with δS(current, t) = q

18: addq to agenda

19: end if
20: end for
21: addcurrent to visited

22: end while

In processing a string statecurrent from the agenda. It is first checked whether
t, the tree state it outputs is already inQT . If not, it is added and, for each already
processed string states (in visited), the fork set acceptor is used to find (and eventually

204 Stefan Raeymaekers and Maurice Bruynooghe

create) the string stateq that is the result of the transition triggered byt (step 7)1. If q is
new, it is added to the agenda and the transition function is extended. Finally, for each
tree statet, the fork set acceptor is used to find the string stateq that is the result of the
transition fromcurrent that is triggered byt. Suchq are processed as above.

6.2 (k, l)-Contextual Marked Tree Acceptor

To obtain a marked tree set acceptor, we want to start from an acceptor that accepts a
set of marked forks but also any unmarked fork. For the latter, more simple is to create
an acceptor that accepts any unmarked tree. Then one can create an acceptor that is the
union of the latter with the marked fork acceptor. Given thisacceptor, one can proceed
as above to obtain a marked tree acceptor. The latter acceptsall trees with a marked
node, for which the set of marked forks is a subset of a given set of marked forks.

7 Conclusion

We proposed in this paper to represent(k, l)-contextual tree languages [3] by unranked
bottom-up tree automata. We introduced a method to learn the(k, l)-contextual tree
acceptor directly from a given set of examples and discussedthe adaptation for use in
the wrapper induction task as it is defined in [3]. In a first step we defined an algorithm
that, given a set of example trees, constructs an acceptor for the (k, l)-forks of these
trees. In a second step this fork set acceptor is used to generate the(k, l)-contextual tree
acceptor for the same parametersk andl.

The direct construction from examples speeds up the learning phase while the use of
the automata representation reduces the memory needs during learning and extraction.
The new approach facilitates a more efficient extraction (see [2], showing speed-up
factors between 10 and 50) in the application of wrappers forinformation extraction
from structured documents. Moreover, one can extract multiple fields within a single
automaton, by combining their acceptors. The parametersk andl can be different for
each field. This results in further speed-ups.

References

1. E.F. Moore. Gedanken-experiments on sequential machines. In C.E. Shannon and J. Mc-
Carthy, editors,Automata Studies, pages 129–153. Princeton University Press, Princeton, NJ,
1956.

2. Stefan Raeymaekers and Maurice Bruynooghe. Extracting information from structured doc-
uments with automata in a single run. InProc. 2nd Int. Workshop on Mining Graphs, Trees
and Sequences (MGTS 2004, Pisa, Italy), pages 71–82, Pisa, Italy, 2004. University of Pisa.

3. Stefan Raeymaekers, Maurice Bruynooghe, and Jan Van den Bussche. Learning (k, l)-
contextual tree languages for information extraction. InECML, pages 305–316, 2005.

1 The internal representations are used to identify the different transitions made by the fork set
acceptor. We omit the details.

Mining Discriminative Patterns from Graph
Structured Data with Constrained Search

Kiyoto Takabayashi1, Phu Chien Nguyen1, Kouzou Ohara1, Hiroshi Motoda2,
and Takashi Washio1

1 I.S.I.R., Osaka University,
8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

{kiyoto ra,chien,ohara,washio}@ar.sanken.osaka-u.ac.jp
2 AFOSR/AOARD

7-23-17, Roppongi, Minato-ku, Tokyo 106-0032, Japan
hiroshi.motoda@aoard.af.mil

Abstract. A graph mining method, Chunkingless Graph-Based Induc-
tion (Cl-GBI), finds typical patterns that appear in graph structured
data by the operation called chunkingless pairwise expansion which gen-
erates pseudo-nodes from selected pairs of nodes in the data. Cl-GBI
enables to extract overlapping subgraphs, while it requires more time
and space complexities. Thus, it happens that Cl-GBI cannot extract
patterns that need be large enough to describe characteristics of data
within a limited time and a given computational resource. In such a case,
extracted patterns may not be so much of interest for domain experts. To
mine more discriminative patterns which cannot be extracted by the cur-
rent Cl-GBI, we introduce a search algorithm guided by domain knowl-
edge or interests of domain experts. We further experimentally show that
the proposed method can efficiently extract more discriminative patterns
using both synthetic and real world datasets.

1 Introduction

Over the last decade, there has been much research work on data mining which
intends to find useful and interesting knowledge from massive data. A number
of studies have been made in recent years especially on mining frequent pat-
terns from graph structured data, or simply graph mining because of the high
expressive power of graph representation [1, 13, 6, 12, 4, 5].

Chunkingless Graph Based Induction (Cl-GBI) [8] is an extension of Graph
Based Induction (GBI) [13] that can extract typical patterns from graph struc-
tured data by stepwise pair expansion, i.e., by recursively chunking two adjoining
nodes. Similarly to GBI, Cl-GBI adopts the stepwise pair expansion principle,
but never chunks adjoining nodes and contracts the graph. Instead, Cl-GBI re-
gards a pair of nodes as a pseudo node and assigns a new label to it. This
operation can fully solve the reported problems caused by chunking, i.e., am-
biguity in selecting nodes to chunk and incompleteness of the search. However
Cl-GBI requires more time and space compelexities to gain the ability of extract-
ing overlapping patterns. Thus, it happens that Cl-GBI cannot extract patterns

206 Kiyoto Takabayashi et al.

that need be large enough to describe characteristics of data within time and
space limitation. In such a case, extracted patterns may not be so much of in-
terest for domain experts.

To improve the search efficiency, in this paper, we propose a method of guid-
ing the search of Cl-GBI using domain knowledge or interests of domain experts.
The basic idea is adopting patterns representing knowledge or interests of do-
main experts as constraints on the search, in order to effectively restrict the
search space and extract more discriminative or interesting patterns than those
which can be extracted by the current Cl-GBI. We also experimentally show the
effectiveness of the proposed search method by applying the constrained Cl-GBI
to a synthetic dataset and the hepatitis dataset which is a real world dataset.

In this paper, we deal with only connected labeled graphs, and use informa-
tion gain [10] as the discriminativity criterion. In what follows, “a pair” denotes
a pair of adjoining nodes in a graph.

2 Constrained Search for Cl-GBI

2.1 Chunkingless Graph-Based Induction(Cl-GBI)

Stepwise pair expansion is an essential operation in GBI, which recursively gener-
ates new nodes from pairs of two adjoining nodes selected according to a certain
criterion based on frequency, and replaces all of its occurrences in graphs with a
node having a newly assigned label. Namely each graph is rewritten each time
a pair is chunked, and never restored in any subsequent chunking 3. Although
thanks to this chunking mechanism, GBI can efficiently extract patterns from
either a huge single graph or a set of graphs, it involves ambiguity in selecting
nodes to chunk, which causes a crucial problem, i.e., possibility of overlooking
some overlapping subgraphs due to inappropriate chunking order. Beam search
adopted by Beam-wise GBI(B-GBI) [6] can alleviate this problem by chunking
the b (beam width) most frequent pairs and copying each graph into respective
states, but not completely solve it because chunking process is still involved.

In contrast to GBI and B-GBI, Cl-GBI does not chunk a selected pair, but
regards it as a pseudo node and assigns a new label to it. Thus, graphs are not
“compressed” nor copied over the iterative pseudo-chunking process. We refer to
each iteration in Cl-GBI as “level”. The algorithm of Cl-GBI is shown in Fig. 1.
The search of Cl-GBI is controlled by the following parameters: a beam width b,
the maximal number of levels of pseudo-chunking N , and a frequency threshold
θ. In other words, at each level, the b most frequent pairs are selected from a set
of pairs whose frequencies are not less than θ, and are pseudo-chunked.

2.2 Patterns Used as Constraints

The current Cl-GBI blindly extracts a huge number of frequent pairs without
any clues other than frequency. However, if the goal is finding patterns which are
3 This does not mean that the link information of the original graphs is lost. It is

always possible to restore how each node is connected in the extracted subgraphs.

Mining Discriminative Patterns with Constrained Search 207

Input. A graph database D, a beam width b, the maximal number of levels of pseudo-
chunking N , a frequency threshold θ

Output. A set of typical patterns S
Step 1. Extract all the pairs consisting of two connected nodes in the graphs, register

their positions using node id (identifier) sets. From the 2nd level on, extract all the
pairs consisting of two connected nodes with at least one node being a new pseudo-
node.

Step 2. Count frequencies of extracted pairs and eliminate pairs whose frequencies count
below θ.

