
17th European Conference on Machine Learning (ECML) and
10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD)

Proceedings of

The 5th International
Workshop on

Knowledge Discovery in
Inductive Databases

(KDID'06)

Editors
Sa²o Dºeroski (Joºef Stefan Institute, Ljubljana, Slovenia)
Jan Struyf (Katholieke Universiteit Leuven, Belgium)

Preface

The 5th International Workshop on Knowledge Discovery in Inductive Databases
(KDID 2006) was held on September 18, 2006 in Berlin, Germany, in conjunction
with ECML/PKDD 2006: The 17th European Conference on Machine Learn-
ing (ECML) and the 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD).

Inductive databases (IDBs) represent a database view on data mining and
knowledge discovery. IDBs contain not only data, but also generalizations (pat-
terns and models) valid in the data. In an IDB, ordinary queries can be used
to access and manipulate data, while inductive queries can be used to generate
(mine), manipulate, and apply patterns. In the IDB framework, patterns be-
come “first-class citizens” and KDD becomes an extended querying process in
which both the data and the patterns/models that hold in the data are queried.
The IDB framework is appealing as a general framework for data mining, be-
cause it employs declarative queries instead of ad-hoc procedural constructs. As
declarative queries are often formulated using constraints, inductive querying
is closely related to constraint-based data mining. The IDB framework is also
appealing for data mining applications, as it supports the entire KDD process,
i.e., nontrivial multi-step KDD scenarios, rather than just individual data min-
ing operations. The goal of the workshop was to bring together database and
data mining researchers interested in the areas of inductive databases, inductive
queries, constraint-based data mining, and data mining query languages.

This workshop followed the previous four successful KDID workshops or-
ganized in conjunction with ECML/PKDD: KDID’02 held in Helsinki, Fin-
land, KDID’03 held in Cavtat-Dubrovnik, Croatia, KDID’04 held in Pisa, Italy,
and KDID’05 held in Porto, Portugal. Its scientific program included nine regu-
lar presentations and two short ones, as well as an invited talk by Kiri Wagstaff
(Jet Propulsion Laboratory, California Institute of Technology, USA). Invited
chapters and extended versions of the selected papers will appear in the post-
workshop proceedings, which will be published by Springer in the Lecture Notes
in Computer Science (LNCS) series. We wish to thank the invited speaker, all the
authors of submitted papers, the program committee members and additional
reviewers, and the ECML/PKDD organization committee. KDID 2006 was sup-
ported by the European project IQ (“Inductive Queries for Mining Patterns and
Models”, IST FET FP6-516169, 2005-2008).

August 2006

Sašo Džeroski
Jan Struyf

I

Organization

Program Chairs

Sašo Džeroski Jožef Stefan Institute, Dept. of Knowledge Technologies
Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si
http://www-ai.ijs.si/SasoDzeroski/

Jan Struyf Katholieke Universiteit Leuven, Dept. of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Struyf@cs.kuleuven.be
http://www.cs.kuleuven.be/~jan/

Program Committee

Hiroki Arimura, Hokkaido University, Japan
Hendrik Blockeel, Katholieke Universiteit Leuven, Belgium
Francesco Bonchi, ISTI-C.N.R., Italy
Jean-François Boulicaut, INSA Lyon, France
Toon Calders, University of Antwerp, Belgium
Luc De Raedt, Albert-Ludwigs-Universität Freiburg, Germany
Minos N. Garofalakis, Intel Research Berkeley, USA
Fosca Giannotti, ISTI-C.N.R., Italy
Bart Goethals, University of Antwerp, Belgium
Jiawei Han, University Illinois at Urbana-Champaign, USA
Ross D. King, University of Wales, Aberystwyth, UK
Giuseppe Manco, ICAR-C.N.R., Italy
Rosa Meo, University of Turin, Italy
Ryszard S. Michalski, George Mason University, USA
Taneli Mielikäinen, University of Helsinki, Finland
Shinichi Morishita, University of Tokyo, Japan
Siegfried Nijssen, Albert-Ludwigs-Universität Freiburg, Germany
Céline Robardet, INSA Lyon, France
Arno Siebes, Utrecht University, The Netherlands
Takashi Washio, Osaka University, Japan
Philip S. Yu, IBM Thomas J. Watson, USA
Mohammed Zaki, Rensselaer Polytechnic Institute, USA
Carlo Zaniolo, UCLA, USA

Additional Reviewers

Emma L. Byrne
Hong Cheng

Francesco Folino
Gemma Garriga

Elio Masciari
Jimeng Sun

Janusz Wojtusiak

II

mailto:Saso.Dzeroski@ijs.si
http://www-ai.ijs.si/SasoDzeroski/
mailto:jan.struyf@cs.kuleuven.be
http://www.cs.kuleuven.be/~jan/

Table of Contents

Preface . I

Organization . II

Invited Talk . 1

Value, Cost, and Sharing: Open Issues in Constrained Clustering
Kiri L. Wagstaff . 1

Contributed Papers . 9

Mining Bi-sets in Numerical Data
Jérémy Besson, Céline Robardet, Luc De Raedt and Jean-François
Boulicaut . 9

Weighted and Probabilistic Instances of the Soft Constraint Based
Pattern Mining Paradigm
Stefano Bistarelli and Francesco Bonchi . 21

On Interactive Pattern Mining from Relational Databases
Francesco Bonchi, Fosca Giannotti, Claudio Lucchese, Salvatore
Orlando, Raffaele Perego and Roberto Trasarti . 35

Analysis of Time Series Data with Predictive Clustering Trees
Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf 47

Integrating Decision Tree Learning into Inductive Databases
Élisa Fromont and Hendrik Blockeel . 59

An Integrated Multi-task Inductive Database and Decision Support
System VINLEN: An Initial Implementation and First Results
Kenneth A. Kaufman, Ryszard S. Michalski, Jaroslaw Pietrzykowski
and Janusz Wojtusiak . 71

Frequent Pattern Mining and Knowledge Indexing Based on
Zero-suppressed BDDs
Shin-ichi Minato and Hiroki Arimura . 83

Quantitative Episode Trees
Mirco Nanni and Christophe Rigotti . 95

IQL: A Proposal for an Inductive Query Language
Siegfried Nijssen and Luc De Raedt . 107

Mining Correct Properties in Incomplete Databases
François Rioult and Bruno Crémilleux . 119

Efficient Mining under Flexible Constraints through Several Datasets
Arnaud Soulet, Jiř́ı Kléma and Bruno Crémilleux 131

Author Index . 143

III

Value, Cost, and Sharing: Open Issues in
Constrained Clustering

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena CA 91109, USA,

kiri.wagstaff@jpl.nasa.gov

Abstract. Clustering is an important tool for data mining, since it can
identify major patterns or trends without any supervision (labeled data).
Over the past five years, semi-supervised (constrained) clustering meth-
ods have become very popular. These methods began with incorporating
pairwise constraints and have developed into more general methods that
can learn appropriate distance metrics. However, several important open
questions have arisen about which constraints are most useful, how they
can be actively acquired, and when and how they should be propagated
to neighboring points. This position paper describes these open questions
and suggests future directions for constrained clustering research.

1 Introduction

Clustering methods are used to analyze data sets that lack any supervisory
information such as data labels. They identify major patterns or trends based
on a combination of the assumed cluster structure (e.g., Gaussian distribution)
and the observed data distribution. Recently, semi-supervised clustering methods
have become very popular because they can also take advantage of supervisory
information when it is available. The first work in this area proposed a modified
version of COBWEB that enforced pairwise constraints indicating when two
items were known a priori to either belong to the same cluster (must-link) or
different clusters (cannot-link) [1]. It was followed by constrained versions of the
k-means and EM clustering algorithms [2, 3]. Later work expanded this approach
to accommodate soft constraints (preferences) [4, 5] and to infer new distance
metrics over a given data set, based on the available constraints. Some metric
learning methods are restricted to accommodating must-link constraints only [6],
while others can also accommodate cannot-link constraints [7, 8, 5].

These advances have led to further study of the impact of incorporating
constraints into clustering algorithms, particularly when applied to large, real-
world data sets. Important issues that have arisen include:

1. Given the recent observation that some constraint sets can adversely impact
performance, how can we determine the utility of a given constraint set, prior
to clustering?

1

2. How can we minimize the effort required of the user, by active soliciting only
the most useful constraints?

3. When and how should constraints be propagated or shared with neighboring
points?

This paper contributes descriptions of each of these open questions. In iden-
tifying these challenges, and the state of the art in addressing them, we highlight
several directions for future research.

2 Open Questions

2.1 Value: How Useful is a Given Set of Constraints?

It is to be expected that some constraint sets will be more useful than others, in
terms of the benefit they provide to a given clustering algorithm. For example,
if the constraints contain information that the clustering algorithm is able to
deduce on its own, then they will not provide any improvement in clustering
performance. However, virtually all work to date values constraint sets only in
terms of the number of constraints they contain. The ability to more accurately
quantify the utility of a given constraint set, prior to clustering, will permit
practitioners to decide whether to use a given constraint set, or to choose the
best constraint set to use, when several are available.

The need for a constraint set utility measure has become imperative with
the recent observation that some constraint sets, even when completely accurate
with respect to the evaluation labels, can actually decrease clustering perfor-
mance [9]. The usual practice when describing the results of constrained cluster-
ing experiments is to report the clustering performance averaged over multiple
trials, where each trial consists of a set of constraints that is randomly generated
from the data labels. While it is generally the case that average performance does
increase as more constraints are provided, a closer examination of the individual
trials reveals that some, or even many, of them instead cause a drop in accuracy.
Table 1 shows the results of 1000 trials, each with a different set of 25 randomly
selected constraints, conducted over four UCI data sets [10] using four different
k-means-based constrained clustering algorithms. The table reports the fraction
of trials in which the performance was lower than the default k-means result,
which ranges from 0% up to 87% of the trials.

The average performance numbers obscure this effect because the “good”
trials tend to have a larger magnitude change in performance than the “bad”
trials do. However, the fact that any of the constraint sets can cause a decrease in
performance is unintuitive, and even worrisome, since the constraints are known
to be noise-free and should not lead the algorithm astray.

To better understand the reasons for this effect, Davidson et al. [9] defined
two constraint set properties and provided a quantitative way to measure them.
Informativeness is the fraction of information in the constraint set that the al-
gorithm cannot determine on its own. Coherence is the amount of agreement
between the constraints in the set. Constraint sets with low coherence will be

2 Kiri L. Wagstaff

Table 1. Fraction of 1000 randomly selected 25-constraint sets that caused a drop
in accuracy, compared to an unconstrained run with the same centroid initialization
(table from Davidson et al. [9]).

Algorithm
CKM [2] PKM [5] MKM [5] MPKM [5]
Constraint Constraint Metric Enforcement and

Data Set enforcement enforcement learning metric learning

Glass 28% 1% 11% 0%
Ionosphere 26% 77% 0% 77%

Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

difficult to completely satisfy and can lead the algorithm into unpromising areas
of the search space. Both high informativeness and high coherence tend to re-
sult in an increase in clustering performance. However, these properties do not
fully explain some clustering behavior. For example, a set of just three randomly
selected constraints, with high informativeness and coherence, can increase clus-
tering performance on the iris data set significantly, while a constraint set with
similarly high values for both properties has no effect on the ionosphere data
set. Additional work must be done to refine these measures or propose additional
ones that better characterize the utility of the constraint set.

Two challenges for future progress in this area are: 1) to identify other con-
straint set properties that correlate with utility for constrained clustering al-
gorithms, and 2) to learn to predict the overall utility of a new constraint set,
based on extracted attributes such as these properties. It is likely that the latter
will require the combination of several different constraint set properties, instead
of being a single quantity, so using machine learning techniques to identify the
mapping from properties to utility may be a useful approach.

2.2 Cost: How Can We Make Constraints Cheaper to Acquire?

A single pairwise constraint specifies a relationship between two data points. For
a data set with n items, there are 1

2n(n− 1) possible constraints. Therefore, the
number of constraints needed to specify a given percentage of the relationships
(say, 10%) increases quadratically with the data set size. For large data sets, the
constraint specification effort can become a significant burden.

There are several ways to mitigate the cost of collecting constraints. If con-
straints are derived from a set of labeled items, we obtain L(L−1) constraints for
the cost of labeling only L items. If the constraints arise independently (not from
labels), most constrained clustering algorithms can leverage constraint properties
such as transitivity and entailment to deduce additional constraints automati-
cally. A more efficient way to obtain the most useful constraints for the least
effort is to permit the algorithm to actively solicit only the constraints it needs.
Klein et al. [7] suggested an active constraint acquisition method in which a

Value, Cost, and Sharing: Open Issues in Constrained Clustering 3

hierarchical clustering algorithm can identify the m best queries to issue to the
oracle. Recent work has also explored constraint acquisition methods for par-
titional clustering based on a farthest-first traversal scheme [11] or identifying
points that are most likely to lie on cluster boundaries [12]. When constraints are
derived from data labels, it is also possible to use an unsupervised support vector
machine (SVM) to identify “pivot points” that are most useful to label [13].

A natural next step would be to combine methods for active constraint ac-
quisition with methods for quantifying constraint set utility. In an ideal world,
we would like to request the constraint(s) which will result in the largest increase
in utility for the existing constraint set. Davidson et al. [9] showed that when
restricting evaluation to the most coherent constraint sets, the average perfor-
mance increased for most of the data sets studied. This early result suggests that
coherence, and other utility measures, could be used to guide active constraint
acquisition.

Challenges in this area are: 1) to incorporate measures of constraint set utility
into an active constraint selection heuristic, akin to the MaxMin heuristic for
classification [14], so that the best constraint can be identified and queried prior
to knowing its designation (must/cannot), and 2) to identify efficient ways to
query the user for constraint information at a higher level, such as a cluster
description or heuristic rule that can be propagated down to individual items to
produce a batch of constraints from a single user statement.

2.3 Sharing: When and How Should Constraints be Propagated to
Neighboring Points?

Another way to get the most out of a set of constraints is to determine how they
can be propagated to other nearby points. Existing methods that learn distance
metrics use the constraints to “warp” the original distance metric to bring must-
linked points closer together and to push cannot-linked points farther apart [7,
8, 6, 5]. They implicitly rely on the assumption that it is “safe” to propagate
constraints locally, in feature space. For example, if a must be linked to b, and
the distance dist(a, c) is small, then when the distance metric is warped to
bring a closer to b, it is also likely that the distance dist(b, c) will shrink and
the algorithm will cluster b and c together as well. The performance gains that
have been achieved when adapting the distance metric to the constraints are a
testament to the common reliability of this assumption.

However, the assumption that proximity can be used to propagate constraints
is not always a valid one. It is only reasonable if the distance in feature space is
consistent with the distances that are implied by the constraint set. This often
holds true, since the features that are chosen to describe the data points are
consistent with the data labels, which are commonly the source of the constraints.
One exception is the tic-tac-toe data set from the UCI archive [10]. In this
data set, each item is a 3x3 tic-tac-toe board that represents an end state for
the game, assuming that the ‘x’ player played first. The boards are represented
with nine features, one for each position on the board, and each one can take on
a value of ‘x’, ‘o’, or ‘b’ (for blank). The goal is to separate the boards into two

4 Kiri L. Wagstaff

x x x
x o o
o

x x o
x o x
o

Board A Board B

Win for X Loss for X

Board C

Win for X

o o x
o x x
x x o

dist(A,B)
dist(B,C)
dist(A,C)

2
8
8

Hamming distances

Fig. 1. Three items (endgame boards) from the tic-tac-toe data set. For clarity,
blanks are represented as blanks, rather than spaces marked ‘b’. The Hamming dis-
tances between each pair of boards are shown on the right.

clusters: one with boards that show a win for ‘x’ and one with all other boards
(losses and draws).

This data set is challenging because proximity in the feature space does not
correlate well with similarity in terms of assigned labels. Consider the examples
shown in Figure 1. Hamming distance is used with this data set, since the features
have symbolic values. Boards A and B are very similar (Hamming distance of
2), but they should be joined by a cannot-link constraint. In contrast, boards A
and C are very different (Hamming distance of of 8), but they should be joined
by a must-link constraint. In this situation, propagating constraints to nearby
(similar) items will not help improve performance (and may even degrade it).

Clustering performance on this data set is typically poor, unless a large num-
ber of constraints are available. The basic k-means algorithm achieves a Rand
Index of 51%; COP-KMEANS requires 500 randomly selected constraints to
increase performance to 92% [2]. COP-COBWEB is unable to increase its per-
formance above the baseline of 49% performance, regardless of the number of
constraints provided [1]. In fact, when we examine performance on a held-out
subset of the data1, it only increases to 55% for COP-KMEANS, far lower than
the 92% performance on the rest of the data set. For most data sets, the held-out
performance is much higher [2]. The low held-out performance indicates that the
algorithm is unable to generalize the constraint information beyond the exact
items that participate in constraints. This is a sign that the constraints and the
features are not consistent, and that propagating constraints may be dangerous.
The results of applying metric learning methods to this data set have not yet
been published, probably because the feature values are symbolic rather than
real-valued. However, we expect that metric learning would be ineffective in this
case.

Challenges to be addressed in this area are: 1) to characterize data sets in
terms of whether or not constraints should be propagated (when is it “safe”
and when should the data overrule the constraints?), and 2) to determine the
degree to which the constraints should be propagated (e.g., how far should the

1 The data subset is “held-out” in the sense that no constraints were generated on
the subset, although it was clustered along with all of the other items once the
constraints were introduced.

Value, Cost, and Sharing: Open Issues in Constrained Clustering 5

local neighborhood extend, for each constraint?). It is possible that constraint
set coherence [9] could be used to help estimate the relevant neighborhood for
each point.