Step 3. Select the b most frequent pairs from among the remaining pairs at Step 2 (from
the 2nd level on, from among the unselected pairs in the previous levels and the newly
extracted pairs). Each of the b selected pairs is registered as a new node. If either or
both nodes of the selected pair are not original but pseudo-nodes, they are restored
to the original patterns before registration.

Step 4. Assign a new label to each pair selected at Step 3 but do not rewrite the graphs.
Go back to Step 1.

Fig. 1. Algorithm of Cl-GBI

INpattern
D

DE
E

a
f

b b

EXpattern
A

CB
B

d
f

g f

(a)

D
DE
E

a
f

b b

Ae C

A
e

D

A
c

extractdiscardextract

J
Bh

C
f

extract

A
CB

B
d
f

g f

Fe e
discard

(b)

Fig. 2. Examples of INpatterns and EXpatterns

either discriminative or of interest for domain experts, the current method is too
naive and inefficient in both time and space complexities. For example, when we
analyzed the hepatitis dataset [11] provided by Chiba University Hospital with
Cl-GBI, domain experts (medical doctors) expected that patterns interesting for
them were extracted, but in fact we could not find satisfactory ones.

Therefore, in this paper, we introduce domain knowledge or interests of do-
main experts and impose them as constraints on patterns extracted in Cl-GBI.
We represent such domain knowledge and interests as graphs and call them the
constraint patterns. Although various types of constraint patterns can be consid-
ered, in this paper, we focus on the following two types of patterns: patterns to be
included in extracted patterns and patterns not to be included in them. We refer
to them as INpatterns and EXpatterns, respectively, and define the following two
types of constraints: “extracted patterns must include INpatterns” (Constraint
1) and “extracted patterns must not include EXpatterns” (Constraint 2).

Figures 2 (a) and (b) show the examples of Constraints 1 and 2, respectively.
Note that in case of Constraint 1, not only patterns including the given INpat-
terns, but also patterns including at least one of their proper subgraphs should
be extracted in order not to prevent patterns satisfying the imposed constraints
from being generated in the succeeding steps based on the stepwise pair expan-
sion principle. The case is illustrated at the far right in Fig. 2 (a). In addition, in
case of Constraint 1, we can discard a pair if it does not include any node/link la-
bels appearing in the given INpatterns as shown in Fig. 2 (a) because such a pair
can never grow to a pattern that includes at least one of the given INpatterns.

208 Kiyoto Takabayashi et al.

2.3 Design of Constrained Search

To guide the search process of Cl-GBI using INpatterns/EXpatterns, we have to
check if an enumerated pair includes them, which requires additional subgraph
isomorphism checking known to be NP-complete [2]. Therefore, to reduce the
computational cost, we should detect pairs that have no possibility of includ-
ing constraint patterns before the checking. For that detection, we define two
conditions based on the number of node/link labels in a pattern.

First of all, for two arbitrary pairs, or patterns x and y, we define a quantity
Tnum as follows:

Tnum(x, y) =
∑

Lk∈L(y)

f(x, Lk), (1)

where L(y) is a set of labels appearing in y, and f(x, Lk) is the number of
occurrences of the label Lk ∈ L(y) in x. Note that if x is identical to y,
Tnum(x, y) must be equal to Tnum(y, y). Similarly, Tnum(x, y) must be greater
than Tnum(y, y) if y is a subgraph of x. Consequently, given a constraint pattern
Tj , we can skip subgraph isomorphism checking for an enumerated pattern Pi if
Tnum(Pi, Tj) < Tnum(Tj , Tj) because Pi never includes Tj .

Furthermore, it is noted that in order for Pi to include Tj , for every label
appearing in Tj , the number of its occurrences in Pi has to be greater than or
equal to that in Tj . Namely, we can skip subgraph isomorphism checking for
Pi if Pi does not satisfy this condition. To check this condition, we define the
following boolean value Pinfo for two patterns x and y.

Pinfo(x, y) =
∧

Lk∈L(y)

p(x, y, Lk), (2)

where

p(x, y, Lk) =

{
true if f(x, Lk) ≥ f(y, Lk),
false otherwise.

If Pinfo(Pi, Tj) is true, then subgraph isomorphism checking has to be done;
otherwise it can be skipped.

These ideas are summarized in Fig. 3 as the algorithm, which is invoked
in the algorithm shown in Fig. 1 and provides a set of candidate pairs to be
pseudo-chunked at each level. PD(Pi, Tj) in Fig. 3 is the procedure for subgraph
isomorphism checking, which returns true if Pi includes Tj ; otherwise false.

3 Experimental Evaluation

To evaluate the proposed method, we implemented Cl-GBI with the algorithm
shown in Fig. 3 on PC (CPU: Pentium 4 3.2GHz, Memory: 4GB, OS: Fedora
Core release 3) in C++, and applied this constrained Cl-GBI to both synthetic
and real-world datasets consisting of directed graphs. The current system has
a limitation that either INpattern constraints or EXpattern constraints can be

Mining Discriminative Patterns with Constrained Search 209

ExtPair(D, T , L, Lv, M)

Input: a database D, a set of constraint patterns T , the current level Lv ,

a set of extracted pairs L (initially empty),

the constraint mode M (either “INpattern” or “EXpattern”);

Output: a set of extracted pairs L with newly extracted pairs;

begin

if Lv = 1 then

if M = “INpattern” then

Enumerate pairs in D, which consist of nodes or links

appearing in T , and store them in E;

else

Enumerate all the pairs in D and store them in E;

else

Enumerate pairs, which consist of one or both

pseudo nodes in L, and store them in E;

for each Pi ∈ E begin

if Pi is marked then L := L ∪ {Pi}; next;

else register := 1;

for each Tj ∈ T begin

if T num(Pi, Tj) ≥ T num(Tj , Tj) then

if Pinfo(Pi, Tj) = true then

if M = “INpattern” then

if PD(Pi, Tj) = true then mark Pi;

else

if PD(Pi, Tj) = true then

discard Pi; register := 0; break;

end

if register = 1 then L := L ∪ {Pi};
end

return L;

end

Fig. 3. Algorithm of the constrained pattern extraction

imposed at a time. We verified the efficiency of the proposed method with the
synthetic dataset, and also confirmed that it could extract patterns which are
more discriminative than those by the current Cl-GBI with the real-world one.

3.1 Synthetic Dataset

Experimental Settings: The synthetic dataset was generated in a random
manner same as [9], and divided into two classes of equal size, “active” and
“inactive”. Then, as discriminative patterns, we generated 4 kinds of subgraphs,
or “basic patterns” shown in Fig. 4, and embedded them in transactions of the
class “active”. In Fig. 4, “f” and “IG” denote frequency and information gain,
respectively. The statistics on the size of resulting graphs are shown in Table 1.

In this experiment, we used as INpatterns a subgraph of each basic pattern
shown in Fig. 4 separately to extract the corresponding basic pattern, and set
the parameters of Cl-GBI as follows: b = 5, 7, 10,N = 10, and θ = 0%.
Experimental Results: We observed the computation time and the level at
which the basic pattern was extracted by the constrained Cl-GBI in each case.
The results are summarized in Table 2, in which t and level denote the observed
computation time and level, respectively, and the values in the parentheses are

210 Kiyoto Takabayashi et al.

Table 1. Size of graphs of the synthetic dataset and the hepatitis dataset

Synthetic Hepatitisclass
active inactive R N

number of graphs 150 150 38 56
average number of nodes in a graph 50 50 104 112

total number of nodes 7,524 7,502 3,944 6,296
kinds of node labels 25 12

average number of links in a graph 498 495 108 117
total number of links 74,631 74,198 4,090 6,577
kinds of link labels 25 30

Table 2. Experimental results for the synthetic dataset

constraint b = 5 b = 7 b = 10
pattern t[sec] level IG t[sec] level IG t[sec] level IG

a2 119(5976) 4(10) 0.0421 133(6537) 4(8) 0.0421 170(6810) 4(5) 0.0603
b2 42(–) 4(–) 0.0421 32(–) 3(–) 0.0421 42(–) 3(–) 0.0603
c2 168(–) 6(–) 0.0421 166(–) 5(–) 0.0421 150(–) 4(–) 0.0603
d2 167(–) 6(–) 0.0421 92(–) 4(–) 0.0421 75(–) 3(–) 0.0603

(a1)

F
j

O

F

N

j

y
z y

(b1)

X
q

Z

C

B

o

o
e q

(c1) (d1) (a2)

E

A

c
H

c F

j
O

F
j

(b2)