3 Conclusions

This paper outlines several important unanswered questions that relate to the
practice of constrained clustering. To use constrained clustering methods effec-
tively, it is important that we have tools for estimating the value of a given
constraint set prior to clustering. We also seek to minimize the cost of acquir-
ing constraints. Finally, we require guidance in determining when and how to
share or propagate constraints to their local neighborhoods. In addressing each
of these subjects, we will make it possible to confidently apply constrained clus-
tering methods to very large data sets in an efficient, principled fashion.

Acknowledgments. I would like to thank Sugato Basu and Ian Davidson for on-
going discussions on constrained clustering issues and their excellent tutorial, “Clus-
tering with Constraints: Theory and Practice,” presented at KDD 2006. The research
described in this paper was funded by the NSF ITR Program (grant #0325329) and
was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

References

1. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings
of the Seventeenth International Conference on Machine Learning. (2000) 1103–
1110

2. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means cluster-
ing with background knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning. (2001) 577–584

3. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian mixture
models with EM using equivalence constraints. In: Advances in Neural Information
Processing Systems 16. (2004)

4. Wagstaff, K.L.: Intelligent Clustering with Instance-Level Constraints. PhD thesis,
Cornell University (2002)

5. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: Proceedings of the Twenty-First International
Conference on Machine Learning. (2004) 11–18

6. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a Mahalanobis metric
from equivalence constraints. Journal of Machine Learning Research 6 (2005) 937–
965

7. Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-
level constraints: Making the most of prior knowledge in data clustering. In: Pro-
ceedings of the Nineteenth International Conference on Machine Learning. (2002)
307–313

6 Kiri L. Wagstaff

8. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems 15. (2003)

9. Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-set utility for parti-
tional clustering algorithms. In: Proceedings of the Tenth European Conference
on Principles and Practice of Knowledge Discovery in Databases. (2006) 115–126

10. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998)

11. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the SIAM International Conference on Data
Mining. (2004) 333–344

12. Xu, Q., desJardins, M., Wagstaff, K.L.: Active constrained clustering by examining
spectral eigenvectors. In: Proceedings of the Eighth International Conference on
Discovery Science. (2005) 294–307

13. Xu, Q.: Active Querying for Semi-supervised Clustering. PhD thesis, University
of Maryland, Baltimore County (2006)

14. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2 (2002) 45–66

Value, Cost, and Sharing: Open Issues in Constrained Clustering 7

8 Kiri L. Wagstaff

Mining bi-sets in numerical data

Jérémy Besson1,2, Céline Robardet1, Luc De Raedt3, and
Jean-François Boulicaut1

1 LIRIS UMR 5205 CNRS/INSA Lyon/U. Lyon 1/U. Lyon 2/ECL
INSA Lyon, Bât. Blaise Pascal, F-69621 Villeurbanne, France

2 UMR INRA/INSERM 1235
F-69372 Lyon cedex 08, France

3 Albert-Ludwigs-Universitat Freiburg
Georges-Kohler-Allee, Gebaude 079 D-79110 Freiburg, Germany

Contact: celine.robardet@insa-lyon.fr

Abstract. Thanks to an important research effort the last few years,
inductive queries on set patterns and complete solvers which can evaluate
them on large 0/1 data sets have been proved extremely useful. However,
for many application domains, the raw data is numerical (matrices of real
numbers whose dimensions denote objects and properties). Therefore,
using efficient 0/1 mining techniques needs for tedious Boolean property
encoding phases. This is, e.g., the case, when considering microarray
data mining and its impact for knowledge discovery in molecular biology.
We consider the possibility to mine directly numerical data to extract
collections of relevant bi-sets, i.e., couples of associated sets of objects
and attributes which satisfy some user-defined constraints. Not only we
propose a new pattern domain but also we introduce a complete solver
for computing the so-called numerical bi-sets. Preliminary experimental
validation is given.

1 Introduction

Popular data mining techniques concern 0/1 data analysis by means of set pat-
terns (i.e., frequent sets, association rules, closed sets, formal concepts). The
huge research effort of the last 10 years has given rise to efficient complete
solvers, i.e., algorithms which can compute complete collections of the set pat-
terns which satisfy user-defined constraints (e.g., minimal frequency, minimal
confidence, closeness or maximality). It is however common that the considered
raw data is available as matrices where we get numerical values for a collection of
attributes describing a collection of objects. Therefore, using the efficient tech-
niques in 0/1 data has to start by Boolean property encoding, i.e., the compu-
tation of Boolean values for new sets of attributes. For instance, raw microarray
data can be considered as a matrix whose rows denote biological samples and
columns denote genes. In that context, each cell of the matrix is a quantitative
measure of the activity of a given gene in a given biological sample. Several
researchers have considered how to encode Boolean gene expression properties
like, e.g., the gene over-expression [1, 11]. In such papers, the computed Boolean

9

matrix has the same number of attributes than the raw data but it encodes only
one specific property. Efficient techniques like association rule mining (see, e.g.,
[1, 7]) or formal concept discovery (see, e.g., [4]) have been considered.

Such a Boolean encoding phase is however tedious. For instance, we still lack
from a consensus on how the over-expression property of a gene can be specified
or assessed. As a result, different views on over-expression will lead to different
Boolean encoding and thus potentially quite different collections of patterns. To
overcome these problems, we investigate the possibility to mine directly the nu-
merical data in order to find interesting local patterns. Global pattern mining
from numerical data, e.g., clustering and bi-clustering, has been extensively stud-
ied (see [10] for a survey). Heuristic search for local patterns has been studied
as well (see, e.g., [2]). However, very few researchers have investigated the non
heuristic, say complete, search of well-specified local patterns from numerical
data. In this paper, we introduce the Numerical Bi-Sets as a new pattern do-
main (NBS). Intuitively, we specify collections of bi-sets, i.e., associated sets of
rows and columns such that the specified cells (for each row-column pair) of the
matrix contain similar values. This property is formalized in terms of constraints,
and we provide a complete solver for computing NBS patterns. We start from a
recent formalization of constraint-based bi-set mining from 0/1 data (extension
of formal concepts towards fault-tolerance introduced in [3]) both for the design
of the pattern domain and its associated solver. The next section concerns the
formalization of the NBS pattern domain and its properties. Section 3 sketches
our algorithm and Section 4 provides preliminary experimental results. Section
5 discusses related work and, finally, Section 6 concludes.

2 A new pattern domain for numerical data analysis

Let us consider a set of objects O and a set of properties P such that |O| = n

and |P| = m. Let us denote by M a real valued matrix of dimension n × m

such that M(i, j) denotes the value of property j ∈ P for the object i ∈ O
(see an example in Table 1). Our language of patterns is the language of bi-sets,
i.e., couples made of a set of rows (objects) and a set of columns (properties).
Intuitively, a bi-set (X,Y) with X ∈ 2O and Y ∈ 2P can be considered as a
rectangle or sub-matrix within M modulo row and column permutations.

Definition 1 (NBS). Numerical Bi-Sets (or NBS patterns) in a matrix are
the bi-sets (X,Y) such that |X| ≥ 1 and |Y | ≥ 1 (X ⊆ O, Y ⊆ P) which satisfy
the constraint Cin ∧ Cout:

Cin(X,Y) ≡ | max
i∈X, j∈Y

M(i, j)− min
i∈X, j∈Y

M(i, j)| ≤ ε

Cout(X,Y) ≡ ∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j)− min
i∈X, j∈Y ∪{y}

M(i, j)| > ε

∀x ∈ O \X, | max
i∈X∪{x}, j∈Y

M(i, j)− min
i∈X∪{x}, j∈Y

M(i, j)| > ε

where ε is a user-defined parameter.

10 Besson et al.

Such bi-sets define a sub-matrix S of M such that the absolute value of the
difference between the maximum value and the minimum value on S is less or
equal to ε (see Cin). Furthermore, none object or property can be added to the
bi-set without violating this constraint (see Cout). This ensures the maximality
of the specified bi-sets.

p1 p2 p3 p4 p5

o1 1 2 2 1 6
o2 2 1 1 0 6
o3 2 2 1 7 6
o4 8 9 2 6 7

Table 1. A toy example of numerical data

In Figure 1 (left), we can find the complete collection of NBS patterns which
hold in the data from Table 1 when we have ε = 1. In Table 1, the two black
rectangles are two examples of such NBS patterns (i.e., the underlined patterns
of Figure 1 (left)). Figure 1 (right) is an alternative representation for them: each
cross in the 3D-diagram denotes a row-column pair for the data from Table 1.

((o1, o2, o3, o4), (p5))
((o3, o4), (p4, p5))
((o4), (p1, p5))
((o1, o2, o3, o4), (p3))
((o4), (p1, p2))
((o2), (p2, p3, p4))
((o1, o2), (p4))
((o1), (p1, p2, p3, p4))
((o1, o2, o3), (p1, p2, p3))

p1
p2

p3
p4

p5

o1

o2

o3

o4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Data
NBS 1
NBS 2

Fig. 1. Examples of NBS

The search space for bi-sets can be ordered thanks to a specialization relation.

Definition 2 (Specialization and monotonicity). Our specialization rela-
tion on bi-sets denoted � is defined as follows: (X1, Y1) � (X2, Y2) iff X1 ⊆
X2 and Y1 ⊆ Y2. We say that (X2, Y2) extends or is an extension of (X1, Y1).
A constraint C is anti-monotonic w.r.t. � iff ∀B and D ∈ 2O × 2P s.t. B �
D, C(D) ⇒ C(B). Dually, C is monotonic w.r.t. � iff C(B) ⇒ C(D).

Mining Bi-sets in Numerical Data 11

Assume Wε denotes the whole collection of NBS patterns for a given thresh-
old ε. Let us now discuss some interesting properties of this new pattern domain:

– Cin and Cout are respectively anti-monotonic and monotonic w.r.t. � (see
property 1).

– Each NBS pattern (X,Y) from Wε is maximal w.r.t. � (see Property 2).
– If there exists a bi-set (X,Y) with similar values (belonging to an interval of

size ε), then there exists a NBS (X ′, Y ′) fromWε such that (X,Y) � (X ′, Y ′)
(see Property 3).

– When ε increases, the size of NBS pattern increases too, whereas some new
NBS patterns which are not extensions of previous one can appear (see
Property 4).

– The collection of numerical bi-sets is paving the dataset (see Corollary 1),
i.e., any data item belongs to at least one NBS pattern.

Property 1 (Monotonicity). The constraint Cin is anti-monotonic and the con-
straint Cout is monotonic.

Proof. Let (X,Y) a bi-set s.t. Cin(X,Y) is true, and let (X ′, Y ′) be a bi-set s.t.
(X ′, Y ′) � (X,Y). It means that Cin(X ′, Y ′) is also true:

| max
i∈X′, j∈Y ′

M(i, j)− min
i∈X′, j∈Y ′

M(i, j)|

≤ | max
i∈X, j∈Y

M(i, j)− min
i∈X, j∈Y

M(i, j)| ≤ ε

If (X,Y) satisfies Cout and (X,Y) � (X ′, Y ′), then Cout(X
′, Y ′) is also true:

∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j)− min
i∈X, j∈Y ∪{y}

M(i, j)|

> ∀y ∈ P \ Y ′, | max
i∈X′, j∈Y ′∪{y}

M(i, j)− min
i∈X′, j∈Y ′∪{y}

M(i, j)| > ε

Property 2 (Maximality). The NBS patterns are maximal bi-sets w.r.t. our spe-
cialization relation �, i.e., if (X,Y1) and (X,Y2) are two NBS patterns from Wε,
then Y1 6⊆ Y2 and Y2 6⊆ Y1.

Proof. Assume Y1 ⊆ Y2. (X,Y1) does not satisfy Equation 2, because for y ∈
Y2 \ Y1, |maxi∈X M(i, y)−mini∈X M(i, y)| ≤ ε.

Property 3 (NBS patterns extending bi-sets of close values). Let I1, I2 ∈ R, I1 ≤
I2, and (X,Y) be a bi-set such that ∀i ∈ X, ∀j ∈ Y, M(i, j) ∈ [I1, I2]. Then,
there exists (U, V) a NBS with ε = |I1 − I2| such that X ⊆ U and Y ⊆ V .

Thus, if there are bi-sets containing close values, there exists at least one
NBS pattern which extends it.

Proof. V can be recursively constructed from Y ′ = Y by adding a property y

s.t. y ∈ P\Y ′ to Y ′ if |maxi∈X, j∈Y ′∪{y}M(i, j)−mini∈X, j∈Y ′∪{y}M(i, j)| ≤ ε,
and then continue until none property can be added. At the end, Y ′ = V . After
that, we extend in a similar way the set X towards U . By construction, (U, V) is
a NBS pattern with ε = |I1 − I2|. Notice that we can have several (U, V) which
extend (X,Y).

12 Besson et al.

When ε = 0, the NBS pattern collection contains all maximal bi-sets of
identical values. As a result, we get a paving (with overlapping) of the whole
dataset.

Property 4 (NBS pattern size is growing with ε). Let (X,Y) be a NBS pattern
from Wε. Then there exists (X ′, Y ′) ∈ Wε′ with ε′ > ε such that X ⊆ X ′ and
Y ⊆ Y ′.

Proof. Proof is trivial given Property 3.

Corollary 1. As W0 is paving the data, then Wε is paving the data as well.

3 Algorithm

The whole collection of bi-sets ordered by � forms a lattice whose bottom is
(⊥O,⊥P) = (∅, ∅) and top is (>O,>P) = (O,P). Let us note by B the set of sub-
lattices4 of ((∅, ∅), (O,P)): B = {((X1, Y1), (X2, Y2)) s.t. X1, X2 ∈ 2O, Y1, Y2 ∈
2P and X1 ⊆ X2, Y1 ⊆ Y2} where the first (resp. the second) bi-set is the bot-
tom (resp. the top) element. The algorithm NBS-Miner explores some of the
sublattices of B built by means of three mechanisms: enumeration, pruning and
propagation.

– Enumeration: Let Enum : B ×O ∪ P → B2 such that

Enum(((⊥O,⊥P), (>O,>P)), e)

=

{

(((⊥O ∪ {e},⊥P), (>O,>P)), ((⊥O,⊥P), (>O \ {e},>P))) if e ∈ O
(((⊥O,⊥P ∪ {e}), (>O,>P)), ((⊥O,⊥P), (>O,>P \ {e}))) if e ∈ P

where e ∈ >O \ ⊥O or e ∈ >P \ ⊥P . Enum generates two new sublattices
which are a partition of its input parameter.
Let Choose : B → O ∪ P be a function which returns one of the element
e ∈ >O \ ⊥O ∪ >P \ ⊥P .

– Pruning: Let Prunem
C : B → {true,false} be a function which returns

True iff the monotonic constraint Cm (w.r.t. �) is satisfied by the top of
the sublattice.

Prunem
C ((⊥O,⊥P), (>O,>P)) ≡ Cm(>O,>P)

If Prunem
C ((⊥O,⊥P), (>O,>P)) is false then none bi-set contained in the

sublattice satisfies Cm.
Let Pruneam

C : B → {true,false} be a function which returns True iff
the anti-monotonic constraint Cam (w.r.t �) is satisfied by te bottom of the
sublattice:

Pruneam
C ((⊥G,⊥M), (>G,>M)) ≡ Cam(⊥G,⊥M)

4 X is a sublattice of Y if Y is a lattice, X is a subset of Y and X is a lattice with
the same join and meet operations as Y .

Mining Bi-sets in Numerical Data 13

If Pruneam
C ((⊥O,⊥P), (>O,>P)) is false then none bi-set contained in the

sublattice satisfies Cam.
Let PruneCNBS

: B → {true,false} be the pruning function. Due to
property 1, we have

PruneCNBS
((⊥O,⊥P), (>O,>P)) ≡ Cin(⊥O,⊥P) ∧ Cout(>O,>P)

When PruneCNBS
((⊥O,⊥P), (>O,>P)) is false then no NBS are contained

in the sublattice ((⊥O,⊥P), (>O,>P)).
– Propagation: Cout can be used to reduce the size of the sublattices by mov-

ing objects of >O \ ⊥O into ⊥O or outside >O, and similarly on attributes.
The function PropinB → B and PropoutB → B are used to do it as follow:

Propin((⊥O,⊥P), (>O,>P)) = {((⊥1

O,⊥1

P), (>O,>P)) ∈ B |

⊥1

O = ⊥O ∪ {x ∈ >O \ ⊥O | Cout((⊥O,⊥P), (>O ∪ {x},>P)) is false}

⊥1

P = ⊥P ∪ {x ∈ >P \ ⊥P | Cout((⊥O,⊥P), (>O,>P ∪ {x})) is false}

Propout((⊥O,⊥P), (>O,>P)) = {((⊥O,⊥P), (>1

O,>1

P)) ∈ B |

>1

O = >O \ {x ∈ >G \ ⊥G | Cin((⊥O,⊥P), (>O ∪ {x},>P)) is false}

>1

P = >P \ {x ∈ >P \ ⊥P | Cin((⊥O,⊥P), (>O,>P ∪ {x})) is false}

Let Prop B → B s.t. Propin(Propout(L)) is recursively applied as long as
its result changes.

We call a leaf a sublattice L = ((⊥O,⊥P), (>O,>P)) which contains only
one bi-set i.e., (⊥O,⊥P) = (>O,>P). DR-bi-sets are these leaves.