X C

B
o

oe

q

(c2)

L S

W
h

h

w

w

(d2)

M
A

f

c H

U

E

g
f

nx
c

V L

h

k

S

W

W

b
w

h

v
h

w w

b
IG = 0.1238

f = 0.1133
IG = 0.0850

f = 0.0800
IG = 0.2042

f = 0.1767
IG = 0.1441

f = 0.1300
(a1)

F
j

O

F

N

j

y
z y

(b1)

X
q

Z

C

B

o

o
e q

(c1) (d1) (a2)

E

A

c
H

c F

j
O

F
j

(b2)

X C

B
o

oe

q

(c2)

L S

W
h

h

w

w

(d2)

M
A

f

c H

U

E

g
f

nx
c

V L

h

k

S

W

W

b
w

h

v
h

w w

b
IG = 0.1238

f = 0.1133
IG = 0.0850

f = 0.0800
IG = 0.2042

f = 0.1767
IG = 0.1441

f = 0.1300

Basic patterns INpatterns

Fig. 4. Basic patterns and INpatterns used in the experiments for the synthetic dataset

corresponding results by the current Cl-GBI. “–” represents that the current Cl-
GBI could not extract the basic pattern. The column “IG” in Table 2 denotes
the maximal information gain achieved by the current Cl-GBI at the same level
with the same parameter settings.

From this table, we can see that the constrained Cl-GBI succeeded in extract-
ing the basic pattern in all the cases at an early stage, while the current Cl-GBI
extracted only patterns having considerably less information gain and could not
extract some of basic patterns. From these results, it is said that the constrained
Cl-GBI can extract patterns which are more discriminative than those by the
current Cl-GBI in a less computation time and smaller computational resources.

3.2 Real-world Dataset

Experimental Settings: As the real-world dataset, we used the two classes in
the hepatitis dataset, Response and Non-Response, denoted by R and N , respec-
tively [3]. R consists of patients to whom the interferon therapy was effective,
while N consists of those to whom it was not effective. We converted the records
of each patient into a graph in the same way as [3]. The statistics on the size of
resulting graphs are shown in Table 1.

In this experiment, we used 4 sets of INpatterns shown in Fig. 5, in which
(a) to (c) represent typical examination results for patients belonging to R [7],

Mining Discriminative Patterns with Constrained Search 211

Table 3. Experimental results for the hepatitis dataset

time[sec] max information gain
original 44,973 0.1139 (L:4, t:1292)
No.1 9,355 0.1076 (L:3, t:18)
No.2 6,893 0.1698 (L:5, t:376)
No.3 20,495 0.1110 (L:3, t:55)
No.4 4,970 0.1297 (L:4, t:39)

(d) No.4
H N

5

d
HGB

GPT_SD

CHE

(d) No.4
H N

5

d
HGB

GPT_SD

CHE

(c) No.3
N

d
GPT CHE
H

N

d
GPT

UH N

d
GPT

VH

CHECHE

(c) No.3
N

d
GPT CHE
H

N

d
GPT

UH N

d
GPT

VH

CHECHE

(b) No.2

N N

VH

d
GPT

I-BIL ALB

N N

H

d
GPT

I-BIL ALB

N N

UH

d
GPT

I-BIL ALB

(b) No.2

N N

VH

d
GPT

I-BIL ALB

N N

H

d
GPT

I-BIL ALB

N N

UH

d
GPT

I-BIL ALB

(a) No.1
L

d
GPT PLT
H

L

d
GPT

UH L

d
GPT

VH

PLTPLT

(a) No.1
L

d
GPT PLT
H

L

d
GPT

UH L

d
GPT

VH

PLTPLT

Fig. 5. INpatterns used in the experiments for the hepatitis dataset

while (d) is the most discriminative pattern extracted by the current Cl-GBI.
We refer to the pattern which is the most discriminative one among extracted
patterns as the MDpattern. The node with the label “d” in Fig. 5 represents a
certain point of time. For example, the leftmost pattern in Fig. 5 (a) means that
at a certain point of time, the value of GPT (glutamic-pyruvic transaminase) is
High and the value of PLT (platelet) is Low. The parameters of Cl-GBI were set
as follows: b = 10, N = 10, and θ = 0%.
Experimental Results: We observed the computation time and information
gain of the MDpattern in each case. The results are shown in Table 3, in which
the row “original” contains the results by the current Cl-GBI with the same
parameter settings. Namely, the MDpattern shown in Fig. 5 (d) is identical to
that in the case of “original”. “L” and “t” in parentheses denote the level and
time[sec] spent to extract the MDpattern, respectively.

From Table 3, it is found that the MDpatterns extracted by the constrained
Cl-GBI are more discriminative than the MDpattern by the current Cl-GBI in
the cases of No.2 and No.4. In addition, the computation times in all the 4 cases
using INpatterns are much less than in the case of the current Cl-GBI. From
these results, we can say that given appropriate constraints, the constrained Cl-
GBI could efficiently extract patterns which are more discriminative than those
by the current Cl-GBI. In addition, note that the INpattern used in the case of
No.4 which is the MDpattern obtained by the current Cl-GBI works as a good
constraint. From this result, it is expected that running the constrained Cl-GBI
repeatedly with a small L using the MDpattern extracted by the previous run
as the new INpattern might allow us to extract discriminative patterns in a less
computation time. Verifying this expectation is one of our future work.

4 Conclusion

In this paper, we proposed a constrained search method that effectively restricts
the search space of Cl-GBI by imposing domain knowledge or interests of domain
experts as constraints on patterns to be searched, and embedded it in Cl-GBI,

212 Kiyoto Takabayashi et al.

resulting in the constrained Cl-GBI. Experimental results showed that given ap-
propriate constraints, the constrained Cl-GBI can extract more discriminative
patterns in a less computation time than the current Cl-GBI. In addition, the re-
sults also showed the possibility that discriminative patterns extracted in earlier
steps in the search may work as good constraints in the constrained Cl-GBI.

As future work, we plan to further evaluate the constrained Cl-GBI by com-
paring it with other graph mining methods including ones based on Inductive
Logic Programming, and to verify the resulting patterns cooperating with do-
main experts such as medical doctors.

References

1. Cook, D. J. and Holder, L. B.: Substructure Discovery Using Minimum Description
Length and Background Knowledge. Artificial Intelligence Research, Vol. 1, pp.
231–255, (1994).

2. Fortin, S.: The Graph Isomorphism Problem. Technical Report TR96-20, Depart-
ment of Computer Science, University of Alberta, (1996).

3. Geamsakul, W., Yoshida, T., Ohara, K., Motoda, H., Yokoi, H., and Takabayashi,
K.: Constructing a Decision Tree for Graph-Structured Data and its Applications.
Fundamenta Informaticae Vol. 66, No.1-2, pp. 131–160, (2005).

4. Inokuchi, A., Washio, T., and Motoda, H.: Complete Mining of Frequent Patterns
from Graphs: Mining Graph Data. Machine Learning, Vol. 50, No. 3, pp. 321–354,
(2003).

5. Kuramochi, M. and Karypis, G.: An Efficient Algorithm for Discovering Frequent
Subgraphs. IEEE Trans. Knowledge and Data Engineering, Vol. 16, No. 9, pp.
1038–1051, (2004).

6. Matsuda, T., Motoda, H., Yoshida, T., and Washio, T.: Mining Patterns from
Structured Data by Beam-wise Graph-Based Induction. Proc. of DS 2002, pp.
422–429, (2002).

7. Motoyama, S., Ichise, R., and Numao, M.: Knowledge Discovery from Inconstant
Time Series Data. JSAI Technical Report, SIG-KBS-A405, pp. 27–32, in Japanese,
(2005).

8. Nguyen, P. C., Ohara, K., Motoda, H., and Washio, T.: Cl-GBI: A Novel Approach
for Extracting Typical Patterns from Graph-Structured Data. Proc. of PAKDD
2005, pp. 639–649, (2005).

9. Nguyen, P. C., Ohara, K., Mogi, A., Motoda, H., and Washio, T.: Constructing De-
cision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction.
Proc. of PAKDD 2006, pp. 390–399, (2006).

10. Quinlan, J. R.: Induction of decision trees. Machine Learning, Vol. 1, pp. 81–106,
(1986).

11. Sato, Y., Hatazawa, M., Ohsaki, M., Yokoi, H., and Yamaguchi, T.: A Rule Discov-
ery Support System in Chronic Hepatitis Datasets. First International Conference
on Global Research and Education (Inter Academia 2002), pp. 140–143, (2002).

12. Yan, X. and Han, J.: gSpan: Graph-Based Structure Pattern Mining. Proc. of
ICDM 2002, pp. 721–724, (2002).

13. Yoshida, K. and Motoda, H.: CLIP: Concept Learning from Inference Patterns.
Artificial Intelligence, Vol. 75, No. 1, pp. 63–92, (1995).

Two connectionist models for graph processing:
an experimental comparison on relational data

Werner Uwents1, Gabriele Monfardini2

Hendrik Blockeel1, Franco Scarselli2, and Marco Gori2

1 Department of Computer Science, Katholieke Universiteit, Leuven, Belgium
{hendrik,werner}@cs.kuleuven.be

2 Dipartimento di Ingegneria dell’informazione
Università di Siena, Siena, Italy

{marco,monfardini,franco}@dii.unisi.it

Abstract. In this paper, two recently developed connectionist models for lear-
ning from relational or graph-structured data, i.e. Relational Neural Networks
(RelNNs) and Graph Neural Networks (GNNs), are compared. We first introduce
a general paradigm for connectionist learning from graphs that covers both ap-
proaches, and situate the approaches in this general paradigm. This gives a first
view on how they relate to each other. As RelNNs have been developed with
learning aggregate functions in mind, we compare them to GNNs for this spe-
cific task. Next, we compare both with other relational learners on a number of
benchmark problems (mutagenesis, biodegradability). The results are promising
and suggest that RelNNs and GNNs can be a viable approach for learning on
relational data. They also point out a number of differences in behavior between
both approaches that deserve further study.

1 Introduction

Object localization [1], image classification [2], natural language processing, bioinfor-
matics, web page scoring, social networks analysis and relational learning are exam-
ples of applications where the information of interest is encoded into the relationships
between a set of basic entities. In those domains, data are suitably represented as se-
quences, trees, and, more generally, directed or undirected graphs. In fact, nodes can be
naturally used to denote concepts with edges specifying their relationships.

For example, relational databases contain information that is naturally represented
by graphs: each tuple of a relation can be denoted by a node, while the relationships
between different tuples are represented by edges. The nodes of the graph have labels
that correspond to the attributes of the tuples, while some edge labels may define the
direction of the edge if the relationships between tuples are not symmetric. The appli-
cation of machine learning techniques to relational databases is receiving an increasing
interest from researchers. A common application consists of predicting an attribute of a
relation, i.e. learning from examples a function ϕ(G, n) that takes as input a database
G and a tuple n and returns an attribute of n. When we consider the graphical repre-
sentation, ϕ is a function on graphs, G is the graph representing the database and n is a
node.

214 Uwents et. al.

Recently, new connectionist models were proposed, that are capable to elaborate
graphs and trees directly, embedding the relationship between nodes into the proces-
sing scheme. They extend support vector machines [3, 4], neural networks [5–7] and
SOMs [8] to structured data. The main idea underlying these methods is to automa-
tically obtain a flat internal representation of the information collected in the graphs.
While in kernels for graphs the internal encoding is defined by the selected kernel, in
neural network models it is automatically learned from examples. SOMs–SD are simi-
lar, but implement an unsupervised learning framework, instead of a supervised one.

In this paper, we discuss and evaluate two connectionist models, i.e. Relational Neu-
ral Networks (RelNNs) [9,10] and Graph Neural Networks (GNNs) [7], that have been
proposed recently. The models will be described in the next section, introducing a gen-
eral paradigm that covers most of the existing neural network approaches to graph pro-
cessing. Moreover, an experimental evaluation is carried out in section 4, to devise some
differences between the two models and to assess their computational capabilities. Fi-
nally, the conclusions are drawn in Section 5.

2 Terminology

In the following explanation, a graph G is a pair (N ,E), where N is a set of nodes
(or vertices), and E is a set of edges (or arcs) between nodes: E ⊆ {(u, v)|u, v ∈ N}.
We assume that edges are directed, i.e. each edge (u, v) is ordered and it has a head
v and a tail u. The children ch[n] and the parents pa[n] of a node n are defined by
ch[n] = {u| (n, u) ∈ E} and pa[n] = {u| (u, n) ∈ E}. Nodes and edges can be
labeled, and labels are represented by ln and l(u,v), respectively, while l defines all the
labels of the graph. Each node can also be labeled with a type kn. The type kn belongs
to a finite set K and defines which object is represented by the node or, in other words,
the table the tuple belongs to. The operator | · | denotes the cardinality or the absolute
value of its argument, according to whether it is applied to a set or to a number. The
goal is to approximate a target function τ(G, n) ∈ IRm that maps a graph G and one
of its nodes n into a vector of real numbers. There can be one target for a whole graph
(graph classification), or a target for each node (node classification).

3 A general paradigm

Although there is a difference in motivation between graph and relational neural net-
works [7,9], which is not discussed in this paper, they can be described using a common
processing paradigm. In this section, they will both be situated in this general frame-
work. The main idea is to attach to each node n a vector of real numbers xn ∈ IRs

called state. The state contains a description of the concept represented by the node
n and is evaluated locally at each node, i.e. the processing scheme is distributed. The
goal here is to combine label information with subsymbolic contributions embedded in
graph topology. Such a task is accomplished computing xn as the output of a parametric
function fkn

w , called state transition function, that combines the information attached to
node n and to its children ch[n]

xn = fkn
w (ln,xch[n], lch[n], l(n,ch[n])), n ∈ N , (1)

Two connectionist models for graph processing 215

where xch[n] and lch[n] are the states and the labels of the nodes in ch[n], respectively,
and l(n,ch[n]) collects the labels of the edges connected to n. Different functions can be
used for different node types kn. For each node n, an output vector on is also defined
that depends on the type kn, the state xn and the label ln of the node. The dependence
is described by a parametric output function gkn

w

on = gkn
w (xn, ln), n ∈ N . (2)

Thus, eqs. (1) and (2) define a method to compute an output on = ϕw(G, n) for
each node n of the graph G, taking into account the local descriptions and the relation-
ships of all the nodes in G. Each input graph G is evaluated on an encoding network,
which is obtained by substituting all of the nodes of G with “units” that compute the
function fkn

w and are connected according to graph topology. Each “f -unit” is also con-
nected to another unit that implements the output function gkn

w .
In this framework, a learning set L consists of triples L = {(Gi, ni,j , tni,j)| 1 ≤

i ≤ p, 1 ≤ j ≤ qi}, where each triple (Gi, ni,j , tni,j) denotes a graph Gi, one of its
nodes ni,j and the desired output tni,j . Moreover, p is the number of graphs in L and
qi is the number of the supervised nodes in graph Gi, i.e. the nodes for which a desired
output is defined. The goal of the learning procedure is to adapt the parameters w so
that ϕw(G, ni,j) approximates the target tni,j

for the supervised nodes. In practice,
learning is done by using gradient descent to minimize the quadratic error function

ew =
p∑

i=1

qi∑
j=1

(tni,j
− ϕw(Gi, ni,j))2. (3)

RelNNs and GNNs have a different implementation of fkn
w and gkn

w and a different
computation of the states and the gradient. They also enforce additional constraints on
the input data.

3.1 Relational neural networks

Relational neural networks [9, 10] are a special case of the above described framework
with the following peculiarities:

1) The input graph G is acyclic and has a root node, from which there is a path to all
other nodes. The root is the only supervised node of the graph.

2) The output function gkn
w is implemented by a layered feedforward neural network.

3) The transition function fkn
w , which does not use the labels ln and l(n,ch[n]), is

implemented by a recurrent neural network rkn
w that combines together the states

and the labels of the children of a node, storing the result into an internal state
z(i) ∈ IRs.

Point (1) is a fundamental property of RelNNs. Since the graph is acyclic, the cor-
responding encoding network is a large tree-like neural network whose components are
the neural network units implementing gkn

w and rkn
w . Thus, the states xn and the gradi-

ent ∂ew

∂w can be computed with a common backpropagation algorithm. More precisely,

216 Uwents et. al.

the states xn are evaluated by the networks rkn
w from bottom to top: first the states of the

nodes without children are calculated, then the states of their parents, and so on until
the state of the root is obtained. Finally, the output is produced by gkn

w . On the other
hand, the gradient ∂ew

∂w is calculated by backpropagating the error from the root to the
leaves (backpropagation through structure [5, 6]).

3.2 Graph neural networks

Graph neural networks have the following peculiarities:

1) Transition and output functions are the same for all nodes (fw = fkn
w and gw =

gkn
w).