4 Experimentations

We report a preliminary experimental evaluation of the NBS pattern domain
and its implemented solver. We have been considering the “peaks” matrix of
matlab (30*30 matrix with values ranged between -10 and +9). We used ε = 4.5
and we obtained 1700 NBS patterns. On Figure 2 (left), we plot in white one
extracted NBS. The two axes ranged from 0 to 30 correspond to the two matrix
dimensions and the third one indicates their corresponding values (row-column
pairs).

In a second experiment, we enforced that the values inside the extracted
patterns to be greater than 1.95 (minimal value constraint). The Figure 2 (right)
shows the 228 extracted NBS patterns when ε = 0.1. Indeed, the white area
corresponds to the union of 228 extracted patterns.

To study the impact of ε parameter, we used the malaria dataset [5]. It con-
cerns the numerical gene expression value of 3 719 genes of P. falciparum during
its complete lifecycle (a time series of 46 biological situations). We used a mini-
mal size constraint on both dimension, i.e., looking for the NBS patterns (X,Y)

14 Besson et al.

M is a real valued matrix, C a conjunction of monotonic
and anti-monotonic constraints on 2O × 2P and ε is a
positive value.

NBS-Miner

Generate((∅, ∅), (O,P))

End NBS-Miner
Generate(L)

Let L = ((⊥O,⊥P), (>O,>P))
L ← Prop(L)
If Prune(L) then

If (⊥O,⊥P) 6= (>O,>P) then
(L1,L2)← Enum(L, Choose(L))
Generate(L1)
Generate(L2)

Else Store L
End if

End if

End Generate

Table 2. NBS-Miner pseudo-code

s.t. |X| > 4 and |Y | > 4. Furthermore, we have been adding a minimal value
constraint. Figure 3 provides the mean and standard deviation of the area of the
NBS patterns from this dataset w.r.t. the ε value.

As it was expected owed to Property 4, the mean area increases with ε.
Figure 4 reports on the number of NBS patterns in the malaria dataset. From

ε = 75 to ε = 300, this number decreases. It shows that the size of the NBS

pattern collection tends to decrease when ε increases. Intuitively, many patterns
are gathered when ε increases whereas few patterns are extended by generating
more than one new pattern. Moreover, the minimal size constraint can explain
the increase of the collection size. Finally, when the pattern size increases with
ε, new NBS patterns can appear in the collection.

5 Related work

[13, 6, 12] propose to extend classical frequent itemset and association rule defi-
nitions for numerical data. In [13], the authors generalize the classical notion of
itemset support in 0/1 data when considering other data types, e.g., numerical
ones. Support computation requires data normalization, first translating the val-
ues to be positive, and then dividing each column entry by the sum of the column
entries. After such a treatment, each entry is between 0 and 1, and the sum of the
values for a column is equal to 1. The support of an itemset is then computed

Mining Bi-sets in Numerical Data 15

0
5

10
15

20
25

30

0
5

10
15

20
25

30
−8

−6

−4

−2

0

2

4

6

8

10

0
5

10
15

20
25

30

0
5

10
15

20
25

30
−8

−6

−4

−2

0

2

4

6

8

10

Fig. 2. Examples of extracted NBS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

epsilon

mean area

Fig. 3. Mean area of the NBS w.r.t. ε

as the sum on each row of the minimum of the entries of this itemset. If the
items have identical values on all the rows, then the support is equal to 1, and
the more the items are different, the more the support value decreases toward 0.
This support function is anti-monotonic, and thus the authors propose to adapt
an Apriori algorithm to compute the frequent itemsets according to this new
support definition. [6] proposes new methods to measure the support of itemsets
in numerical data and categorical data. They adapt three well-known correlation
measures: Kendall’s τ , Spearman’s ρ and Spearman’s Footrule F. These
measures are based on the rank of the values of objects for each attribute, not the
values themselves. They extend these measures to sets of attributes (instead of
2 variables). Efficient algorithms are proposed. [12] uses an optimization setting
for finding association rules in numerical data. The type of extracted association
rules is: “if the weighted sum of some variables is greater than a threshold then a
different weighted sum of variables is with high probability greater than a second
threshold”. They propose to use hyperplanes to represent the left-hand and the

16 Besson et al.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

N
B
S

epsilon

Fig. 4. Collection sizes w.r.t. ε.

right-hand sides of such rules. Confidence and coverage measures are used. It is
unclear wether it is possible to extend these approaches to bi-set computation.

Hartigan proposes a bi-clustering algorithm that can be considered as a spe-
cific collection of bi-sets [8]. He introduced a partition-based algorithm called
“Block Clustering”. It splits the original data matrix into bi-sets and it uses the
variance of the values inside the bi-sets to evaluate the quality of each bi-set.
Then, a so-called ideal constant cluster has a variance equal to zero. To avoid
the partitioning of the dataset into bi-sets with only one row and one column
(i.e., leading to ideal clusters), the algorithm searches for K bi-sets within the
data. The quality of a collection of K bi-sets is considered as the sum of the
variance of the K bi-sets. Unfortunately, this approach uses local optimization
procedure which can lead to unstable results.

In [14], the authors propose a method to isolate subspace clusters (bi-sets)
containing objects varying similarly on subset of columns. They propose to com-
pute bi-sets (X,Y) such that given a, b ∈ X and c, d ∈ Y the 2 × 2 sub-matrix
entries ((a, b), (c, d)) included in (X,Y) satisfies |M(a, c)+M(b, d)− (M(a, d)+
M(b, c))| ≤ δ. Intuitively, this constraint enforces that the change of value on
the two attributes between the two objects is confined by δ. Thus, inside the
bi-sets, the values have the same profile. The algorithm first considers all pairs
of objects and all pairs of attributes, and then combines them to compute all
the bi-sets satisfying the anti-monotonic constraint.

Liu and Wang [9] have proposed an exhaustive bi-cluster enumeration al-
gorithm. Since they are looking for order-preserving bi-sets with a minimum
number of rows and a minimum number of columns. It means that for each ex-
tracted bi-set (X,Y), it exists an order on Y such that according to this order
and for each element of X the values are increasing. They want to provide all
the bi-clusters that, after column reordering, represent coherent evolutions of
the symbols in the matrix. It is achieved by using a pattern discovery algorithm

Mining Bi-sets in Numerical Data 17

heavily inspired in sequential pattern mining algorithms. These two local pat-
tern types are well defined and efficient solvers are proposed. Notice however
that these patterns are not symmetrical: they capture similar variations on one
dimension and not similar values.

Except the bi-clustering method of [8], all these methods focus on one of
the two dimensions. We have proposed to compute bi-sets with a symmetrical
definition which is one of the main difficulties in bi-set mining. This is indeed one
of the lessons from all the previous work on bi-set mining from 0/1 data, and,
among others, the several attempts to mine fault-tolerant extensions to formal
concepts instead of fault-tolerant itemsets [3].

6 Conclusion

Efficient data mining techniques concern 0/1 data analysis by means of set pat-
terns. It is however common, for instance in the context of gene expression data
analysis, that the considered raw data is available as a collection of real numbers.
Therefore, using the available algorithms needs for a beforehand Boolean prop-
erty encoding. To overcome such a tedious task, we started to investigate the
possibility to mine set patterns directly from the numerical data. We introduced
the Numerical Bi-Sets as a new pattern domain. Some nice properties of NBS

patterns have been considered. We have described our implemented solver NBS-

Miner in quite generic terms, i.e., emphasizing the fundamental operations for
the complete computation of NBS patterns. Notice also that other monotonic
or anti-monotonic constraints can be used in conjunction with Cin ∧ Cout, i.e.,
the constraint which specifies the pattern domain. It means that search space
pruning can be enhanced for mining real-life datasets provided that further user-
defined constraints are given. The perspectives are obviously related to further
experimental validation, especially the study of scalability issues. Furthermore,
we still need for an in-depth understanding of the complementarity between
NBS pattern mining and bi-set mining from 0/1 data.

Acknowledgments. This research is partially funded by the EU contract IQ
FP6-516169 (FET arm of the IST programme). J. Besson is paid by INRA (ASC
post-doc).

References

1. C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon. Strong-
association-rule mining for large-scale gene-expression data analysis: a case study
on human sage data. Genome Biology, 12, November 2002.

2. S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature algorithm for the
analysis of large-scale gene expression data. Physical Review, 67, March 2003.

3. J. Besson, R. Pensa, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of
fault-tolerant patterns from boolean data. In Revised Selected and Invited Papers
KDID’05, volume 3933 of LNCS, pages 55–71. Springer-Verlag, 2006.

18 Besson et al.

4. J. Besson, C. Robardet, J.-F. Boulicaut, and S. Rome. Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis,
9(1):59–82, 2005.

5. Z. Bozdech, M. Llinás, B. Pulliam, E. Wong, J. Zhu, and J. DeRisi. The tran-
scriptome of the intraerythrocytic developmental cycle of plasmodium falciparum.
PLoS Biology, 1(1):1–16, 2003.

6. T. Calders, B. Goethals, and S. Jaroszewicz. Mining rank correlated sets of nu-
merical attributes. In Proceedings ACM SIGKDD’06. To appear.

7. C. Creighton and S. Hanash. Mining gene expression databases for association
rules. Bioinformatics, 19(1):79–86, November 2002.

8. J. Hartigan. Direct clustering of data matrix. Journal of the American Statistical
Association, 67(337):123–129, March 1972.

9. J. Liu and W. Wang. Op-cluster: Clustering by tendency in high dimensional space.
In Proceedings IEEE ICDM’03, pages 187–194, Melbourne, USA, Dec. 2003.

10. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data anal-
ysis: A survey. ACM/IEEE Trans. on computational biology and bioinformatics,
1(1):24–45, 2004.

11. R. G. Pensa, C. Leschi, J. Besson, and J.-F. Boulicaut. Assessment of discretization
techniques for relevant pattern discovery from gene expression data. In Proceedings
ACM BIOKDD’04, pages 24–30, Seattle, USA, August 2004.

12. U. Ruckert, L. Richter, and S. Kramer. Quantitative association rules based on
half-spaces: An optimization approach. In Proceedings IEEE ICDM’04, pages 507–
510, Brighton, UK, Nov. 2004.

13. M. Steinbach, P.-N. Tan, H. Xiong, and V. Kumar. Generalizing the notion of
support. In Proceedings ACM SIGKDD’04, pages 689–694, Seatle, USA, 2004.

14. H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in
large data sets. In Proceedings ACM SIGMOD’02, pages 394–405, Madison, USA,
June 2002.

Mining Bi-sets in Numerical Data 19

20 Besson et al.

Weighted and Probabilistic Instances of the
Soft Constraint Based Pattern Mining Paradigm

Stefano Bistarelli1,2 and Francesco Bonchi3

1 Dipartimento di Scienze, Università degli Studi “G. D’Annunzio”, Pescara, Italy
2 Istituto di Informatica e Telematica, CNR, Pisa, Italy

3 Pisa KDD Laboratory, ISTI - C.N.R., Pisa, Italy
e-mail:bista@sci.unich.it; francesco.bonchi@isti.cnr.it

Abstract. The paradigm of pattern discovery based on constraints has been rec-
ognized as a core technique in inductive querying: constraints provide to the user
a tool to drive the discovery process towards potentiallyinterestingpatterns, with
the positive side effect of achieving a more efficient computation. However, due to
the lack of research on methodological issues, the constraint-based pattern mining
framework still suffers from many problems which limit its practical relevance.
In our previous work [4], we analyzed such limitations and showed how they
flow out from the same source: the fact that in the classical constraint-based min-
ing, a constraint is a rigid boolean function which returns eithertrue or false. To
overcome such limitations we introduced the new paradigm of pattern discovery
based onSoft Constraints, and instantiated our idea to the fuzzy soft constraints.
In this paper we extend the framework to deal with probabilistic and weighted
soft constraints: we provide theoretical basis and detailed experimental analysis.
Finally we discuss of how deal withtop-k queries.

1 Introduction

The paradigm of pattern discovery based on constraints was introduced with the aim
of providing to the user a tool to drive the discovery process towards potentiallyinter-
estingpatterns, with the positive side effect of achieving a more efficient computation.
So far the research on this paradigm has mainly focused on the latter aspect: the study
of constraints properties and, on the basis of these properties, the development of ef-
ficient algorithms for the evaluation of constraint-based mining queries. Despite such
algorithmic research effort, and regardless some successful applications, e.g., in med-
ical domain [8, 11], or in biological domain [3], the constraint-based pattern mining
framework still suffers from many problems which limit its practical relevance. In our
previous work [4], we analyzed such limitations and showed how they flow out from
the same source: the fact that in the classical constraint-based mining, a constraint is
a rigid boolean function which returns eithertrue or false. Indeed, interestingness is
not a dichotomy. Following this consideration, we introduced in [4] the new paradigm
of pattern discovery based onSoft Constraints, where constraints are no longer rigid
boolean functions. In particular we adopted a definition of soft constraints based on
the mathematical concept ofsemiring. Albeit based on a simple idea, our proposal has
the merit of providing a rigorous theoretical framework, which is very general (hav-
ing the classical paradigm as a particular instance), and which overcomes all the major

21

methodological drawbacks of the classical constraint-based paradigm, representing a
step further towards practical pattern discovery.

While in our previous paper we instantiated the framework to thefuzzysemiring,
in this paper we extend the framework to deal with theprobabilisticand theweighted
semirings: these different constraints instances can be used to model different situa-
tions, depending on the application at hand. We provide the formal problem definition
and the theoretical basis to develop concrete solvers for the mining problems we de-
fined. In particular, we will show how to build a concretesoft-constraint based pattern
discovery system, by means of a set of appropriate wrappers around a crisp constraint
pattern mining system. The mining system for classical constraint-based pattern dis-
cover that we adopted isCONQUEST, a system which we have developed at Pisa KDD
Laboratory [7]. Such a system is based on a mining engine which is a general Apriori-
like algorithm which, by means ofdata reductionandsearch space pruning, is able to
push a wide variety of constraints (practically all possible kinds of constraints which
have been studied and characterized) into the frequent itemsets computation. Finally,
we discuss how to answer totop-k queries.

2 Soft Constraint Based Pattern Mining

Several formalizations of the concept of soft constraints are currently available. In the
following, we refer to the formalization based onc-semirings[6]: a semiring-based
constraint assigns to each instantiation of its variables an associated value from a par-
tially ordered set. When dealing with crisp constraints, the values are the booleantrue
andfalse representing the admissible and/or non-admissible values; when dealing with
soft constraints the values are interpreted as preferences/costs. The framework must
also handle the combination of constraints. To do this one must take into account such
additional values, and thus the formalism must provide suitable operations for combi-
nation (×) and comparison (+) of tuples of values and constraints. This is why this
formalization is based on the mathematical concept of semiring.

Definition 1 (c-semirings [6]). A semiring is a tuple〈A, +,×,0,1〉 such that:A is
a set and0,1 ∈ A; + is commutative, associative and0 is its unit element;× is
associative, distributes over+, 1 is its unit element and0 is its absorbing element. A
c-semiring (“c” stands for “constraint-based”) is a semiring〈A, +,×,0,1〉 such that
+ is idempotent with1 as its absorbing element and× is commutative.

Definition 2 (soft constraint on c-semiring [6]).Given a c-semiringS = 〈A,+,×,0,1〉
and an ordered set of variablesV over a finite domainD, a constraint is a func-
tion which, given an assignmentη : V → D of the variables, returns a value of the
c-semiring. By using this notation we defineC = η → A as the set of all possible
constraints that can be built starting fromS, D andV .

In the following we will always use the word semiring as standing for c-semiring.

Example 1.The following example illustrates the definition of soft constraint based on
semiring, using the example mining query:

Q : suppD(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

which requires to mine, from databaseD, all patterns which are frequent (have a sup-
port at least 1500), have average weight at most 5 and a sum of prices at least 20. In this

22 Stefano Bistarelli and Francesco Bonchi

context, we have that the ordered set of variablesV is 〈suppD(X), avg(X.weight),
sum(X.price)〉; the domainD is: D(suppD(X)) = N, D(avg(X.weight)) = R+,
andD(sum(X.price)) = N. If we consider the classical crisp framework (i.e., hard
constraints) we are on the boolean semiring:SBool = 〈{true, false},∨,∧, false, true〉.
A soft constraintC is a functionV → D → A; e.g.,suppD(X) → 1700 → true.

The+ operator is what we use to compare tuples of values (or patterns, in our con-
text). Let us consider the relation≤S (whereS stands for the specified semiring) over
A such thata ≤S b iff a + b = b. It is possible to prove that:≤S is a partial order;+
and× are monotone on≤S ; 0 is its minimum and1 its maximum, and〈A,≤S〉 is a
complete lattice with least upper bound operator+. In the context of pattern discovery
a ≤S b means that the patternb is more interestingthana, where interestingness is de-
fined by a combination of soft constraints. When using (soft) constraints it is necessary
to specify, via suitable combination operators, how the level of interest of a combina-
tion of constraints is obtained from the interest level of each constraint. The combined
weight (or interest) of a combination of constraints is computed by using the operator
⊗ : C × C → C defined as(C1 ⊗ C2)η = C1η ×S C2η.

Example 2.In this example, and in the rest of the paper, we use for the patterns the
notationp : 〈v1, v2, v3〉, wherep is an itemset, and〈v1, v2, v3〉 denote the three val-
ues〈suppD(p), avg(p.weight), sum(p.price)〉 corresponding to the three constraints
in the conjunction in the queryQ of Example 1. Consider, for instance, the follow-
ing three patterns:p1 : 〈1700, 0.8, 19〉, p2 : 〈1550, 4.8, 54〉, p3 : 〈1550, 2.2, 26〉. If
we adopt the classical crisp framework, in the mining queryQ we have to combine
the three constraints using the∧ operator (which is the× in the boolean semiring
SBool). Consider for instance the patternp1 : 〈1700, 0.8, 19〉 for the ordered set of
variablesV = 〈suppD(X), avg(X.weight), sum(X.price)〉. The first and the second
constraint are satisfied leading to the semiring leveltrue, while the third one is not
satisfied and has associated levelfalse. Combining the three values with∧ we obtain
true ∧ true ∧ false = false and we can conclude that the pattern〈1700, 0.8, 19〉 is not
interesting w.r.t. our purposes. Similarly, we can instead compute leveltrue for pattern
p3 : 〈1550, 2.2, 26〉 corresponding to an interest w.r.t. our goals.

However, dividing patterns ininterestingandnon-interestingis sometimes not mean-
ingful nor useful. Most of the times we want to say that each pattern is interesting with
a specific level of preference. This idea is at the basis of the soft constraint based pattern
mining paradigm [4].

Definition 3 (Soft Constraint Based Pattern Mining). Let P denote the domain of
possible patterns. A soft constraint on patterns is a functionC : P → A whereA is the
carrier set of a semiringS = 〈A, +,×,0,1〉. Given a combination of soft constraints
⊗C, i.e., a description of what is considered by the user an interesting pattern, we define
two different problems:

λ-interesting: given a minimum interest thresholdλ ∈ A, it is required to mine the set
of all λ-interesting patterns, i.e.,{p ∈ P| ⊗ C(p) ≥S λ}.

top-k: given a thresholdk ∈ N, it is required to mine the top-k patternsp ∈ P w.r.t.
the order≤S .

Weighted and Probabilistic Instances of Soft Constraints 23

In the rest of the paper we adopt the notationintPS (λ) to denote the problem of
miningλ-interesting patterns (from pattern domainP) on the semiringS, and similarly
topPS (k), for the corresponding top-k mining problem. Note that the Soft Constraint
Based Pattern Mining paradigm just defined, has many degrees of freedom. In particu-
lar, it can be instantiated:

1. on the domain of patternsP in analysis (e.g., itemsets, sequences, trees or graphs),
2. on the semiringS = 〈A, +,×,0,1〉 (e.g., boolean, fuzzy, weighted or probabilis-

tic), and
3. on one of the two possible mining problems, i.e.,λ-interesting or top-k mining.

In other terms, by means of Definition 3, we have defined many different mining
problems: it is worth noting that the classical constraint based frequent itemsets mining,
is just a particular instance of our framework. In particular, it corresponds to the mining
of λ-interesting itemsets on the boolean semiring, whereλ = true, i.e.,intIb (true). In
our previous paper [4] we have shown how to deal with the mining problemintIf (λ)
(i.e.,λ-interesting Itemsets on the Fuzzy Semiring), in this paper we show how to extend
our framework to deal with(i) intIp (λ) (i.e.,λ-interesting Itemsets on the Probabilistic
Semiring),(ii) intIw(λ) (i.e., λ-interesting Itemsets on the Weighted Semiring), and
(iii) mining top-k itemsets on any semiring.

The methodology we adopt is based on the property that in a c-semiringS =
〈A, +,×,0,1〉 the×-operator isextensive[6], i.e,a×b ≤S a for all a, b ∈ A. Thanks to
this property, we can easily prune away some patterns from the set of possibly interest-
ing ones. In particular this result directly applies when we want to solve aλ-interesting
problem. In fact for any semiring (fuzzy, weighted, probabilistic) we have that [6]:

Proposition 1. Given a combination of soft constraints⊗C based on a semiringS, for
any patternp ∈ P: ⊗C(p) ≥S λ ⇒ ∀C ∈ ⊗C : C(p) ≥S λ.

Proof Straightforward from the extensivity of×.
Therefore, computing all theλ-interesting patterns can be done by solving a crisp

problem where all the constraint instances with semiring level lower thanλ have been
assigned levelfalse, and all the instances with semiring level greater or equal toλ
have been assigned leveltrue. In fact, if a pattern does not satisfy such conjunction of
crisp constraints, it will not be neither interesting w.r.t. the soft constraints. Using this
theoretical result, and some simple arithmetic we can transform each soft constraint in
a corresponding crisp constraint, push the crisp constraint in the mining computation
to prune uninteresting patterns, and when needed, post-process the solution of the crisp
problem, to remove uninteresting patterns from it.

3 Mining intIp(λ) (λ-interesting Itemsets on the Probabilistic
Semiring)

Using the probabilistic constraints framework [9] we suppose each constraint to have
an independent probability law, and combination is computed performing the product
of the semiring value of each constraint instantiations. As a result, the semiring corre-
sponding to the probabilistic framework isSP = 〈[0, 1],max,×, 0, 1〉.

Consider the constraints graphical representations in Figure 1, where the semiring
values between0 and1 are this time interpreted as probabilities. In this situation for

24 Stefano Bistarelli and Francesco Bonchi

the patternp1 = 〈1700, 0.8, 19〉 we obtain that:C1(p1) = 0.83, C2(p1) = 1 and
C3(p1) = 0.45. Since in the probabilistic semiring the combination operator× is the
arithmetic multiplication, we got that the interest level ofp1 is 0.37. Similarly forp2

andp3:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = ×(0.83, 1, 0.45) = 0.37
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = ×(0.58, 0.6, 1) = 0.35
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = ×(0.58, 1, 0.8) = 0.46

Therefore, with this particular instance we got thatp2 <SP p1 <SP p3, i.e.,p3 is
the most interesting pattern among the three. Dealing with the probabilistic semiring,
we can readapt most of the framework developed for the fuzzy semiring. In fact the two
semirings are based on the same set[0, 1] and on the same+ operator which ismax.
The only distinguishing element is the× operator which ismin for the fuzzy semiring,
while it is the arithmetictimesfor the probabilistic semiring. This means that we can
straightforwardly readapt the problem definition, the way of defining the behaviour of
soft constraints, and thecrisp translation.

Definition 4. Let I = {x1, ..., xn} be a set of items, where an item is an object with
some predefined attributes (e.g., price, type, etc.). A soft constraint on itemsets, based
on the probabilistic semiring, is a functionC : 2I → [0, 1]. Given a combination of
such soft constraints⊗C ≡ C1 ⊗ . . . ⊗ Cn, we define the interest level of an itemset
X ∈ 2I as⊗C(X) = C1(X) × · · · × Cn(X). Given a minimum interest threshold
λ ∈]0, 1], theλ-interesting itemsets mining problem, requires to computeintIp (λ) =
{X ∈ 2I | ⊗ C(X) ≥ λ}.
Definition 5. A soft constraintC on itemsets, based on the probabilistic semiring, is
defined by a quintuple〈Agg,Att, θ, t, α〉, where:

– Agg ∈ {supp,min, max, count, sum, range, avg, var,median, std,md};
– Att is the name of the attribute on which the aggregateagg is computed (or the

transaction database, in the case of the frequency constraint);
– θ ∈ {≤,≥};
– t ∈ R corresponds to the center of the interval and it is associated to the semiring

value 0.5;
– α ∈ R+ is the softness parameter, which defines the inclination of the preference

function (and thus the width of the interval).

suppD(X)

1000 1200 1400 1600 1800 2000
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

avg(X.weight)

2 3 4 5 6 7 8
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

sum(X.price)

0 10 20 30 40
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

(C1) (C2) (C3)

Fig. 1.Graphical representation of possible probabilistic instance of the constraints in the mining
queryQ in Example 1.

Weighted and Probabilistic Instances of Soft Constraints 25

In particular, ifθ =≤ (as in Figure 1(C2)) thenC(X) is 1 forX ≤ (t−αt), is 0 for
X ≥ (t+αt), and is linearly decreasing from 1 to 0 within the interval[t−αt, t+αt].
The other way around ifθ =≥ (as, for instance, in Figure 1(C3)). Note that if the
softness parameterα is 0, then we obtain the crisp (or hard) version of the constraint.

Example 3.Consider again the queryQ given in Example 1, and its probabilistic in-
stance graphically described by Figure 1. Such query can be expressed in our constraint
language as:

〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉

Definition 6. Given a probabilistic soft constraintC ≡ 〈Agg, Att, θ, t, α〉, and a mini-
mum interest thresholdλ, we define the crisp translation ofC w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≥ t− αt + 2λαt, if θ =≥
Agg(Att) ≤ t + αt− 2λαt, if θ =≤

In [4] we proved that, on the fuzzy semiring, given a combination of soft constraints
⊗C ≡ C1⊗. . .⊗Cn, and a minimum interest thresholdλ, if we consider the conjunction
of crisp constraints obtained by conjoining the crisp translation of each constraint in⊗C
w.r.t. λ (i.e.,C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp), it holds that

intIf (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ} = Th(C′)

Similarly, the following property holds:

Proposition 2. Given the vocabulary of itemsI, a combination of soft constraints
⊗C ≡ C1⊗ . . .⊗ Cn, and a minimum interest thresholdλ. It holds that:

intIp (λ) ⊆ intIf (λ)

Proof. Consider two real numbersx1, x2 in the interval[0, 1]. It holds thatx1 × x2 ≤
min(x1, x2). Therefore, for a given patterni, if in the probabilistic semiring⊗C(i) ≥p

λ, then also in the fuzzy semiring⊗C(i) ≥f λ.

〈supp,D,≥, t, α〉 〈avg, weight,≤, t, α〉 〈sum, price,≥, t, α〉
D t α t α t α

Q1 RETAIL 20 0.8 10000 0.5 20000 0.5
Q2 RETAIL 20 0.5 10000 0.5 20000 0.5
Q3 RETAIL 20 0.2 10000 0.5 20000 0.5
Q4 RETAIL 20 0.8 5000 0.2 20000 0.5
Q5 RETAIL 20 0.8 5000 0.8 20000 0.5
Q6 T40I10D100K800 0.75 15000 0.2 100000 0.5
Q7 T40I10D100K800 0.75 15000 0.9 100000 0.5
Q8 T40I10D100K800 0.25 15000 0.2 100000 0.2

Fig. 2. Description of queries experimented.

26 Stefano Bistarelli and Francesco Bonchi

0,0 0,2 0,4 0,6 0,8 1,0

nu
m

be
r

of
 s

ol
ut

io
ns

0

100

200

300

400

Q1

Q2

Q3

Q4

Q5

0,0 0,2 0,4 0,6 0,8 1,0

ra
tio

0,70

0,75

0,80

0,85

0,90

0,95

1,00

Q1
Q2
Q3
Q4
Q5

(a) (b)

Fig. 3. Experimental results on theRETAIL dataset withλ ranging in]0, 1] in the probabilistic
semiring: number of solutions (a), and ratio with the number of solutions in the fuzzy semiring
(b).

When dealing with the probabilistic semiring, we translate the given query to a
crisp one. But afterwards, we need a post-processing step in which we select, among
the solutions to the crisp query, theλ-interesting patterns. It is natural to ask ourselves
how much selective is this post-processing. This could provide a measure of the kind of
improvement that one could get by studying and developing ad-hoc techniques, to push
probabilistic soft constraints into the pattern extraction computation.

In Figure 3, for theRETAIL dataset and the queries of Figure 2, we report: in (a), the
number ofλ-interesting patterns in the probabilistic semiring, while in (b) the ratio of
this number with the number of solutions in the fuzzy semiring, i.e.,|intIp (λ)| / |intIf (λ)|.
The execution time of the post-processing is not reported in the plots, because in all the
experiments conducted, it was always in the order of few milliseconds, thus negligible
w.r.t. the mining time. Observing the ratio we can note that it is always equals to 1 for
λ = 0 andλ = 1. In fact a pattern having at least a constraint for which it returns 0, will
receive a semiring value of 0 in both the fuzzy semiring (min combination operator),
and the probabilistic semiring (× combination operator). Similarly, forλ = 1, to be a
solution a pattern must return a value of 1 for all the constraints in the combination, in
both the semirings. Then we can observe that this ratio is quite high, always larger than
0.7 in theRETAIL dataset. This is no longer true for the queries on the T40I10D100K
dataset, reported in Figure 4 (a) and (b): the ratio reach a minimum value of 0.244 for
queryQ7 whenλ = 0.2.

What we can observe is that the ratio does not depend neither on the number of
solutions nor onλ (apart the extreme cases 0 and 1). The ratio depends on the softness
of the query: the softer the query the lower the ratio, i.e., more patterns discarded by the
post-processing. This can be observed in both Figure 3(b) and 4(b): for instance, among
the first three queriesQ1 is softer thanQ2 which in turns is softer thanQ3, and this is
reflected in the ratio which is lower forQ1; similarlyQ5 is softer thanQ4 and its ratio
is lower; in 4(b)Q8 is the least soft whileQ7 is the most soft, and accordingly behaves
the ratio.

Weighted and Probabilistic Instances of Soft Constraints 27

0,0 0,2 0,4 0,6 0,8 1,0

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

200

Q6
Q7
Q8

0,0 0,2 0,4 0,6 0,8 1,0

ra
tio

0,2

0,4

0,6

0,8

1,0

Q6
Q7
Q8

(a) (b)

Fig. 4. Experimental results on the T40I10D100K dataset withλ ranging in]0, 1] in the prob-
abilistic semiring: number of solutions (a), and ratio with the number of solutions in the fuzzy
semiring (b).

4 Mining intIw(λ) (λ-interesting Itemsets on the Weighted
Semiring)

While in the fuzzy semiring each pattern has an associated level of preference (or in-
terestingness) for each constraint, and in the probabilistic semiring a value which rep-
resents a probability, in the weighted semiring they have an associated cost. Therefore,
in the weighted semiring the cost function is defined by summing up the costs of all
constraints. According to the informal description given above, the weighted semiring
is SW = 〈R+,min, sum, +∞, 0〉.
Example 4.Consider the following weighted instance for the constraints in the query
Q (graphically represented in Figure 5):

– C1(suppD(X)) =
{

1750− suppD(X), if suppD(X) < 1750
0, otherwise.

– C2(avg(X.weight)) = 25 ∗ avg(X.weight)

– C3(sum(X.price)) =
{

5 ∗ (60− sum(X.price)), if sum(X.price) < 60
0, otherwise.

Note how the soft version of the constraints are defined in the weighted framework:
C1 for instance, since bigger support is better, gives a cost of0 when the support is
greater than1750 and an increasing cost as the support decreases. Similarly for con-
straintC3: we assign a cost0 when the sum of prices is at least60, while the cost
increases linearly as the sum of prices shrinks. ConstraintC2 instead aims to have an
average weight as lower as possible, and thus larger average weight will produce larger
(worse) cost. In this situation we got that:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 170) = 425

28 Stefano Bistarelli and Francesco Bonchi

Therefore, with this particular instance we got thatp3 <SW
p2 <SW

p1 (remember
that the order≤SW correspond to the≥ on real numbers). In other terms,p1 is the most
interesting pattern w.r.t. this constraints instance.

Since in the weighted semiring, the values correspond to costs, instead of looking for
patterns with an interest level larger thanλ, we seek for patterns with a cost smaller
thanλ.

Definition 7. Let I = {x1, ..., xn} be a set of items, where an item is an object with
some predefined attributes (e.g., price, type, etc.). A soft constraint on itemsets, based
on the weighted semiring, is a functionC : 2I → R+. Given a combination of such
soft constraints⊗C ≡ C1 ⊗ . . .⊗ Cn, we define the interest level of an itemsetX ∈ 2I

as⊗C(X) =
∑

i=1,...,n Ci(X). Given a maximum cost thresholdλ ∈ R+, the λ-

interesting itemsets mining problem, requires to computeintIw(λ) = {X ∈ 2I | ⊗
C(X) ≤ λ}.
For sake of simplicity, we restrict to weighted constraints with a linear behavior as those
ones described in Figure 5. To describe such simple behavior, we need a new parameter
β ∈ R+ that represents the semiring value associated to thet point (playing the role of
the implicitly given0.5 value for the fuzzy and probabilistic semiring). In other words
we provide two points to describe the straight line passing through them: the point(t, β)
and the point(t − αt, 0) for θ =≤ or (t + αt, 0) for θ =≥. Note thatα still plays the
role of the softness knob.

Definition 8. A soft constraintC on itemsets, based on the weighted semiring, is defined
by a sextuple〈Agg, Att, θ, t, β, α〉, where:Agg, Att, θ and α are defined as for the
fuzzy/probabilistic case (Definition 5),t is a point in the carrier set of the weighted
semiring, i.e.,t ∈ R+, andβ represents the semiring value associated tot.

Example 5.Consider again the queryQ given in Example 1, and its weighted instance
graphically described by Figure 5. Such query can be expressed in our constraint lan-
guage as:

〈supp,D,≥, 1500, 250,
1
6
〉, 〈avg, weight,≤, 5, 125, 1〉, 〈sum, price,≥, 20, 200, 1〉

suppD(X)

600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000 weighted
avg(X.weight)

0 2 4 6 8
0

50

100

150

200 weighted sum(X.price)

0 20 40 60 80
0

50

100

150

200

250

300 weighted

(C1) (C2) (C3)

Fig. 5.Graphical representation of possible weighted instances of the constraints in in the mining
queryQ in Example 1.

Weighted and Probabilistic Instances of Soft Constraints 29

For the weighted semiring we can still rely on Proposition 1, which states that a
pattern in order to beλ-interesting, must return a semiring value smaller thanλ (we are
dealing this time with costs; i.e.,≥W is≤) for each single constraint in the query: this
assures us that if a pattern does not satisfy the crisp translation of the given query, it will
not beλ-interesting neither in the weighted semiring. In other words we can always use
the same methodology described for the probabilistic semiring: translate the query to a
crisp one, evaluate it, post-process the result to select the exact solution set.