2) The transition function fw is implemented as a sum of contributions provided by
all children. Each contribution is defined by the output of a feedforward neural
network hw that takes as input the labels of the node n, of one of its child and of
the edge that links the two nodes

fw(ln,xch[n], lch[n], l(n,ch[n])) =
|ch[n]|∑

i=1

hw(ln,xchi[n], lchi[n], l(n,chi[n])). (4)

Unlike RelNNs, GNNs can process cyclic graphs. Thus, three issues have to be
addressed: (a) since the states xn are defined recursively, depending on each other, it
must be ensured that system (4) has a unique solution; (b) a method must be defined to
compute the states xn; (c) an algorithm is required to compute the gradient ∂ew

∂w .
In fact, let F w and Gw be the vectorial functions obtained stacking all the instances

of fw and gw, respectively. Then eqs. (1) and (2) can be rewritten for GNN model as

x = F w(x, l) , o = Gw(x, l) , (5)

where l represents the vector containing all the labels and x collects all the states.
Issue (a) can be solved by designing fw in such a way that the global function F w is
a contraction mapping w.r.t. the state x (Banach fixed point theorem [11]). This goal
can be achieved by adding a penalty term to the error function [12]. Banach fixed point
theorem also suggests a method to solve issue (b). In fact, the theorem states that if ρ
is a contraction mapping, then the dynamical system x(t + 1) = ρ(x(t)), where x(t)
denotes the t-th iterate of x, converges exponentially fast to the solution of the equation
x = ρ(x) for any initial state x(0). Eq. (5) can therefore be solved by iteration.

Finally, in order to design a learning algorithm, we can observe that the encoding
network represents a system having a settling behaviour. For this reason, the gradi-
ent can be computed using Almeida–Pineda algorithm [13, 14], in combination with a
backpropagation through structure algorithm.

4 Experimental results

In this section, GNNs and RelNNs are evaluated experimentally on some relational
datasets. The considered problems include the modeling of queries produced by aggre-
gate functions and two datasets dealing with QSAR problems that are often used to
compare machine learning techniques.

Two connectionist models for graph processing 217

Table 1. Accuracies on the aggregate function experiments. Results are averages over 3 runs.

Problem GNN RelNN
count 100 100
sum 100 100
max 62.8 45.9
avg 92.4 99.7

median 79.0 85.5

Aggregate functions Modeling an aggregate function can be considered the minimal
requirement for a relational learner. An aggregate function is applied to a bag of tuples
and produces one tuple with one attribute that contains the result of the operation. Thus,
for each function, data may be represented as a simple graph with one node (the result
tuple) that is connected to all the other nodes (the tuples of the bag). Our datasets con-
tained 500 random bags: 300 in the training set, 100 in validation set and 100 in test set.
Each bag included 5 to 10 tuples, while each tuple had 5 random real attributes in the in-
terval [−0.8, 0.8]. The aggregate function to be learned considers only one attribute, the
others are noise. Table 1 shows the results obtained for the aggregate functions count,
sum, maximum, average and median. Each bag is considered correctly predicted if the
output of the network is within ±0.1 range of the target.

The results show that the performances achieved by the two connectionist models
vary largely according to the considered aggregate function. This variance is partially
due to the general difficulty of neural networks to approximate some kind of func-
tions. Also, RelNNs combine the contributions of the children using a recurrent neural
network that process a child at every time instance. If the input sequence is long, the
recurrent neural network tends to forget the initial inputs. For this reason, the perfor-
mance of RelNNs is worse on the maximum function, where the ability to remember a
value is more critical. This is only one tentative explanation, further work is needed to
understand the different behavior of both approaches.

The mutagenesis dataset The mutagenesis dataset [17] is a small dataset, publicly
available and often used as a benchmark in ILP literature [15]. It contains the descrip-
tions of 230 molecules and the goal is to predict which compounds are mutagenic.
In [17] it is shown that 188 molecules out of 230 are learnable using linear regression.
This subset was therefore called “regression–friendly”, while the remaining 42 com-
pounds were termed “regression–unfriendly”. Many authors have reported their results
only on the “regression–friendly” part, often referred to as “the” mutagenesis dataset.

Each compound is provided with four global features (C+PS). Moreover, the atom-
bond structure (AB) is also given which defines binary relationships between the atoms
of each compound. Two graphical representations are possible:

1) Each compound is represented by a node labeled with the global features and con-
nected to other nodes denoting the atoms that belong to the compound. Atom nodes
are labeled with the type of the atom and are connected by edges to other nodes,
according to the atom–bond structure.

218 Uwents et. al.

Table 2. A comparison of the performance of GNNs, RelNNs and other techniques (results
from [15] and [16]) on the mutagenesis (regression-friendly, regression-unfriendly and whole
dataset). FG denotes functional group features that have been be used as higher level features.

Method Knowledge Friendly Unfriendly Whole
GNN AB+C+PS 94.3± 0.6 96.0± 1.4 90.5± 0.7

RelNN AB+C+PS 91.0± 1.8 86.8± 2.6 86.5± 2.1
Neural Networks C+PS 89.0± 2.0

P-Progol AB+C 82.0± 3.0
P-Progol AB+C+FG 88.0± 2.0
MFLOG AB+C 95.7

FOIL AB 76
boosted-FOIL not available 88.3

1nn(dm) AB 83± 2.0 72± 7.0
1nn(dm) AB+C 91± 2.0 72± 7.0

RDBC AB 84 79 83
RDBC AB+C 83 79 82
RSD AB+C+FG 92.6

SINUS AB+C+FG 84.5
RELAGGS AB+C+FG 88.0

RS AB 88.9± 7.2
RS AB+FG 89.9± 5.2
RS AB+C+PS+FG 95.8± 3.3

TILDE AB 85 77
TILDE AB+C 79 82

2) The compound is not represented. Nodes representing atoms are connected as in
(1), while their labels are extended with the global features.

Our experimentation has been carried out using (1) for RelNNs and (2) for GNNs.
To evaluate the results, we adopted a 10-fold cross-validation scheme and averaged the
accuracies over 5 runs. Results are shown in table 2.

GNNs clearly outperform other methods on the whole dataset and on the unfriendly
part. RelNNs produce a slightly lower result. It is also interesting to note that whereas
most of the approaches show a higher level of accuracy on the whole dataset than on the
unfriendly part, the converse holds for our approaches. Such a behaviour may suggest
that the proposed connectionist models can capture particular features of the dataset,
which cannot be captured by other methods and are distributed more homogeneously
inside each single part (friendly and unfriendly) than between the parts.

The biodegradability dataset The biodegradability dataset, introduced by Dzeroski et
al. [18], is very similar to the mutagenesis dataset. The aim is to classify 328 chemical
compounds according to their degree of biodegradability: resistant, slow, moderate or
fast. Five different representations can be used for learning. Three of them are global:
P0, which includes molecular weight and logP, P1, which consists of counts of the dif-
ferent types of functional groups in the molecule, and P2, which consists of counts
of common substructures in the molecules. The other two regard the atoms: R0, con-
taining atoms and bonds descriptions, and R1, including background predicates about

Two connectionist models for graph processing 219

Table 3. Results for biodegradability. First six rows are our results, the other results are reported
in [18]. The accuracy (+/-1) column gives the number of examples for which the classification is
maximum one class up or down from the true classification.

Method Knowledge Accuracy Accuracy (+/-1)
GNN P0+P1+P2+R0 54.7 91.7
GNN P0+P1+R0 53.5 89.9
GNN P0+R0 50.6 91.0

RelNN P0+P1+P2+R0 57.6 92.1
RelNN P0+R0 48.6 91.5

Feedforward NN P0 43.7 89.0
C4.5 P0+P1 55.2 86.2
C4.5 P0+P2 56.9 82.4

RIPPER P0+P1 52.6 89.8
RIPPER P0+P2 57.6 93.9

M5’ P0+P1 53.8 94.5
M5’ P0+P2 59.8 94.7

FFOIL P0+R0 53.0 88.7
ICL P0+R1 55.7 92.6

SRT-C P0+P1 50.8 87.5
SRT-C P0+P1+R1 55.0 90.0
SRT-R P0+P1 49.5 91.9
SRT-R P0+P1+R1 51.6 92.8

TILDE-C P0+R1 51.0 88.6
TILDE-C P0+P1+R1 52.0 89.0
TILDE-R P0+R1 52.6 94.0
TILDE-R P0+P1+R1 52.4 93.9

functional groups and substructures. Representation and settings for our methods were
similar to the mutagenesis experiment. Table 3 shows results for different methods.