Definition 9. Given a weighted soft constraintC ≡ 〈Agg, Att, θ, t, β, α〉, and a maxi-
mum cost thresholdλ, we define the crisp translation ofC w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≤ t− αt + 1

β λαt, if θ =≤
Agg(Att) ≥ t + αt− 1

β λαt, if θ =≥

Example 6.Given the weighted soft constraint〈sum, price,≥, 20, 200, 1〉, its crisp
translation issum(X.price) ≥ 24 for λ = 180, it is sum(X.price) ≥ 10 for λ = 250.

Proposition 3. Given the vocabulary of itemsI, a combination of weighted soft con-
straints⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a maximum interest thresholdλ. Let C′ be the
conjunction of crisp constraints obtained by conjoining the crisp translation of each
constraint in⊗C w.r.t. λ: C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp. It holds that:

intIw(λ) ⊆ {X ∈ 2I | ⊗ C(X) ≤ λ} = Th(C′)
whereTh(C′) is the solution set for the crisp problem, according to the notation intro-
duced in Definition 2.

In the following we report the results of some experiments that we have conducted
on the same datasets used before for the fuzzy and the probabilistic semirings. We have
compared 8 different instances (described in Figure 6) of the queryQ :

〈supp,D,≥, t, β, α〉〈avg, weight,≤, t, β, α〉, 〈sum, price,≥, t, β, α〉
The results of the experiments are reported in Figure 7 and Figure 8. A first observa-

tion is that, on the contrary of what happening in the probabilistic and fuzzy semiring,

〈supp,D,≥, t, β, α〉 〈avg, weight,≤, t, β, α〉 〈sum, price,≥, t, β, α〉
D t β α t β α t β α

Q9 RETAIL 20 600 0.8 5000 100 0.2 20000 250 0.5
Q10 RETAIL 20 600 0.2 5000 100 0.2 20000 250 0.5
Q11 RETAIL 20 600 0.8 5000 100 0.8 20000 250 0.5
Q12 RETAIL 20 600 0.8 5000 500 0.2 20000 250 0.5
Q13 RETAIL 20 600 0.8 5000 1000 0.2 20000 500 0.5
Q14 T40I10D100K 800 500 0.8 5000 200 0.5 80000 400 0.8
Q15 T40I10D100K 600 600 0.8 15000 500 0.5 80000 400 0.8
Q16 T40I10D100K1000500 0.5 15000 500 0.5 100000600 0.9

Fig. 6. Description of queries experimented.

30 Stefano Bistarelli and Francesco Bonchi

0 200 400 600 800 1000

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

200

250

300

Q9
Q10
Q11
Q12
Q13

0 200 400 600 800 1000

ra
tio

0,0

0,2

0,4

0,6

0,8

1,0

Q9
Q10
Q11
Q12
Q13

(a) (b)

Fig. 7. Experimental results on theRETAIL dataset withλ ranging in[0, 1000] in the weighted
semiring: number of solutions (a), and ratio with the number of solutions of the crisp translation
(b).

here the larger isλ the larger is the number of solutions. This is trivially because the
order of the weighted semiring says that smaller is better. In Figure 7(a) we can observe
that queriesQ12 andQ13 always return a small number of solutions: this is due to the
high values ofβ in the constraints, which means high costs, making difficult for pat-
terns to produce a total cost smaller thanλ. In Figure 7(b) and Figure 8(b) we report
the ratio of the number of solution with the cardinality of the theory corresponding to
the crisp translation of the queries, i.e.,|intIw(λ)| / |Th(C′)|. This gives a measure of
how good is the approximation of the crisp translation, or in other terms, the amount of
post-processing needed (which, however, has negligible computational cost). The ap-
proximation we obtain using our crisp solver is still quite good but, as we expected, not
as good as in the probabilistic semiring. Also in this case, the softer the query the lower
the ratio, i.e., the crisp approximation is better for harder constraints (closer to crisp).
For instance in Figure 7(b) we can observe thatQ10, which is the query with smaller
values for the softness parameterα, always present a very high ratio.

5 Mining top-k Itemsets

For sake of completeness, in this section we sketch a simple methodology to deal with
top-kqueries, according to [5]. In the following we do not distinguish between the pos-
sible semiring instances, we describe the general methodology and leave to the reader
to instantiate it to the various semirings.

The main difficult to solvetop-kqueries is that we can know the number of solutions
only after the evaluation of a query. Therefore, givenk, the simple idea is to repeatedly
runλ-interesting queries with differentλ thresholds: we start from extremely selective
λ (fast mining) decreasing in selectivity, until we do not extract a solution set which is
large enough (more thank).

Considering for instance the fuzzy semiring, where the best semiring value is1: we
could start by performing a0.95-interesting query, and if the query results in a solution
set of cardinality larger thank, then we sort the solution according to their semiring

Weighted and Probabilistic Instances of Soft Constraints 31

0 200 400 600 800 1000

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

Q14
Q15
Q16

0 200 400 600 800 1000

ra
tio

0,0

0,2

0,4

0,6

0,8

1,0

Q14
Q15
Q16

(a) (b)

Fig. 8. Experimental results on theT40I10D100Kdataset withλ ranging in [0, 1000] in the
weighted semiring: number of solutions (a), and ratio with the number of solutions of the crisp
translation (b).

value and return the bestk, otherwise we slowly decrease the threshold, for instance
λ = 0.9, and so on. Notice that is important to start from a very high threshold in order
to perform fast mining extractions with small solution sets, and only if needed decrease
the threshold to get more solutions at the cost of longer computations.

6 Related and Future Work

To the best of our knowledge only few works [10, 2] have studied the constraint-based
paradigm by a methodological point of view, mainly criticizing some of its weak points.
To overcome these weak points in this paper we have proposed the use of soft con-
straints. A similar approach, based on relaxation of constraints, has been adopted in [1]
but for sequential patterns. In the context of sequential patterns, constraints are usu-
ally defined by means of regular languages: a pattern is a solution to the query only if
it is frequent and it is accepted by the regular language. In this case, constraint-based
techniques adopt a deterministic finite automaton to define the regular language.

The use of regular languages transforms the pattern mining process into the veri-
fication of which of the sequences of the language are frequent, completely blocking
the discovery of novel patterns. In [1] the authors propose a new mining methodology
based on the use of constraint relaxations, which assumes that the user is responsible
for choosing the strength of the restriction used to constrain the mining process. A hi-
erarchy of constraint relaxations is developed.

We are actually working at the tight integration of the proposed framework over the
CONQUEST [7] system: this requires to define methodologies of interaction between
the user and the system, e.g., how to define by means of a graphical paradigm the
behavior of the soft constraints. We plan also to apply the framework on real-world
biomedical problems, where the physicians want to drive the discovery process using
their background domain knowledge, but at the same time, hope to discover some novel,
unknown, surprising patterns.

32 Stefano Bistarelli and Francesco Bonchi

References

1. C. Antunes and A.L. Oliveira. Constraint relaxations for discovering unknown sequential
patterns. InProceedings of the Third International Workshop on Knowledge Discovery in
Inductive Databases, pages 11–32, 2004.

2. R.J. Bayardo. The hows, whys, and whens of constraints in itemset and rule discovery.
In Constraint-Based Mining and Inductive Databases, European Workshop on Inductive
Databases and Constraint Based Mining, pages 1–13, 2004.

3. J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome. Constraint-based concept mining and
its application to microarray data analysis.Intelligent Data Analysis journal, pages 59–82,
2005.

4. S. Bistarelli and F. Bonchi. Interestingness is not a dichotomy: Introducing softness in con-
strained pattern mining. InProceedings of the Ninth European Conference on Principles and
Practice of Knowledge Discovery in Databases, pages 22–33, 2005.

5. S. Bistarelli, P. Codognet, and F. Rossi. Abstracting soft constraints: Framework, properties,
examples.Artificial Intelligence, (139):175–211, July 2002.

6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and Optimiza-
tion. Journal of the ACM, 44(2):201–236, Mar 1997.

7. F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando, R. Perego, and R. Trasarti.CONQUEST:
a constraint-based querying system for exploratory pattern discovery. InProceedings of The
22nd IEEE International Conference on Data Engineering, pages 22–33, 2006.

8. Ordonez C. et al. Mining constrained association rules to predict heart disease. InProceed-
ings of the First IEEE International Conference on Data Mining, pages 433–440, 2001.

9. H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probabilistic ap-
proach. InProc. European Conference on Symbolic and Qualitative Approaches to Rea-
soning and Uncertainty (ECSQARU), volume 747 ofLNCS, pages 97–104. Springer-Verlag,
1993.

10. J. Hipp and H. G̈untzer. Is pushing constraints deeply into the mining algorithms really
what we want?: an alternative approach for association rule mining.SIGKDD Explorations,
4(1):50–55, 2002.

11. A. Lau, SS. Ong, A. Mahidadia, AG. Hoffmann, J. Westbrook, and T. Zrimec. Mining
patterns of dyspepsia symptoms across time points using constraint association rules. In
Advances in Knowledge Discovery and Data Mining, Proceedings of the 7th Pacific-Asia
Conference, pages 124–135, 2003.

Weighted and Probabilistic Instances of Soft Constraints 33

34 Stefano Bistarelli and Francesco Bonchi

On Interactive Pattern Mining
from Relational Databases

Francesco Bonchi1, Fosca Giannotti1, Claudio Lucchese23,
Salvatore Orlando23, Raffaele Perego3, and Roberto Trasarti1

1 Pisa KDD Laboratory, ISTI - CNR,
Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

2 Computer Science Dep., University Ca’ Foscari
Via Torino 155, Venezia Mestre, Italy
3 Pisa HPC Laboratory, ISTI - CNR,

Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

Abstract. In this paper we introduce a constraint based querying sys-
tem devised with the aim of supporting the intrinsically exploratory (i.e.,
human-guided, interactive, iterative) nature of pattern discovery. Follow-
ing the Inductive Database vision, our framework provides users with an
expressive constraint based query language which allows the discovery
process to be effectively driven toward potentially interesting patterns.
Such constraints are also exploited to reduce the cost of pattern mining
computation. We implemented a comprehensive mining system that can
access real world relational databases from which extract data. After a
preprocessing step, users mining queries are answered by an efficient pat-
tern mining engine which entails several data and search space reduction
techniques. Finally, results are presented to the user, and then stored in
the database. New user-defined constraints can be easily added to the
system in order to target the particular application considered.

1 Introduction

According to the Inductive Database vision [10], the task of extracting useful
and interesting knowledge from data is just an exploratory querying process, i.e.,
human-guided, iterative and interactive. The analyst, exploiting an expressive
query language, drives the discovery process through a sequence of complex min-
ing queries, extracts patterns satisfying some user-defined constraints, refines the
queries, materializes the extracted patterns as first-class citizens in the database,
combines the patterns to produce more complex knowledge, and cross-over the
data and the patterns.

Therefore, an Inductive Database system should provide the following fea-
tures:

Coupling with a DBMS. The analyst must be able to retrieve the portion of
interesting data (for instance, by means of SQL queries). Moreover, extracted
patterns should also be stored in the DBMS in order to be further queried
or mined (closure principle).

35

Expressiveness of the query language. The analyst must be able to inter-
act with the pattern discovery system by specify declaratively how the de-
sired patterns should look like and which conditions they should satisfy. The
analyst is supposed to have a high-level vision of the pattern discovery sys-
tem, without worrying about the details of the computational engine, in the
same way as a database user has not to worry about query optimization.
The task of composing all constraints and producing the most efficient min-
ing strategy (execution plan) for a given query should be thus completely
demanded to the underlying system.

Efficiency of the mining engine. Keeping query response time as small as
possible is, on the one hand necessary, since our goal is to give frequent
feedbacks to the user allowing realistic human-guided exploration. On the
other hand, it is a very challenging task, due to the exponential complexity
of pattern discovery computations. To this end, data and search space re-
duction properties of constraints should be effectively exploited by pushing
them within the mining algorithms. Pattern discovery is usually a highly
iterative task: a mining session is usually made up of a series of queries (ex-
ploration), where each new query adjusts, refines or combines the results of
some previous queries. It is important that the mining engine adopts tech-
niques for incremental mining; i.e. reusing results of previous queries, in order
to give a faster response to the last query presented to the system, instead
of performing again the mining from scratch.

Graphical user interface. The exploratory nature of pattern discovery im-
poses to the system not only to return frequent feedbacks to the user, but
also to provide pattern visualization and navigation tools. These tools should
help the user in visualizing the continuous feedbacks form the systems, al-
lowing an easier and human-based identification of the fragments of inter-
esting knowledge. Such tools should also play the role of graphical querying
interface: the action of browsing pattern visualization should be tightly inte-
grated (both by a conceptual and engineering point of view) with the action
of iteratively querying.

Starting from the above requirements we designed ConQueSt, an exploratory
pattern discovery system equipped with a simple, yet powerful, query language
(named SPQL) and a user friendly interface for accessing the underlying DBMS.
ConQueSt is the result of a joint work of the Pisa KDD (Knowledge Discovery
and Delivery) and HPC (High Performance Computing) Laboratories: it is built
around a scalable and high-performance constraint-based mining engine exploit-
ing state-of-the-art constraint pushing techniques, as those ones developed in
the last three years by our two labs [14, 4, 3, 6, 7].

The constraint-based pattern mining paradigm has been recognized as one
of the fundamental techniques for Inductive Databases: user-defined constraints
drive the mining process towards potentially interesting patterns only. Moreover,
they can be pushed deep inside the mining algorithm in order to deal with the ex-
ponential search space curse, achieving better performance [17, 13, 9]. Constraint-
based frequent pattern mining has been studied a lot as a query optimization

36 Bonchi et al.

problem, i.e., developing efficient, sound and complete evaluation strategies for
constraint-based mining queries. To this aim, properties of constraints have been
studied comprehensively, e.g., anti-monotonicity, succinctness [13, 12], mono-
tonicity [11, 8, 3], convertibility [15], loose anti-monotonicity [5], and on the basis
of such properties efficient computational strategies have been defined.

Definition 1 (Constrained Frequent Itemset Mining). Let I = {x1, ..., xn}
be a set of distinct items, where an item is an object with some predefined at-
tributes (e.g., price, type, etc.). An itemset X is a non-empty subset of I. A
transaction database D is a bag of itemsets t ∈ 2I , usually called transactions. A
constraint on itemsets is a function C : 2I → {true, false}. We say that an item-
set I satisfies a constraint if and only if C(I) = true. We define the theory of a
constraint as the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I |
C(X)}. The support of an itemset X in database D, denoted suppD(X), is the
number of transactions which are superset of X. Given a user-defined minimum
support, denoted σ, an itemset X is called frequent in D if suppD(X) ≥ σ. This
defines the minimum frequency constraint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ. In
general, given a conjunction of constraints C the constrained frequent itemsets
mining problem requires to compute Th(Cfreq) ∩ Th(C).

While developing ConQueSt we have tried to reduce as much as possible
the gap existing between real-world data stored in relational DBMS, and the
constraint-based pattern discovery paradigm, as defined above.

In fact, the data is usually stored in relational databases, and thus in the form
of relations and not of transactions. In Section 4 we explain how transactions
are defined and constructed both at the query language and at the system level.

Moreover, the constraint-based mining paradigm assumes that the constraints
are defined on attributes of the items that are in functional dependency with the
items. This rarely the case in real-world data: just think about the price of one
item in a market over a period of one month. ConQueSt provides support to
solve this cases, allowing the user to reconstruct the ideal situation of functional
dependency, for instance, by choosing to take the average of prices of the item
in the period as price attribute.

2 Architecture of the system

The ConQueSt architecture, as shown in Fig. 1, is composed of three main
modules:

– the Graphical User Interface (GUI);
– the Query Interpreter and and Pre-processor (QIP);
– the Mining Engine (ME).

For portability reasons, the GUI and the QIP have been implemented in Java,
while the ME was implemented in C++ in order to provide high performance
during the most expensive task.

On Interactive Pattern Mining from Relational Databases 37

In our vision, a mining system has to be tightly coupled with DMBS soft-
wares, because databases are the place where data is. Our choice is to allow all
the three main components to access independently a database. In fact, the GUI
must show to the user the data present in the database, the QIP must retrieve the
data of interested and prepare them for the mining engine, which will eventually
store the discovered patterns in the database. To this end, the three components
stand on a JDBC [1] abstraction layer, in order to provide independency from
the particular database server software where data are stored. In fact, the JDBC
API provides connectivity to a wide range of SQL databases. ConQueSt for
instance, can retrieve data from PostgreSQL as well as from Microsoft Access
database servers, and additional compatibility can be provided just by adding
the JDBC plug-in provided by the database server software house.

The separation in these modules reflects the separation among different, well
defined and independent tasks. In fact, every module could be a single software
package running on a different machine. For instance, the GUI may run on the
user machine, while the QIP may be located in a different site where a fast
access to the database is provided, and finally the ME may be running on an
high performance cluster serving many users with many different tasks. Finally,
the JDBC layer allow us to ignore the physical location of the database server.

Actually, a communication protocol is established, flowing from the GUI,
through the QIP and ending at the mining engine. The GUI, interactively with
the user, creates a SPQL query which is then sent to the query interpreter. The
latter preprocesses the data of interest and translates part of the SPQL query in
an list of constraints. These constraints, and a filesystem pointer to the prepro-
cessed data are finally sent to the ME which can now start the mining process.
As long as this simple protocol is fulfilled, every single component can increase
its features and improve its functionalities independently from the others.