The results for our models are comparable to the other results, but not better. This
means that counts of functional groups and substructures are probably good proposi-
tionalizations of the relational data, as already suggested in [18]. When P1 and P2 are
left out, the performance of GNNs and RelNNs decreases. However, in this case the
performance is still better than when using the global properties P0 alone, so at least
part of this information seems to be learned from the simple connectivity alone. One of
the reasons why it is more difficult to learn the substructures from the simple atoms and
bonds descriptions, could be that some of them are rather infrequent in the data.

5 Conclusions

In this paper, two recently connectionist models, i.e. Relational Neural Networks (RelNNs)
and Graph Neural Networks (GNNs), were experimentally evaluated and compared.
The results on the mutagenesis and the biodegradability datasets were promising and
suggested that RelNNs and GNNs can be viable approaches for learning on relational
data. In particularly, GNNs achieved the current best result on mutagenesis. The exper-
imentation of the models on other and more complex benchmarks and a comparative
study of their theoretical properties is matter of future research.

220 Uwents et. al.

References

1. Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks for processing
graphs with labelled edges: Theory and applications. Neural Networks - Special Issue on
Neural Networks and Kernel Methods for Structured Domains 18 (2005) 1040–1050

2. Francesconi, E., Frasconi, P., Gori, M., Marinai, S., Sheng, J., Soda, G., Sperduti, A.: Logo
recognition by recursive neural networks. In Tombre, K., Chhabra, A.K., eds.: GREC ’97:
Selected Papers from the Second International Workshop on Graphics Recognition, Algo-
rithms and Systems. Springer-Verlag (1998) 104–117

3. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In Sam-
mut, C., Hoffmann, A.e., eds.: Proc. 19th International Conference on Machine Learning
(ICML2002), Morgan Kaufmann Publishers Inc (2002) 315–322

4. Gärtner, T.: Kernel-based learning in multi-relational data mining. ACM SIGKDD Explo-
rations 5(1) (2003) 49–58

5. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks 8 (1997) 429–459

6. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data
structures. IEEE Transactions on Neural Networks 9(5) (1998) 768–786

7. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proc.
International Joint Conference on Neural Networks (IJCNN2005). (2005) 729–734

8. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing
of structured data. IEEE Transactions on Neural Networks 14(3) (2003) 491–505

9. Blockeel, H., Bruynooghe, M.: Aggregation versus selection bias, and relational neural net-
works. IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, SRL-
2003, Acapulco, Mexico, August 11 (2003)

10. Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In: Proc. of the
15th International Conference on Inductive Logic Programming, Bonn, Germany (2005)

11. Khamsi, M.A.: An Introduction to Metric Spaces and Fixed Point Theory. John Wiley &
Sons Inc (2001)

12. Scarselli, F., Gori, M., Monfardini, G., Tsoi, A.C., Hagenbuchner, M.: A new neural net-
work model for graph processing. Technical Report DII 01/05, Department of Information
Engineering, University of Siena (2005)

13. Almeida, L.: A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Caudill, M., Butler, C., eds.: Proceedings of the IEEE International Confe-
rence on Neural Networks. Volume 2., San Diego, 1987, IEEE, New York (1987) 609–618

14. Pineda, F.: Generalization of back–propagation to recurrent neural networks. Physical Re-
view Letters 59 (1987) 2229–2232

15. Lodhi, H., Muggleton, S.H.: Is mutagenesis still challenging? In: Proceedings of the 15th
International Conference on Inductive Logic Programming, ILP 2005, Late-Breaking Papers.
(2005) 35–40

16. De Raedt, L., Blockeel, H.: Using logical decision trees for clustering. In: Proceedings of
the 7th International Workshop on Inductive Logic Programming ILP 1997. Volume 1297 of
Lecture Notes in Artificial Intelligence., Springer-Verlag (1997) 133–141

17. Debnath, A., Lopex de Compandre, R., Debnath, G., Schusterman, A., Hansch, C.: Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry 34(2)
(1991) 786–797

18. Dzeroski, S., Blockeel, H., Kompare, B., Kramer, S., Pfahringer, B., Van Laer, W.: Exper-
iments in predicting biodegradability. Proceedings of the Ninth International Workshop on
Inductive Logic Programming 1634 (1999) 80–91

Edgar: the Embedding-baseD GrAph MineR

Marc Wörlein,1 Alexander Dreweke,1 Thorsten Meinl,2 Ingrid Fischer2, and
Michael Philippsen1

1 University of Erlangen-Nuremberg, Computer Science Department 2
Martensstr. 3, 91058 Erlangen, Germany

{woerlein,dreweke,philippsen}@cs.fau.de
2 ALTANA Chair for Bioinformatics and Information Mining

University of Konstanz, BOX M712, 78457 Konstanz, Germany
{Thorsten.Meinl,Ingrid.Fischer}@inf.uni-konstanz.de

Abstract. In this paper we present the novel graph mining algorithm
Edgar which is based on the well-known gSpan algorithm. The need for
another subgraph miner results from procedural abstraction (an impor-
tant technique to reduce code size in embedded systems). Assembler code
is represented as a data flow graph and subgraph mining on this graph
returns frequent code fragments that can be extracted into procedures.
When mining for procedural abstraction, it is not the number of data
flow graphs in which a fragment occurs that is important but the number
of all the non-overlapping occurrences in all graphs. Several changes in
the mining process have therefore become necessary. As traditional prun-
ing strategies are inappropriate, Edgar uses a new embedding-based fre-
quency; on average, saves 160% more instructions compared to classical
approaches.

1 Introduction

Nowadays embedded systems are used in many fields such as automotive, cell-
phones, and various consumer electronics. As consumers demand more and more
functionality, the programs that run on these systems grow. To reduce the per
piece costs the manufacturers have to reduce the memory, space, and energy re-
quirements. So they invest a great deal of effort in reducing the amount of code.
Procedural abstraction (PA) is the most important technique to deal with code
repetitions: frequent code fragments are extracted and substituted with jumps
or procedure calls. Only one fragment remains in the resulting code.

This paper demonstrates that frequent graph mining can be applied success-
fully to enhance procedural abstraction. This section briefly introduces proce-
dural abstraction and frequent graph mining. Section 2 discusses related work.
Section 3 describes our new subgraph miner satisfying all requirements for pro-
cedural abstraction in detail. An evaluation is given in section 4.

1.1 Procedural Abstraction

Although there are compiler flags to avoid code bloat and smart linkers that
reduce code size, still many space-wasting code duplications remain in the com-

222 Wörlein et al

 (a) Suffix trie approach

 (b) DFG approach

Fragment3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

mov pc, lr

add r4, r2, #4

ldr r3, [r1]!

sub r2, r2, r3

Fragment2

mov pc, lr

ldr r3, [r1]!

call Fragment3

call Fragment3

ldr r3, [r1]!

call Fragment2

call Fragment2

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

ldr r3, [r1]!

ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

sub r2, r2, r3

add r4, r2, #4

add r4, r2, #4

call Fragment1

call Fragment1

ldr r3, [r1]!

add r4, r2, #4

add r4, r2, #4

Fragment1

mov pc, lr

ldr r3, [r1]!

sub r2, r2, r3

Fig. 1: Running PA example: (a) sequencial PA on a basic block of ARM code and
(b) the corresponding data flow graph extractions.

piled executables [4] (resulting from code templates, copy-and-paste program-
ming, etc.). Code-size optimization is important for embedded systems [1] as
cost and energy consumption depends on the size of the built-in memory and
because more functionality fits into memory of a given size.

The main focus of code compaction based on PA is to detect repeated code
fragments that can be extracted afterwards. Early compaction approaches con-
sidered the whole code as a sequence of instructions and used suffix tries to detect
common subsequences [7]. Therefore fast algorithms that keep the compile-time
short are used. For embedded systems, a larger time budget is available since
the cost per piece is more relevant than compile time.

Optimizing compiliers have passes that reorder the code sequence to e.g. keep
the instruction pipeline perfectly filled. Therfore the traditional linear suffix trie
approach cannot detect all semantically equivalent code, because the instruc-
tion order may differs from occurrence to occurrence. Our new graph-based PA
approach transforms the instruction sequences of basic blocks3 into data flow
graphs (DFG) which are independent of the actual scheduling.

3 A basic block is a piece of code that ensures that if one instruction is executed all
following instructions will also be executed under all circumstances.

Edgar: the Embedding-baseD GrAph MineR 223

We explain the basic ideas of our approach to PA with the (synthetic) piece
of ARM code and its corresponding DFG shown on the left side of Fig. 1. Our
example steps through the values of an array (register r1 points to the cur-
rent element in the array) and performs some calculations. The upper part of
Fig. 1 shows how the suffix trie based approaches detect the code fragment
ldr r3,[r1]! → sub r2,r2,r3 twice. The lower part shows that graph-based
PA is more successful, even for this tiny example, because it finds two different
fragments of size three that both appear twice and that both result in a smaller
number of instructions. The varying order of instructions prevents suffix tries
from detecting these fragments.

1.2 Frequent Subgraph Mining

add r4, r2, #4

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4
ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3
add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

ldr r3, [r1]!

sub r2, r2, r3

ldr r3, [r1]!

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

sub r2, r2, r3

ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

sub r2, r2, r3

add r4, r2, #4 sub r2, r2, r3

.

.

ldr r3, [r1]! sub r2, r2, r3 add r4, r2, #4

*

.

Fig. 2: Parts of the search lattice for the example.

Several frequent
subgraph mining
algorithms have
been published
that allow graph
databases to be
searched for fre-
quent graph frag-
ments by travers-
ing the lattice of
subgraphs [14].
An example of
such a search lat-
tice is given in
Fig. 2. The empty
subgraph (*) at
the top is followed by the subgraphs with just one node (i.e. 1 instruction).
Each step downwards adds a new edge (and node, if necessary) to a subgraph.
Real search lattices are much more complex than this example as the underlying
databases consist of many different and much bigger graphs.

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

Fragment

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

Fig. 3: Two overlapping embeddings

A graph fragment is usu-
ally considered frequent if it
appears in a given number
of database graphs. Only
the number of database
graphs in which it occurs is
counted, no matter how of-
ten a fragment is found in a
single database graph.

This counting scheme is
inappropriate for PA where the total number of occurrences (called embeddings)
of the graph fragment matters. In Fig. 1 the frequent fragment has a frequency
of 1 since it appears twice but only in one graph.

224 Wörlein et al

However, not all embeddings are relevant for PA. If 2 embeddings overlap
(as in Fig. 3) only the code for one of them can be extracted by PA. When
one is extracted, the other embedding disappears. So only the number of non-
overlapping embeddings matters.

2 Related Approaches

Within the graph mining community only a few algorithms have been published
that satisfy the requirements of PA. The well-known algorithms such as MoFa,
gSpan, Gaston, or FFSM [15] use inappropriate graph-based frequency counting.
Among the embedding-based algorithms, there are heuristic algorithms such as
SubDue [3], GBI [12], or SEuS [8]. In contrast to Edgar, they only check heuristic
subsets of fragments, and do not find the optimal candidate in general. The
algorithms of Vanetik [13] and Kuramochi [11] are similar to our approach as they
calculate the maximal independent set to determine edge-disjoint embeddings.
But since two edge-disjoint embeddings can share a node (i.e. one instruction in
our application) these algorithms are unsuitable for PA.

In the area of circuit synthesis on FPGAs (field-programmable gate arrays)
similar problems arise [17]. High-level synthesis compilers produce recurring pat-
terns that can be extracted to reduce the number of functional units. This so
called template generation is similar to frequent graph mining. But there seems
to be no attempt to do a complete detection as in our approach. Similar to
us, [2,12,17] use a data flow graph-based approach to identify frequent patterns
for a hard-logic implementation on embedded systems. However, their heuristics
or restrictions to fragments with just one source node4 do not ensure that all
relevant patterns are detected.

3 Edgar (Embedding-baseD GrAph mineR)

For mining DFGs we have developed a new mining algorithm called Edgar that
is based on the well known gSpan algorithm [16]. We decided to start from gSpan
because it is the best algorithm for mining with graph-based frequency [15].

3.1 gSpan

Fig. 2 shows parts of a search lattice. There are multiple paths to most subgraphs,
which have to be filtered out to avoid duplicate detection of the corresponding
fragments. Therefore gSpan builds a so-called dfs-code that represents the edges
in the order in which they are added to the fragment. As there are different paths
to each fragment, different codes exist. A global order on these codes allows
the smallest one to be defined as canonical [16]. gSpan only extends fragments
with canonical representation, because the non-canonical ones have already been
created before.
4 A source node has just outgoing and no incoming edges.

Edgar: the Embedding-baseD GrAph MineR 225

To detect non-canonical codes, a straightforward but expensive graph iso-
morphism test can be used. To minimize these tests, gSpan groups all possible
extending edges into forward edges that insert a new node, and backward edges
that just close cycles. Now, gSpan only extends fragments with forward edges
starting at nodes on the right most path5 and backward edges starting at the last
added node. This heuristic method eliminates many unnecessary paths. Canon-
ical tests are only required for the paths that remain.

For each fragment gSpan only stores a list of database graphs in which the
fragment appears (a so-called appearance list). Its size represents the frequency
of the fragment. To extend a fragment, only the graphs of that list have to be
scanned (as opposed to the whole dataset).

3.2 Extending gSpan for PA

For Edgar, we have adopted the basic structures of the search lattice and gSpan’s
basic dfs-code including the right most extension rule. However, since the original
gSpan algorithm works on undirected graphs, we had to extend the dfs-code, the
extension process, and the test for being canonical to work on directed graphs
needed for PA.

3 3

1

2

two embeddings
for (1->2->3)

3 3

1

2

one embedding
for (1->2)

Fig. 4: Embedding counts.

Edgar’s frequency-based prun-
ing significantly differs from gSpan’s.
For graph-based miners, the fre-
quency of a fragment decreases
monotonically with growing frag-
ment size. Hence the search can be
pruned as soon as an infrequent
fragment is found. For embedding-
based pruning all embeddings and
not only the supported graphs are
relevant. Therefore, first all embed-
dings have to be stored (not just
the appearance lists). This leads to
higher memory requirements.6 Sec-
ond, since there are cases in which
the frequency increases with grow-
ing fragment size (see Fig. 4) a corresponding frequency pruning is wrong.

Fortunately for PA it is not the set of all embeddings that matters, but the
non-overlapping subset (see section 1.2). The ones with maximal size (the max-
imal number of embeddings) are the best, because extracting the embeddings
of such maximal non-overlapping sets results in best code compression. Addi-
tionally, the maximal size decreases monotonically as the graph-based frequency
does.

5 This is the path of forward edges, between the first and the last inserted node.
6 It is better to keep embeddings rather than recomputing occurrences.

226 Wörlein et al

This is obvious, because a non-overlapping subset for each fragment can be
generated by the embeddings of one of its successors. For each parent a non-over-
lapping subset with the same size can be generated out of the maximal subset of
a child.7. This subset does not need to be a maximal subset, which therefore can
contain the same number or more embeddings. For each successor such a subset
can be found, thus the maximal subset for each fragment is greater than or
equal to the sets of its children, which allows pruning like the original frequency.

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

ldr r3, [r1]!

sub r2, r2, r3

add r4, r2, #4 ldr r3, [r1]!

sub r2, r2, r3

max. independent set for child (ldr->sub->add) independent subset for parent (ldr->sub)

Fig. 5: A parent’s subset induced by a child’s maximal one.

Edgar builds
a so-called colli-
sion graph to de-
termine the size
of a maximal non-
overlapping sub-
set. In the col-
lision graph the
embeddings of a
fragment are rep-
resented as nodes
which are con-
nected if the corresponding embeddings overlap. A maximum independent set in
the collision graph then represents a subset of maximal non-overlapping embed-
dings on the graph database. Alternatively, a maximum clique in the inverted
collision graph8 also represents the desired subset. For computing the maximum
independent set/maximum clique – which is an NP-complete problem – standard
algorithms (like [6]) can be used. Edgar adapts the maximal clique algorithm of
Kumlander [10] which at the moment is the fastest known algorithm.

4 Evaluation

Program # Inst.
of saved inst.

SFX DgSpan Edgar

bitcnts 3946 53 81 83
crc 3584 46 68 119

dijkstra 4632 70 102 164
patricia 5039 70 105 189
qsort 4770 70 105 197

rijndael 7113 70 132 256
search 3717 46 74 110
sha 3897 55 82 120

total 36698 480 749 1238

Fig. 6: Saved instructions

We have evaluated our approach with a
subset of the MiBench suite [9]. For em-
bedded systems it is sufficient to statically
link against the small dietlibc9 [5]. Addi-
tionally all binaries were compiled with
-Os to optimize for size. Table 6 com-
pares the traditional suffix trie approach
(SFX) with DgSpan, the directed graph-
based gSpan algorithm, and with the em-
bedding-based Edgar. Repeatedly for each

7 In the example in Fig. 5 only the unused add r4, r2, #4 has to be removed
8 The inverted collision graph has an edge, if two nodes do not overlap
9 Dietlibc is a cross platform C run-time library, supporting x86, ARM, Sparc, Alpha,

PPC, Mips, and s390 architectures, compatible with SUVv2 and POSIX.