QUERY INTERPRETER MINING ENGINE

S
P

Q
L

 q
ue

ry

Constraints

Aggregating
Parameters

SQL query
Data Selection

CONSTRAINT-BASED
PATTERN MINER

Data
Pre-Processor

Monotone Anti-Monotone User Defined

GUI

Data Browser

SPQL Generator

Pattern Visualizer

CONSTRAINTS MODULES

JDBC Database Access Interface

Fig. 1. ConQueSt architecture.

In our vision, a mining system has to be tightly coupled with DMBS soft-
wares, because databases are the place where data is. Our choice is to allow all
the three main components to access independently a database. In fact, the GUI
must show to the user the data present in the database, the QIP must retrieve the
data of interested and prepare them for the mining engine, which will eventually
store the discovered patterns in the database. To this end, the three components
stand on a JDBC [1] abstraction layer, in order to provide independency from
the particular database server software where data are stored. In fact, the JDBC
API provides connectivity to a wide range of SQL databases. ConQueSt for
instance, can retrieve data from PostgreSQL as well as from Microsoft Access
database servers, and additional compatibility can be provided just by adding
the JDBC plug-in provided by the database server software house.

The separation in these modules reflects the separation among different, well
defined and independent tasks. In fact, every module could be a single software
package running on a different machine. For instance, the GUI may run on the
user machine, while the QIP may be located in a different site where a fast
access to the database is provided, and finally the ME may be running on an
high performance cluster serving many users with many different tasks. Finally,
the JDBC layer allow us to ignore the physical location of the database server.

Actually, a communication protocol is established, flowing from the GUI,
through the QIP and ending at the mining engine. The GUI, interactively with
the user, creates a SPQL query which is then sent to the query interpreter. The
latter preprocesses the data of interest and translates part of the SPQL query in
an list of constraints. These constraints, and a filesystem pointer to the prepro-
cessed data are finally sent to the ME which can now start the mining process.
As long as this simple protocol is fulfilled, every single component can increase
its features and improve its functionalities independently from the others.

QUERY INTERPRETER MINING ENGINE

S
P

Q
L

 q
u

e
ry

Constraints

Aggregating
Parameters

SQL query
Data Selection

CONSTRAINT-BASED
PATTERN MINER

Data
Pre-Processor

Monotone Anti-Monotone User Defined

GUI

Data Browser

SPQL Generator

Pattern Visualizer

CONSTRAINTS MODULES

JDBC Database Access Interface

Fig. 1. ConQueSt architecture.

38 Bonchi et al.

3 Graphical User Interface

The user interface (see a screen-shot in Figure 2) is designed not only to stand
in between the user and the mining engine, but also to stand between the user
and the data.

Data is assumed to be in the form of a relational database. As soon as the
user connects to the database, a set of information and statistics are collected
and presented in many ways. The idea is to provide a simple and high level
mean to the user to define the mining task. It is simple, since the user can reach
his goal just by using user friendly mouse-clicks. Moreover, many high level
information and statistics are provided. Finally, the GUI is complete, meaning
that any operation related to the definition of a mining query can be done just
by mouse-clicks without the need of editing an SPQL query by hand.

Navigating the Structure of the Database. Most of the GUI is dedicated
to the Desk Area. Here the tables present in the database are showed in a
shape of a graph structure. Each vertex of the graph represents a table, and
the user may choose to see or not to see all the fields of the table. Each edge of
the graph corresponds to a logical link between a foreign key and a primary
key. Finally, a Tables List helps the user to select, to hide or unhide any of
the tables. This gives the user an high level view of the database, allowing
him grasp all the relations and connections at a glance, and to focus on the
portion of data of interest.

Table-Fields Information and Statistics. Every table maybe actually visu-
alized in the Table Visualization panel, but aggregated information are more
useful to the user. For this reason ConQueSt shows the data type of each
field, statistics of the selected field (e.g. average, minimum, maximum) and
a bar or pie chart of the distribution of the values of the selected field. This
information may help the user in deciding the discretization parameters and
the constraints thresholds.

Interactive SPQL query definition. The first part of the SPQL query con-
sists in the mining view definition, i.e. the set of fields defining transactions,
items and attributes. The user may set the mining view simply by left-
clicking directly on the Desk Area the table-fields of interest. Those fields
will be highlighted in the Desk Area and reported in the Mining View Defi-
nition panel. Whenever a mining view definition implicitly require relational
joins (e.g. transaction ids and item ids are in different table), they are au-
tomatically inserted in the final SPQL query. Constraints and respective
threshold may also be set by left-clicking on the Desk Area or also using the
Constrains panel. These facilities allows the user the fully define the mining
task just by navigating the dataset graph and using mouse clicks.

Advanced SPQL query definition. At any moment, the user can edit by
hand the query in the SPQL Query panel. Any modification of the query
will be reflected in the rest of the GUI, e.g. by updating the Mining View
Definition panel. The possibility to edit directly the query, rather than using
the gui, does not provide any additional expressive power from a mining point

On Interactive Pattern Mining from Relational Databases 39

of view. Anyway, since part of the SPQL query is pure SQL, we can allow
the user to exploit complex SQL queries and additional constraints that are
not part of the mining task, but rather they are part of the data preparation
phase. Moreover, any SQL query can be submitted in place of an SPQL
query, providing additional control to the analyst. Finally, before executing
the mining task, a preview of the data in the transactional format, together
with its items and attributes, is provided in the Mining View panel.

Pattern Browser. Result of mining queries are shown to the user in a special-
ized interface, named Pattern Browser. The Pattern Browser provides statis-
tics on the query results, and various functionalities for interactive navigation
the set of patterns, such as various kinds of sorting (e.g., cardinality times
frequency). The pattern browser also shows the SPQL query that generated
the patterns, and allows the user to tune the query parameters according
to his needs, for instance, strengthening or relaxing some constraints on the
fly. In the pattern browser the user can also invoke some post-processing
ore require to materialize the extracted patterns in the underlying database.
At the moment the unique kind of post-processing implemented is the ex-
traction of association rules from the patterns results set, but we plan to
introduce more complex post-processing which uses extracted patterns as
basic bricks to build global models as clustering or classifiers. Also the set
of extracted association rules can be materialized as relational tables in the
underlying database.

Fig. 2. ConQueSt Graphical User Interface.

40 Bonchi et al.

4 Query Interpreter and Pre-processor

The second module takes care of interpreting the SPQL query, retrieving from
the underlying DBMS the data source, and preparing it for the mining phase.

The preprocessor receives from the GUI a well-formed SQPL query, and it is
in charge to accomplish the data preparation step. In fact, the Mining Engine
is not able to deal with a relational dataset, it can only read data in a proper
format. This format is the one traditionally used in frequent itemsets mining
contexts. The input dataset is a collection of transactions, where each transaction
is a set of items. Each of these items is stored as an integer identifier. In the
relational dataset an item may be a string, or even a floating point value, but to
feed the mining engine these values have to be discretized or mapped.

Thus, the query interpreter, uses the mining view definition present in the
SPQL query to retrieve from the original dataset the data of interest. These data
are mapped and translated in a categorical format and finally stored on disk.
The rest of the query, i.e. frequency and other constraints, are forwarded to the
mining engine together with a pointer the the transactional dataset.

1. MINE PATTERNS WITH SUPP>= 5 IN

2. SELECT product.product_name, product.gross_weight, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id

3. FROM [product], [sales_fact_1998]

4. WHERE sales_fact_1998.product_id=product.product_id

5. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id

6. ITEM product.product_name

7. ATTRIBUTE product.gross_weight

8. CONSTRAINED BY Sum(product.gross_weight)<=30

Table 1. An example SPQL Mining Query.

A SPQL query consists of four parts (see Table 1):

1. the user-defined minimum support threshold (line 1);
2. the SQL style SELECT statement to specify the data source to be extracted

from the DBMS (lines 2–4);
3. the mining view definition by means of TRANSACTIONS, ITEMS and of ATTRIBUTES

on which constraints are defined (lines 5–7);
4. the constraints the extracted patterns must satisfy (line 8).

Since the data source is in relational form, a pre-processing step is needed to
create a set of transactions, which are the input of any frequent pattern mining
system. Transaction are created by grouping ITEMS by the attributes specified
in the TRANSACTIONS clause. For instance, in the query Table 1, transactions
are built groping sales by time id, customer id and store id: this means that we

On Interactive Pattern Mining from Relational Databases 41

<SpqlQuery> ::= (<SqlQuery>| <MineQuery> | <Discretize>)
<MineQuery> ::=<Header>
<SqlQuery>
<MiningDefinition>
<Constraints>
<Header> ::= MINE PATTERNS WITH SUPP >= <Number>
<MiningDefinition> ::= TRANSACTION <Transaction>
 ITEM
<Item>
[ATTRIBUTE <Attribute>]
<Transaction> ::= <Field>[<Separator><Transaction>]
<Item> ::= <Field>[<Separator><Item>]
<Attribute> ::= <Field>[<Separator><Attribute>]
<Field> ::= <String>.<String>
<Constraints> ::= CONSTRAINED BY <Function>
<Function> ::= (<FunctionM>(<Field>)<Op><Number> | <FunctionS>(<Field>)<Op><Set> |

<FunctionN>()<Op><Number>) [<Separator>(Function)]
<FunctionM> ::= (Minimum | Maximum | Range | Variance | Std_Deviation | Median | Average | Sum)
<FunctionS>::= (Subset_of | Superset_of | Attribute_Subset_of | Attribute_Superset_of)
<FunctionN>::= Length
<Op> ::= (>|<|>=|<=)
<Separator> ::= ,

 ::= \n
<Set> ::= <String>[<Separator><Set>]
<Discretize>::= DISCRETIZE <Field> AS <Field>
 FROM <String>
 IN
(<Method>| <Intervals>) BINS
 SMOOTINGH BY <Smethod>
<Method> ::= (EQUALWIDTH | EQUALDEPTH)
<Smethod> ::= (AVERAGE | COUNT | BIN BOUNDARIES)
<Intervals>::= (<Number> <Separator> <Number>)[<Separator> <Intervals>]
<Number> ::= (0-9) [<Number>]
<String> ::= (a-z|A-Z|0-9) [<String>]

Table 2. SPQL formal grammar definition. A portion of SPQL language is devoted to
the discretization task.

consider a unique transaction when we got the same customer in the same store
at the same time. It is worth noting that with this simple mechanism of defining
transactions we can easily handle both the inter-attribute and the intra-attribute
pattern mining cases.

We have chosen a well defined set of classes of constraints. These constraints
have been deeply studied and analyzed in the past few years, in order to find
nice properties that can be used at mining time to reduce the computational
cost. In particular the ConQueSt system is able to deal with anti-monotone,
succinct [13], monotone [3], convertible [16] and loose anti-monotone [7] con-
straints. Such classes include all the constraints based on the aggregates listed
in Table 3.

subset subset supset superset
asubset attributes are subset len length
asupset attributes are superset acount attributes count
min minimum max maximum
range range sum sum
avg average var variance
std standard deviation spv sample variance
md mean deviation med median

Table 3. The set of available constraints.

42 Bonchi et al.

Fig. 3. ConQueSt SPQL Query.

5 The Mining Engine

The last module constitutes the core of the system which mines the transactional
dataset and extract the patterns. The mining core guarantees the scalability and
performance of the system by exploiting efficient mining algorithms and data
reduction techniques coming from the constraint-based mining paradigm.

The ConQueSt mining engine is based on DCI [14], a high performance,
Apriori-like, frequent itemsets mining algorithm, with has the nice feature of
being resource and data aware. It is resource aware, because, unlike many other
algorithms, it performs the first iterations out-of-core, reducing the dataset and
rewriting it directly to the disk. When the dataset is small enough, it is converted
and stored as a vertical bitmap in main memory. It is data aware because its
behavior changes in presence of sparse or dense datasets. It uses a compact
representation in the case of sparse datasets, and detects highly correlated items
to save bitwise works in the case of dense datasets. ConQueSt by inheriting the
same characteristics, is extremely robust and able to effectively mine different
kinds of datasets, regardless of their size.

Although the ConQueSt mining engine adopts a level-wise Apriori-like visit
of the lattice, thanks to its internal vertical bitwise representation of the dataset,
and associated counting strategy, it performs better than other state-of-the-art
algorithms that exploit a depth first visit. Moreover, as we have shown in our
previous works [3, 7], adopting a level-wise strategy has the great advantage of

On Interactive Pattern Mining from Relational Databases 43

allowing the exploitation of different kinds of constraints all together by means
of data-reduction. At each iteration of the mining process, the dataset is pruned
by exploiting the independent data reductions properties of all user-specified
constraints. Our framework, exploits a real synergy of all constraints that the
user defines for the pattern extraction: each constraint does not only play its part
in reducing the data, but this reduction in turns strengthens the pruning power
of the other constraints. Moreover data-reduction induces a pruning of the search
space, which in turn strengthens future data reductions. The orthogonality of
the exploited constraint pushing techniques has a twofold benefit: first, all the
techniques can be amalgamated together achieving a very efficient computation.

Fig. 4. the output of a mining query in the Pattern Browser.

Moreover, since we have precisely identified classes of constraints which share
nice properties, each class has been implemented as an independent module,
which plays its role in precise points of the computation. Each module is then
instantiated on the basis of the specific constraints supplied by the user. Con-
QueSt can be easily extended to cope with new user-defined constraints. In
fact, it is not the constraint itself that performs data and search space reduc-
tions directly, but it is instead the overall framework which exploits constraints
classes properties during the computation. Therefore, in order to define a novel
constraint, and embed it in the computational framework, it is sufficient to com-
municate to the system to which classes (possibly more than one) it belongs.

44 Bonchi et al.

6 Conclusion

Many distinguishing features make ConQueSt a unique system:

Large variety of constraints handled - To the best of our knowledge, Con-
QueSt is the only system able to deal with so many different constraints all
together, and provide the opportunity of easily defining new ones. While some
prototypes for constraint-based pattern discovery exist, they are usually focused
on few kinds of constraints, and their algorithmic techniques can not be easily
extended to other constraints.

Usability - ConQueSt has been devised to fruitfully deal with real-world prob-
lems. The user friendly interface, the pre-processing capabilities and the simple
connectivity to relational DBMS, make it easy for the user to immediately start
to find nuggets of interesting knowledge in her/his data. Modularity and exten-
sibility make the system able to adapt to changing application needs. Efficiency,
robustness and scalability make possible to mine real-world huge datasets.

Robustness and resources awareness - One of the main drawbacks of the
state-of-the art software for pattern discovery, is that it usually fails to mine
large amounts of data due to memory lack. In this sense, ConQueStis robust,
since huge datasets are mined out-of-core until the data-reduction framework
reduces the dataset size enough to move it in-core.

Efficiency - ConQueSt is a high performance mining software. As an Example
consider Figure 5 where we compare execution times of ConQueSt against
FICA and FICM [16], two depth first algorithms, ad-hoc devised to deal with
the avg constraint (the one used in the comparison).

Dataset Retail, supp(X) ≥ 7 ∧ avg(X.price) ≥ m

constraint threshold m
60 80 100 120 140

tim
e

(s
ec

s.
)

0

20

40

60

80

100

120

140
FicA
FicM
ConQueSt

Fig. 5. Performance comparison.

Even tough ConQueSt is already fruitfully usable on real-world problems,
many direction must be explored in the next future: efficient incremental min-

On Interactive Pattern Mining from Relational Databases 45

ing, soft constraints [2], advanced visualization techniques, more complex post-
processing, building global models from the interesting patterns, mining patterns
from complex data such as sequences and graphs. We are continuously develop-
ing new functionalities of ConQueSt.

References

1. http://java.sun.com/products/jdbc/.
2. S. Bistarelli and F. Bonchi. Interestingness is not a dichotomy: Introducing softness

in constrained pattern mining. In Proceedings of the Ninth European Conference on
Principles and Practice of Knowledge Discovery in Databases, pages 22–33, 2005.

3. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proceedings of
ICDM’03.

4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated data
reduction in constrained pattern mining. In Proceedings of PKDD’03.

5. F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern min-
ing. In Proceedings of the Ninth Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’05), Hanoi, Vietnam, 2005.

6. Francesco Bonchi and Claudio Lucchese. On closed constrained frequent pattern
mining. In Proceedings of ICDM’04.

7. Francesco Bonchi and Claudio Lucchese. Pushing tougher constraints in frequent
pattern mining. In Proceedings of The Ninth Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD ’05).May 18 - 20, 2005. Hanoi, Vietnam.

8. Cristian Bucila, Johannes Gehrke, Daniel Kifer, and Walker White. DualMiner:
A dual-pruning algorithm for itemsets with constraints. In Proceedings of ACM
SIGKDD’02.

9. Jiawei Han, Laks V. S. Lakshmanan, and Raymond T. Ng. Constraint-based,
multidimensional data mining. Computer, 32(8):46–50, 1999.

10. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Comm. Of The Acm, 39:58–64, 1996.

11. Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular feature mining
in hiv data. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, August 26-29, 2001, San Francisco, CA,
USA, pages 136–143, 2001.

12. Laks V. S. Lakshmanan, Raymond T. Ng, Jiawei Han, and Alex Pang. Opti-
mization of constrained frequent set queries with 2-variable constraints. SIGMOD
Record, 28(2), 1999.

13. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In Proceedings
of the ACM SIGMOD’98.

14. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and Resource-
Aware Mining of Frequent Sets. In Proc. of the 2002 IEEE Int. Conference on
Data Mining (ICDM’02), pages 338–345, Maebashi City, Japan, December 2002.

15. Jian Pei and Jiawei Han. Can we push more constraints into frequent pattern
mining? In Proceedings of ACM SIGKDD’00.

16. Jian Pei, Jiawei Han, and Laks V. S. Lakshmanan. Mining frequent item sets with
convertible constraints. In (Proceedings of ICDE’01).

17. Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association rules
with item constraints. In Proceedings of ACM SIGKDD’97.

46 Bonchi et al.

Analysis of Time Series Data
with Predictive Clustering Trees

Sašo Džeroski1, Ivica Slavkov1, Valentin Gjorgjioski1, and Jan Struyf2,3

1Dept. of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

2Dept. of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

3Dept. of Biostatistics and Medical Informatics, Univ. of Wisconsin, Madison
1300 University Avenue, Madison, WI 53706, USA

Abstract. Predictive clustering is a general framework that unifies clus-
tering and prediction. This paper investigates how to apply this frame-
work to cluster time series data. The resulting system, Clus-TS, con-
structs predictive clustering trees (PCTs) that partition a given set of
time series into homogeneous clusters. In addition, PCTs provide a sym-
bolic description of the clusters. The paper considers several distance
metrics to measure cluster homogeneity (both quantitative and qualita-
tive). We evaluate Clus-TS on time series data from microarray exper-
iments. Each data set records the change over time in the expression
level of yeast genes in response to a change in environmental conditions.
Our evaluation shows that Clus-TS is able to identify interesting clus-
ters of genes with similar responses. Clus-TS is part of a larger project
where the goal is to investigate how global models can be combined with
inductive databases.

1 Introduction

Predictive clustering is a general framework that combines clustering and pre-
diction [1]. Predictive clustering partitions the data set into a set of clusters such
that the instances in a given cluster are similar to each other and dissimilar to
the instances in other clusters. In this sense, predictive clustering is identical
to regular clustering [7]. The difference is that predictive clustering associates a
predictive model to each cluster. This model assigns instances to clusters and
provides predictions for new instances. So far, decision trees [1, 17] and rule sets
[19] have been used in the context of predictive clustering.

This paper investigates how predictive clustering can be applied to cluster
time series [10]. A time series is an ordered sequence of measurements of a
continuous variable that changes over time. Fig. 1.a presents an example of
eight time series partitioned into three clusters: cluster C1 contains time series
that increase and subsequently decrease, C2 has mainly decreasing time series
and C3 mainly increasing ones. Fig. 1.b shows a so-called predictive clustering
tree (PCT) for this set of clusters. This is the predictive model associated with
the clustering.

47

(a)

C1
C3

C2 (b) Includes motif
AAGAAGAA?

yes no

Includes motif
AAAATTTT?

yes no

C1 C2

C3

p1 = p2 =

p3 =

Fig. 1. (a) A set of time series clustered into three clusters. (b) A predictive clustering
tree associated with this clustering. Each leaf of the tree corresponds to one cluster.

We propose a new algorithm called Clus-TS (Clustering-Time Series) that
constructs trees such as the one shown in Fig. 1.b. Clus-TS instantiates the
general PCT induction algorithm proposed by Blockeel et al. [1] to the task of
time series clustering. This is non-trivial because the general algorithm requires
computing a prototype for each cluster and for most distance metrics suitable
for time series clustering, no closed algebraic form prototype is known.

We evaluate Clus-TS on time series data from microarray experiments [5].
Each data set records the change over time in the expression level of yeast
genes in response to a change in environmental conditions. Besides the time
series, various other data about each gene are available. Here, we consider motifs,
which are subsequences that occur in the amino-acid sequence of many genes.
The motifs appear in the internal nodes of the PCT (Fig. 1.b) and provide a
symbolic description of the clusters. C1 includes, for example, all genes that have
motifs AAGAAGAA and AAAATTTT. This is related to itemset constrained
clustering [15], which clusters vectors of numeric values and constrains each
cluster by means of an itemset.

So far, most research on inductive databases (IDBs) [6, 3] has focused on
local models (i.e., models that apply to only a subset of the examples), such
as frequent item sets and association rules. Clus-TS is part of a larger project
[4, 17, 19] were the goal is to investigate how IDBs can be extended to global
models, such as decision trees and neural networks. Predictive clustering has
been argued to provide a general framework unifying clustering and prediction,
two of the most basic data mining tasks, and is therefore an excellent starting
point for extending IDBs to global models [19]. In particular, we are interested
in developing a system that is applicable to clustering and prediction in many
application domains, including bioinformatics. Extending PCTs to time series
clustering is a step in this direction.

48 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

2 Predictive Clustering Trees

2.1 Prediction, Clustering, and Predictive Clustering Trees

Predictive modeling aims at constructing models that can predict a target prop-
erty of an object from a description of the object. Predictive models are learned
from sets of examples, where each example has the form (D,T), with D being
an object description and T a target property value.

Clustering [7], on the other hand, is concerned with grouping objects into
subsets of objects (called clusters) that are similar w.r.t. their description D.
There is no target property defined in clustering tasks. In conventional cluster-
ing, the notion of a distance (or conversely, similarity) is crucial: examples are
considered to be points in a metric space and clusters are constructed such that
examples in the same cluster are close according to a particular distance metric.
A prototype (prototypical example) may be used as a representative for a clus-
ter. The prototype is the point with the lowest average (squared) distance to all
the examples in the cluster, i.e., the mean or medoid of the examples.

Predictive clustering [1] combines elements from both prediction and clus-
tering. As in clustering, we seek clusters of examples that are similar to each
other, but in general taking both the descriptive part and the target property
into account (the distance metric is defined on D ∪ T). In addition, a predictive
model must be associated to each cluster. The predictive model assigns new in-
stances to clusters based on their description D and provides a prediction for
the target property T . A well-known type of model that can be used to this end
is a decision tree [13]. A decision tree that is used for predictive clustering is
called a predictive clustering tree (PCT, Fig. 1.b). Each node of a PCT repre-
sents a cluster. The conjunction of conditions on the path from the root to that
node gives a description of the cluster. Essentially, each cluster has a symbolic
description in the form of a rule (IF conjunction of conditions THEN cluster),
while the tree structure represents the hierarchy of clusters1.

In Fig. 1, the description D of a gene consists of the motifs that appear in its
sequence and the target property T is the time series recorded for the gene. In
general, we could include both D and T in the distance metric. We are, however,
most interested in the time series part. Therefore, we define the distance metric
only on T . We consider various distance metrics in Section 3.2. The resulting
PCT (Fig. 1.b) represents a clustering that is homogeneous w.r.t. T and the
nodes of the tree provide a symbolic description of the clusters. Note that, while
we are mainly interested in clustering, the tree can also be used for prediction:
use the tree to assign a new instance to a leaf and take the prototype time series
(denoted with pi in Fig. 1.b) of the corresponding cluster as prediction.

2.2 Building Predictive Clustering Trees

Fig. 2 presents the generic induction algorithm for PCTs [1]. It is a variant of
the standard greedy top-down decision tree induction algorithm [13]. It takes
1 This idea was first used in conceptual clustering [12].

Analysis of Time Series Data with Predictive Clustering Trees 49

procedure PCT(I) returns tree

1: (t∗, h∗,P∗) = BestTest(I)
2: if t∗ 6= none then
3: for each Ik ∈ P∗ do
4: treek = PCT(Ik)

5: return node(t∗,
S
k{treek})

6: else
7: return leaf(prototype(I))

procedure BestTest(I)

1: (t∗, h∗,P∗) = (none,∞, ∅)
2: for each possible test t do
3: P = partition induced by t on I
4: h =

P
Ik∈P

|Ik|
|I| Var(Ik)

5: if (h < h∗)∧acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

Fig. 2. The generic PCT induction algorithm.

as input a set of instances I (in our case genes described by motifs and their
associated time series). The main loop searches for the best acceptable test
(motif) that can be put in a node. If such a test t∗ can be found then the
algorithm creates a new internal node labeled t∗ and calls itself recursively to
construct a subtree for each cluster in the partition P∗ induced by t∗ on the
instances. If no acceptable test can be found, then the algorithm creates a leaf
(acceptable is the stop criterion of the algorithm, such as maximum tree depth
or minimum number of instances).

Up till here, the description is no different from that of a standard decision
tree learner. The main difference is the heuristic that is used for selecting the
tests. For PCTs, this heuristic minimizes the average variance in the created
clusters (weighted by cluster size, see line 4 of BestTest). Minimizing variance
maximizes cluster homogeneity. Section 4 discusses how cluster variance can be
defined for time series.

3 Clustering Time Series

3.1 Clustering Algorithms

One of the most widely used clustering approaches is hierarchical clustering, due
to the great visualization power it offers [8, 11]. Hierarchical clustering produces
a nested hierarchy of groups of similar objects, according to a pairwise distance
matrix of the objects. One of the advantages of this method is its generality;
the user does not need to provide any parameters such as the number of clus-
ters. However, its application is limited to small datasets, due to its quadratic
computational complexity. A faster clustering method is k-means [2].

3.2 Distance Measures

Both hierarchical and k-means clustering require that a distance metric is defined
on the instances. Also PCTs require a distance metric to define cluster variance
(Section 4). The most commonly used distance metrics are the Euclidean and
Manhattan distance. These metrics are, however, less appropriate for clustering
time series, because they mainly capture the difference in scale and baseline. In
time series clustering, we are usually more interested in the difference in shape of

50 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

(a) (b)

Fig. 3. (a) Euclidean distance (top) compared to DTW (bottom). (b) A warping path.
(Artwork courtesy of Eamonn Keogh.)

the time series. Below, we discuss three distance metrics that have been proposed
for clustering time series.

Correlation The correlation coefficient r(X,Y) between two time series X and
Y is calculated as

r(X,Y) =
E[(X − E[X]) · (Y − E[Y])]

E[(X − E[X])2] · E[(Y − E[Y])2]
,

where E(V) denotes expectation (i.e., mean value) of V . r(X,Y) measures the
degree of linear dependence between X and Y . It has the following intuitive
meaning in terms of the shapes of X and Y . r close to -1 means that X and Y
have “mirrored” shapes, r close to 0 means that the shapes are unrelated (and
consequently dissimilar), and r close to 1 means that the shapes are similar.
Following this intuitive interpretation of correlation we can define the distance
between two time series as Dr(X,Y) =

√
0.5 · (1− r(X,Y)). Dr has, however,

two drawbacks. First, it is difficult to properly estimate correlation if the number
of observations is small (i.e., a short time series). Second, r can only capture the
linear dependencies between the time series. Two time series that are non-linearly
related will be distant from each other according to this metric.

Dynamic Time Warping Dynamic Time Warping (DTW) [14] can capture
non-linear distortion along the time axis. It accomplishes this by assigning multi-
ple values of one of the time series to a single value of the other. As a result, DTW
corresponds more to human intuition. Fig. 3.a illustrates DTW and compares it
to the Euclidean distance.

DDTW(X,Y) with X = α1, α2, . . . , αI , Y = β1, β2, . . . , βJ is defined based
on the notion of a warping path between X and Y . A warping path is a sequence
of grid points F = f1, f2, . . . , fK on the I × J plane (Fig. 3.b). Let the distance

Analysis of Time Series Data with Predictive Clustering Trees 51

(a) (b)
Diff (q1, q2) increase no-change decrease

increase 0 0.5 1
no-change 0.5 0 0.5
decrease 1 0.5 0

Fig. 4. (a) Two time series X and Y . Dr(X,Y) = 0.694 and Dqual(X,Y) = 0.2. (b)
The definition of Diff (q1, q2).

between two values αik and βjk be d(fk) = |αik − βjk |, then an evaluation
function ∆(F) is given by ∆(F) = 1/(I + J)

∑K
k=1 d(fk)wk. The weights wk are

as follows: wk = (ik − ik−1) + (jk − jk−1), i0 = j0 = 0. The smaller the value of
∆(F), the more similar X and Y are. In order to prevent excessive distortion,
we assume an adjustment window (|ik − jk| ≤ r). DDTW(X,Y) is the minimum
of ∆(F). DDTW can be computed with dynamic programming in time O(IJ).

A Qualitative Distance A third distance metric is the qualitative metric
proposed by Todorovski et al. [18]. It is based on a qualitative comparison of the
shape of the time series. Consider two time series X and Y (Fig. 4.a). We choose
a pair of time points i and j and we observe the qualitative change of the value
of X and Y at these points. There are three possibilities: increase (Xi > Xj),
no-change (Xi ≈ Xj), and decrease (Xi < Xj). Dqual is obtained by summing
the difference in qualitative change observed for X and Y for all pairs of time
points, i.e.,

Dqual(X,Y) =
n−1∑
i=1

n∑
j=i+1

2 ·Diff (q(Xi, Xj), q(Yi, Yj))
N · (N − 1)

with Diff (q1, q2) a function that defines the difference between different qual-
itative changes (Fig. 4.b). Roughly speaking, Dqual counts the number of dis-
agreements in change of X and Y . Dqual does not have the drawbacks of the
correlation based measure. First, it can be computed for very short time series,
without decreasing the quality of the estimate. Second, it captures the similarity
of shape of the time series, regardless of whether their dependence is linear or
non-linear.

4 PCTs for Time Series Clustering

4.1 Computing Cluster Variance

Recall from Section 2.2 that the PCT algorithm requires a measure of cluster
variance in its heuristics. The variance of a cluster C can be defined based on a
distance metric as Var(C) = 1

|C|
∑
X∈C d

2(X, p), with p the prototype of C. To
cluster time series, d should be a distance metric defined on time series, such as

52 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

the ones discussed in the previous section. Next, one should decide on a repre-
sentation for the prototype. We consider three possibilities: (1) the prototype is
a probability distribution over time series, (2) the prototype is an arbitrary time
series, and (3) the prototype is one of the time series from the cluster. Note that
the first representation is the most expressive – it captures most information
about the cluster. Once we have decided on a representation, the prototype can
be computed as p = argminq

∑
X∈C d

2(X, q). In representation (3), the proto-
type can be computed with |C|2 distance computations by trying for q all time
series in the cluster. In the other representations, the space of candidate proto-
types is infinite. This means that either a closed algebraic form for the prototype
is required or that one should resort to approximative algorithms to compute
the prototype. To our knowledge, no closed form prototype is known for any of
the three distance metrics discussed in Section 3.2.

An alternative way to define cluster variance is based on the sum of the
squared pairwise distances (SSPD) between the cluster elements, i.e., Var(C) =

1
|C|2

∑
X∈C

∑
Y ∈C d

2(X,Y). The advantage of this approach is that no prototype
is required. It also requires |C|2 distance computations. This is the same time
complexity as the approach with the prototype in representation (3). Hence,
using the definition based on a prototype is only more efficient if the prototype
can be computed in time linear in the cluster size. This is the case for the
Euclidean distance in combination with as prototype the pointwise average of
the time series. For the other distance metrics, no such prototypes are known.
Therefore, we choose to estimate cluster variance using the SSPD.

4.2 Cluster Prototypes for the Tree Leaves

The PCT algorithm places cluster prototypes in its leaves. Note that these are
only included to be inspected by the end user and do not influence the outcome
of the algorithm in any other way. For these prototypes, we use representation
(3) as discussed above.

5 Analyzing Short Time Series Gene Expression Data

5.1 The Problem

We consider DNA microarray analysis as an interesting area of application for
clustering short time series. When working with microarrays sample size is always
an issue; the time series have around 4-10 observations. Clustering genes by their
time expression pattern makes sense because genes, which are co-regulated or
have a similar function, under certain conditions, will have a similar temporal
profile. Instead of simply clustering the expression time series, and later on
elucidating the characteristics of the obtained clusters, we perform constrained
clustering with PCTs. We implement the method for computing cluster variance
based on the time series distance metrics into the PCT induction system Clus2

2 http://www.cs.kuleuven.be/˜dtai/clus/.

Analysis of Time Series Data with Predictive Clustering Trees 53

[17]; we call the resulting system Clus-TS. The advantage of PCTs is that they
can construct clusters by employing already known features as their descriptors.

5.2 DNA Microarray Time Series

The data that we use for our experiments is from a previous study conducted
by Gasch et al. [5]. The purpose of the study is to explore the changes in gene
expression levels of yeast (Saccharomyces cerevisiae) under diverse environmen-
tal stresses. Various sudden changes in the environmental conditions are tested,
ranging from heat shock to amino acid starvation for a prolonged period of time.
Microarrays are used to measure the gene expression levels of around 5000 genes.
Samples are collected at different time points and different number of times, de-
pending on the particular environmental conditions. The data is log-transformed
according to a time-zero point of yeast cells under normal environmental condi-
tions.

5.3 Frequent DNA Subsequences as Features

We also obtain DNA sequences (ORFs – open reading frames) of yeast genes
from the Stanford database. In order to connect the DNA sequences of yeast
with their corresponding time expression profiles, we mine frequent subsequences
(motifs) with FAVST [9] and use these as features. We select constraints that
generate a reasonable number of motifs. Basically there are three parameters
that we can use as constraints: the frequency of the motif, and the minimum
and maximum motif length. As frequency we consider the number of genes in
which a motif appears, rather than the absolute number of occurrences of the
particular motif. We set the frequency threshold to 25%. The minimum motif
length is 8 nucleotides. No limit was set for the maximum motif length. The
longest motif that satisfies the frequency constraint has 10 nucleotides. We obtain
approximately 300 frequent motifs and use these as features in the PCTs.

5.4 Results

We perform constrained clustering of the short time series by using the fre-
quent motifs as constraints. We construct PCTs with Clus-TS for three datasets:
Amino Acid Starvation, Diauxic Shift and Heat Shock. We set the maximum tree
depth stop criterion to 3. A sample of the output is presented in Fig. 5. It can be
interpreted as: if gene X has/does not have sequence1, sequence2... sequenceN
then its time expression profile will have a signature as predicted by the proto-
type in the corresponding leaf.