Edgar: the Embedding-baseD GrAph MineR 227

approach, in each iteration the best fragment has been extracted until no further
shrinking was possible. The fragments are weighted by the number of instruc-
tions they save. In total, Edgar saves 1238 as opposed to 480 instructions by
SFX which is an improvement by a factor of 2.6. Edgar even saves more than
DgSpan, because DgSpan misses many fragments that appear several times in
the same basic block.

edges 200 300
Connectivity 3 2
Coverage 0.7 0.8
Overlap 0.7 0.2
Deviation 0.9 1.0
SubVertexLabel 0.30 0.25
SubEdgeLabel 0.20 0.25
DelVertex 0.15 0.10
DelEdge 0.35 0.40
Substruct. nodes 3 6
Substruct. edges 6 5 20

 40

 60

 80

 100

 120

 140

 160

(g
ra

ph
S

iz
e-

1)
*(

fr
eq

ue
nc

y-
1)

2x 5 random databases

average gSpan
average Subdue

Fig. 7: SubDue vs. gSpan: best found fragments

From the related
work (section 2) only
SubDue is available
for download. There-
fore we have sim-
ply compared Edgar
and SubDue quanti-
tatively. In both al-
gorithms we used the
same weighting func-
tion (graphSize −
1) ∗ (frequency − 1) to estimate the instruction savings for a given fragment.
For Edgar the support is set to two to find the overall best fragments. A real
substitution of the found fragment is not trivial, so just the first run for both
algorithms is taken for the results in Fig. 7. For the comparison ten different
random graphs with uniformly distributed node and edge labels10 - five with the
parameters of the first column of the given table and the other half with the
second values - are generated with the subgen tool of the SubDue-system. Fig. 7
shows the average weight over the best three fragments (default configuration of
SubDue) for each algorithm. In most cases SubDue found the same fragments
as Edgar but not the optimal number of independent embeddings, which lead to
lesser ranking of those fragments.

5 Conclusion

Frequent graph mining renders PA more effective and helps to build cheaper
and/or more powerful embedded systems. By using DFGs instead of code se-
quences as a basis of frequent code detection more potential for outlining is
found. The better the candidates are with respect to size and frequency, the
smaller the resulting code. Compared to other sequential approaches our proto-
type Edgar saves an average of 160 % more instructions.

In contrast to Edgar, common graph-based miners cannot be applied, since
they do not work on directed graphs, they use heuristics that prune the search
space prematurely, stumble over fragments that have nodes in common, or lack
embedding-based frequency counting. The paper presented a new embedding-
based frequency definition that is based on the maximal non-overlapping subset
of all embeddings and results in a valid pruning strategy.

10 25 node and 4 edge labels

228 Wörlein et al

References

1. J. Bentley. Programming Pearls: Squeezing Space. Communications of the ACM,
27(5):416–421, May 1984.

2. P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction generation and
regularity extraction for reconfigurable processors. In Proc. of the Int’l Conf. on
Compilers, Architecture, and Synthesis for Embedded Systems, pages 262–269, New
York, 2002.

3. D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description
Length and Background Knowledge. Artificial Intelligence Research, 1:231–255,
1994.

4. S. K. Debray, W. Evans, R. Muth, and Bjorn de Sutter. Compiler Techniques for
Code Compaction. ACM Trans. Progamming Languages and Systems, 22(2):378–
415, 2000.

5. dietlibc - a libc optimized for small size. http://www.fefe.de/dietlibc/.
6. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Conquer: A Simple

o(n0.288n) Independent Set Algorithm. In Proc. of 17th ACM-SIAM Symp. on
Discrete Algorithms, pages 18–25, Miami, FL, January 2006.

7. C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyzing and Compressing As-
sembly Code. In Proc. ACM Symp. an Compiler Construction, pages 117–121,
Montréal, C, 1984.

8. S. Ghazizadeh and S. S. Chawathe. SEuS: Structure extraction using summaries.
In Discovery Science, volume 2534, pages 71–85. Springer, 2002.

9. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc.
4th IEEE Workshop on Workload Characterization, pages 3–14, Austin, TX, 2001.

10. D. Kumlander. A new exact Algorithm for the Maximum-Weight Clique Problem
based on a Heuristic Vertex-Coloring and a Backtrack Search. In Proc. 5th Int’l
Conf. on Modelling, Computation and Optimization in Information Systems and
Management Sciences, pages 202–208, Metz, France, July 2004.

11. M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph.
Data Min. Knowl. Discov., 11(3):243–271, November 2005.

12. P. C. Nguyen, K. Ohara, H. Motoda, and T. Washio. Cl-gbi: A novel approach for
extracting typical patterns from graph-structured data. In Advances in Knowledge
Discovery and Data Mining, 9th Pacific-Asia Conference Proc., volume 3518, pages
639–649, Hanoi, Vietnam, May 2005. Springer.

13. N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns
from semistructured data. In Proc. IEEE Int’l Conf. on Data Mining ICDM, page
458, Maebashi City, Japan, November 2002.

14. T. Washio and H. Motoda. State of the Art of Graph–based Data Mining. SIGKDD
Explorations Newsletter, 5(1):59–68, July 2003.

15. M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A quantitative comparison of
the subgraph miners MoFa, gSpan, FFSM, and Gaston. In Knowledge Discovery
in Database: PKDD 2005, volume 3721, pages 392–403, Berlin, 2005. Springer.

16. X. Yan and J. Han. gSpan: Graph–Based Substructure Pattern Mining. In Proc.
IEEE Int’l Conf. on Data Mining ICDM, pages 721–723, Maebashi City, Japan,
November 2002.

17. D. Zaretsky, G. Mittal, R. P. Dick, and P. Banerjee. Dynamic template generation
for resource sharing in control and data flow graphs. In 19th Int’ Conf. on VLSI
Design, pages 465–468, Hyderabad, India, January 2006.

Author Index

Ammendola, Sergio, 117

Balcázar, José L., 1
Basili, Roberto, 117, 165
Bifet, Albert, 1
Blockeel, Hendrik, 213
Boberg, Jorma, 181
Borgelt, Christian, 109
Brefeld, Ulf, 13
Bringmann, Björn, 25
Bruynooghe, Maurice, 197

Cilia, Elisa, 117
Costa, Fabrizio, 129

De Moor, Bart, 189
De Raedt, Luc, 25
Dreweke, Alexander, 221

Estruch, Vicent, 133

Ferri, César, 133
Fischer, Ingrid, 221
Frasconi, Paolo, 129

Gilleron, Rémi, 141
Gori, Marco, 213
Gutmann, Bernd, 157

Haider, Peter, 13
Hernández-Orallo, José, 133
Hilario, Melanie, 97
Horváth, Tamás, 25, 37

Jaeger, Manfred, 49
Jousse, Florent, 141

Kadowaki, Tadashi, 85
Kalousis, Alexandros, 97
Karwath, Andreas, 149
Kashima, Hisashi, 61
Kersting, Kristian, 149, 157
Kok, Joost N., 173

Kuboyama, Tetsuji, 61

Lozano, Antoni, 1

Meinl, Thorsten, 221
Monfardini, Gabriele, 213
Moschitti, Alessandro, 117, 165
Motoda, Hiroshi, 205

Nguyen, Phu Chien, 205
Nijssen, Siegfried, 73, 173

Ohara, Kouzou, 205

Pahikkala, Tapio, 181
Passerini, Andrea, 129
Pelckmans, Kristiaan, 189
Philippsen, Michael, 221
Pighin, Daniele, 165

Raeymaekers, Stefan, 197
Ramirez-Quintana, Maŕıa José, 133
Ramon, Jan, 37

Saigo, Hiroto, 85
Scarselli, Franco, 213
Scheffer, Tobias, 13
Shin, Kilho, 61
Slakoski, Tapio, 181
Suykens, Johan A.K., 189

Takabayashi, Kiyoto, 205
Tellier, Isabelle, 141
Tommasi, Marc, 141
Tsivtsivadze, Evgeni, 181
Tsuda, Koji, 85

Uwents, Werner, 213

Wörlein, Marc, 221
Washio, Takashi, 205
Woznica, Adam, 97
Wrobel, Stefan, 37