Amino Acid Starvation The cluster prototypes obtained for the first data
set, where yeast is exposed to amino acid starvation, are shown in Fig. 6. These
clusters are obtained by using the qualitative distance measure. For the genes
in clusters 1-4 we can see that through time, their functioning is constantly re-
pressed. This is somewhat consistent with the expected result of constant star-
vation, which is reduced cellular activity and growth. The genes in clusters 5-8

54 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

AGAAAAAA = 0

+--yes: AAAAGAAA = 0

| +--yes: TTTTTTTC = 0

| | +--yes: [0.74,0,-0.2,-0.17,-0.03]: 670;

| | +--no: [0.98,0.14,0.23,0.1,-0.37]: 717;

| +--no: AAAAAAAG = 0

| +--yes: [0.35,0.54,-0.29,-0.52,-0.73]: 696;

| +--no: [0.49,0.47,0.33,0.08,0.23]: 659;

+--no: [0.29,-0.3,-0.31,-0.12,-0.21]: 665;

Fig. 5. Sample of the output of the Clus-TS system.

Fig. 6. Plot of cluster prototypes for the Amino Acid Starvation experiment.

show an initial down-regulation and then slowly regress towards their previous
state.

Heat Shock Clusters 5 and 7 (Fig. 7) have a distinct expression profile that
can be interpreted in the sense of the study by Gasch et al. The heat shock
elicits rapid up-regulation of one group of genes and almost symmetrical down-
regulation of another group. This is only a transitional state after which the
cell adapts to the new condition and then the expression levels of the up/down
regulated genes slowly regress to their normal levels.

Diauxic Shift The yeast cells exhibit a similar, although a less coherent
response compared to starvation conditions. Two large clusters (clusters 1 and
3, Fig. 8), are down-regulated exhibiting a similarity with starvation, but all

Fig. 7. Plot of cluster prototypes for the Heat Shock experiment.

Analysis of Time Series Data with Predictive Clustering Trees 55

Fig. 8. Plot of cluster prototypes for the Diauxic Shift experiment.

other clusters (except the up-regulation of genes in cluster 4) do not show a
coherent response.

6 Future Work

A drawback of computing cluster variance based on the SSPD is that its com-
putational complexity is quadratic in the cluster size. As a result, the current
approach does not scale well to large data sets. In future work, we plan to try
methods to approximate cluster variance. For example, one could compute vari-
ance using the pointwise average of the time series (the exact prototype for the
Euclidean distance) as approximate prototype for the other distance metrics.
This would allow one to compute an approximate measure of cluster variance
in O(|C|) time. Another way of accomplishing the same is to sample |C| pairs
of time series from the cluster and approximate the SSPD based only on these
pairs. In future work, we plan to assess how these and other approximations
compare to the exact definitions of variance.

It would furthermore be interesting to extend the experimental evaluation.
This includes testing more datasets (both microarray and other types of short
time series data), working with domain experts to interpret the clusterings, and
using more types of descriptive attributes (e.g., gene ontology terms). The knowl-
edge gained form these experiments can potentially be used to annotate genes
of currently unknown function.

We plan to incorporate different types of constraints in our models. This is
important in the context of inductive databases because the inductive queries
might include various types of constraints on the resulting PCTs. Our current
system already includes accuracy and size constraints [17]. In further work we
wish to investigate constraints more specific to clustering and in particular clus-
tering of time series.

Another direction of research is investigating how PCTs and in particu-
lar PCTs for clustering time series can be integrated tightly with inductive
databases. Fromont and Blockeel [4] and Slavkov et al. [16] present ongoing
work in this direction.

56 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

7 Conclusion

This paper provides a proof-of-concept that predictive clustering trees (PCTs)
can be used to analyze time series data. The main advantage of using PCTs
over other clustering algorithms, such as hierarchical clustering and k-means, is
that PCTs cluster the time series and provide a description of the clusters at
the same time. This allows one to relate various heterogeneous data types and
to draw conclusions about their relations, as we have shown in our experimental
evaluation.

Using PCTs for time series data is non-trivial because for many appropriate
distance metrics (correlation based, dynamic time warping, and a qualitative
metric), no closed algebraic form for the prototype is known. Therefore, we
propose to compute cluster variance based on the sum of pairwise distances
between the cluster elements. This method has not been used previously in
predictive clustering and is one of the contributions of the paper.

Our approach combines local models (motifs of DNA) with global models
(PCTs). The local models are used to describe clusters and can be used to
predict cluster membership. Such a combination of models is a typical feature
required from an inductive database: a first query is used to mine the local
models and a second query returns global models based on these local models.

Further work includes improving the computational efficiency of the ap-
proach, providing a more extensive evaluation, incorporating various constraints
suitable to clustering, and integrating the approach further with inductive
databases.

Acknowledgments Jan Struyf is a postdoctoral fellow of the Fund for Scientific Re-

search of Flanders (FWO-Vlaanderen). This work was supported by the IQ project

(IST-FET FP6-516169).

References

1. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In Proc. of the 15th Int’l Conference on Machine Learning, pages 55–63, 1998.

2. P. S. Bradley and U.M. Fayyad. Refining initial points for k–means clustering. In
Proc. of the 15th Int’l Conference on Machine Learning, pages 91–99, 1998.

3. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, 2002.

4. E. Fromont and H. Blockeel. Integrating decision tree learning into inductive
databases. In 5th Int’l Workshop on Knowledge Discovery in Inductive Databases,
2006. To appear.

5. A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein,
and P. Brown. Genomic expression program in the response of yeast cells to
environmental changes. Mol. Biol. Cell., 11:4241–4257, Dec 2000.

6. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

7. L. Kaufman and P.J. Rousseeuw, editors. Finding groups in data: An introduction
to cluster analysis. John Wiley & Sons, 1990.

Analysis of Time Series Data with Predictive Clustering Trees 57

8. E. Keogh and S. Kasetty. On the need for time series data mining benchmarks:
A survey and empirical demonstration. In Proc. of the 8th ACM SIGKDD Int’l
Conference on Knowledge Discovery and Data Mining, pages 102–111, 2002.

9. S. D. Lee and L. De Raedt. An efficient algorithm for mining string data-bases
under constraints. In 3th Int’l Workshop on Knowledge Discovery in Inductive
Databases: Revised Selected and Invited Papers, volume 3377 of LNCS, pages 108–
129. Springer, 2004.

10. T. W. Liao. Clustering of time series data – a survey. Pattern Recognition, 38:1857–
1874, 2005.

11. R. N. Mantegna. Hierarchical structure in financial markets. In European Physical
Journal, pages 193–197, 1999.

12. R.S. Michalski and R.E. Stepp. Learning from observation: conceptual cluster-
ing. In Machine Learning: an Artificial Intelligence Approach, volume 1. Tioga
Publishing Company, 1983.

13. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann, 1993.

14. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spo-
kenword recognition. In IEEE Transaction on Acoustics, Speech, and Signal Pro-
cessing, volume ASSP-26 of LNAI, pages 43–49, 1978.

15. J. Sese, Y. Kurokawa, M. Monden, K. Kato, and S. Morishita. Constrained clusters
of gene expression profiles with pathological features. Bioinformatics, 20:3137–
3145, 2004.

16. I. Slavkov, S. Džeroski, J. Struyf, and S. Loskovska. Constrained clustering of gene
expression profiles. In Conference on Data Mining and Data Warehouses (SiKDD
2005) at the 7th Int’l Multi-conference on Information Society 2005, pages 212–215,
2005.

17. J. Struyf and S. Džeroski. Constraint based induction of multi-objective regression
trees. In 4th Int’l Workshop on Knowledge Discovery in Inductive Databases: Re-
vised Selected and Invited Papers, volume 3933 of LNCS, pages 222–233. Springer,
2005.

18. Ljupčo Todorovski, Bojan Cestnik, Mihael Kline, Nada Lavrač, and Sašo Džeroski.
Qualitative clustering of short time-series: A case study of firms reputation data.
In ECML/PKDD’02 workshop on Integration and Collaboration Aspects of Data
Mining, Decision Support and Meta-Learning, pages 141–149. Helsinki University
Printing House, August 2002.

19. B. Ženko, S. Džeroski, and J. Struyf. Learning predictive clustering rules. In 4th
Int’l Workshop on Knowledge Discovery in Inductive Databases: Revised Selected
and Invited Papers, volume 3933 of LNCS, pages 234–250. Springer, 2005.

58 Sašo Džeroski, Ivica Slavkov, Valentin Gjorgjioski and Jan Struyf

Integrating Decision Tree Learning into

Inductive Databases

Élisa Fromont and Hendrik Blockeel

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200 A, 3001 Heverlee, Belgium,

{elisa.fromont, hendrik.blockeel}@cs.kuleuven.be

Abstract. In inductive databases, there is no conceptual difference be-
tween data and the models describing the data: both can be stored and
queried using some query language. The approach that adheres most
strictly to this philosophy is probably the one proposed by the ADReM
group from Antwerp: in that approach, models are stored in relational
tables and queried using standard SQL. The approach has been described
in detail for association rule discovery. In this work we study how de-
cision tree induction could be integrated in that approach. We propose
a representation format for decision trees similar to the one proposed
earlier for association rules, and queryable using standard SQL; and we
present a prototype system in which part of the needed functionality is
implemented. In the process, we identify a number of important differ-
ences between discovery of global models (such as decision trees) and
local models (such as association rules), which force us to re-evaluate
the motivation for the approach.

1 Introduction

An Inductive DataBase (IDB) [1] is a database that contains not only data, but
also generalisations (patterns and models) valid in the data. In an IDB, ordinary
queries can be used to access and manipulate data, while inductive queries can
be used to generate (mine), manipulate, and apply patterns.

Two approaches have been studied to represent and query patterns and mod-
els in IDBs. First, depending on the models that will be stored, special-purpose
storage and query language can be created. In this context, several researchers
have proposed extensions to the popular relational query language, SQL, as a
natural way to express such mining queries. For example, in [2,3], the authors
have presented some extensions to SQL especially designed for mining associ-
ation rules. In [4,5] the authors extend this approach to other models such as
classification rules but they do not give any clues about how to actually stored
those models in the IDB. In [6], De Raedt has proposed a entirely new query
language based on logic and especially suited for relational data.

The second approach consists of storing the patterns and models in a straight-
forward way, using the usual relational database tables provided by any Rela-
tional Database Management System (RDBMS) and the standard SQL language

59

to represent, store and query the new generalisations made on the data. This
approach is being investigated by members of the ADReM group in Antwerp1

for frequent itemsets and association rules mining; we will refer to it in the rest
of this paper as “the ADReM approach”. This approach has a number of advan-
tages over other approaches with respect to extensibility and flexibility. In this
paper we investigate whether and how it can also be used for learning global
models such as decision trees, and to what extent its advantages carry over to
this new setting.

In Section 2 we present the basic ideas behind the ADReM approach and show
how they are applied in the context of association rule discovery. In Section 3,
we discuss how the same approach could be used for decision tree learning; in
particular, Subsection 3.5 describes a prototype that is being implemented and
shows some examples of queries that can already be used. Section 4 presents the
perspectives of this work and we conclude in Section 5.

2 The ADReM Approach to Association Rule Mining

The basic idea behind the ADReM approach is that models are stored in a
relational database in the same way that other information is stored: as a col-
lection of tuples in relations or views. This idea is applicable to a broad range of
models, but up till now it has been studied mostly in the context of association
rules [7]. Below, we briefly review the proposed representation for association
rules, the conceptual view on association rule mining that it leads to, and some
implementation issues. More information on this can be found in [8].

2.1 The Conceptual View

Sets

isid item

i1 p4

i1 p6

i1 p5

.

i2 red

i2 green

.

i3 p4

i3 1

.

Supports

isid support

i0 80

i1 60

i2 40

i3 80

.

Rules

rid isida isidc isid conf

r1 i2 i1 i5 60%

r2 i1 i3 i6 40%

.

Fig. 1. Storing association rules

1 {toon.calders,bart.goethals,adriana.prado}@ua.ac.be

60 Élisa Fromont and Hendrik Blockeel

Consider a set of transactions D. The set is often represented as a table with
one row per transaction and one boolean attribute per item, but conceptually it
can also be represented as a binary relational table with, for each transaction,
a set of tuples of the form (tid,item), where tid is the transaction identifier and
item is an item name. The crucial difference between the first and second repre-
sentation is that in the second, the item names are values instead of attributes
(hence a query can return an item name as part of its result set). Note that
we are talking about the conceptual representation here — how the transaction
table is really implemented is not important.

Itemsets can be represented in a similar way. Figure 1 shows the ADReM rep-
resentation of frequent itemsets and association rules in an IDB. The Sets table
represents all itemsets. A unique identifier (isid) is associated to each itemset
(we then write that itemset as IS(isid)) and, for each itemset of size n, there are
n rows (isid, itemj)1≤j≤n where itemj is the jth item of IS(isid). The Supports

table stores the support of each itemset. The Rules table stores the association
rules computed. For each rule X ⇒ Y , there is a row (rid, isida, isidc, isid, conf)
in the IDB where rid is the association rule identifier, isida (resp. isidc) is the
identifier of the itemset used in the antecedent (resp. consequent) of the rule,
IS(isid) = IS(isida) ∪ IS(isidc) and conf is the confidence of the rule.

With this representation, finding association rules subject to certain con-
straints can be done easily using an SQL query. For instance, the query

select rid

from rules r

where r.conf > 0.8 and

r.isidc in (select isid from sets where item = ‘‘red’’)

finds all association rules with a confidence of at least 0.8 that contain the item
“red” in the consequent of the rule.

2.2 The Implementation

Conceptually, the database has tables that contain all itemsets and all association
rules. But in practice, obviously, the amount of such patterns can be huge and
it may be impossible to store them all. This problem is solved by keeping these
tables virtual. As far as the user is concerned, those tables or virtual mining

views contain all the tuples needed to answer the user query. In reality, each
time such a table is queried, a efficient data mining algorithm is triggered by
the DBMS to populate those views just sufficiently for the DBMS to be able to
answer the query.

More specifically, the procedure works as follows: given a query, an execution
plan is created; on the highest level this is just a relational algebra tree with
tables as leaves. Standard query optimisation procedures push projection and
selection conditions as deeply down into the this tree as possible, thus reducing
the size of intermediate results and making the overall computation more effi-
cient. In the context we are discussing here, the leaves may be the result of a data

Integrating Decision Tree Learning into Inductive Databases 61

mining process, and the projection/selection conditions may be pushed further
down into the data mining process. Calders et al. [8] describe this optimisation
process in detail.

2.3 Advantages of the Approach

The ADReM approach has several advantages over other approaches to inductive
querying. The main point is that the data mining processes become much more
transparent. From the user’s point of view, tables with itemsets and rules etc.
exist and can be queried like any other table. How these tables are filled (what
data mining algorithm is run, with what parameters, etc.) is transparent. The
user does not need knowledge about the many different implementations that
exist and when to use what implementation, nor does she need to familiarise
herself with new special-purpose query languages. The whole approach is also
much more declarative: the user specifies conditions on the models that should
result from the mining process, not on the mining process itself.

In the light of all these advantages, it seems useful to try a similar approach
for other data mining tasks as well. In this paper, we focus on decision tree
induction.

3 Integration of Decision Tree Learning

A decision tree aims at classifying instances by sorting them down the tree from
the root to a leaf node that provides the classification of the instance [9]. Each
node in the tree specifies a test of some attributes of the instance, and each
branch descending from that node corresponds to one of the possible values
for these attributes. In this paper, for simplicity reasons, we focus on decision
trees with boolean attributes. Each attribute can then be seen as an item in a
transaction table and transactions are instances to classify. Note that due to the
well-known correspondence between trees and rule sets, a tree can be represented
as a set of association rules: with each leaf corresponds one association rule,
with as antecedent the conditions on the path from the root to that leaf and
as consequent the majority class in that leaf. However, while the representation
with one rule per leaf is interesting for prediction purposes, the structure of the
tree gives more information: e.g., the higher an attribute occurs in the tree, the
more important it is for the prediction. Such information is lost if we represent
a tree as a set of association rules with each rule corresponding to one leaf. We
will therefore choose a slightly different representation.

In this section we first discuss the motivations for integrating decision trees
into IDB and we propose a representation of decision trees that will enable the
user to make queries using a large number of different constraints.

3.1 Motivations

To see the motivation behind using the ADReM approach for decision tree learn-
ing, consider the current practice in decision tree induction. Given a data set,

62 Élisa Fromont and Hendrik Blockeel

one runs a decision tree learning algorithm, e.g., C4.5 [10], and obtains one par-
ticular decision tree. It is difficult to characterise this decision tree in any other
way than by describing the algorithm. The tree is generally not the most ac-
curate tree on the training set, nor the smallest one, nor the one most likely
to generalise well according to some criterion; all one can say is that the learn-
ing algorithm tends to give relatively small trees with relatively high accuracy.
The algorithm usually has a number of parameters, the meaning of which can
be described quite precisely in terms of how the algorithm works, but not in
terms of the results it yields. In summary, it is difficult to describe exactly what
conditions the output of a decision tree fulfils without referring to the algorithm.

This situation is quite different from discovery of association rules, where the
user imposes some constraints on the rules to be found (typically confidence and
support) and the algorithm yields the set of all rules fulfilling these conditions.
A precise mathematical description of the result set is very easy to give, whereas
a similar mathematical description of the tree returned by a decision tree learner
is quite impossible to give.

Are the people using decision tree learners interested in having a precise
specification of the properties of the tree they find? Aren’t they just interested
in finding some tree with good generalisation properties and good generalisation
power, without being interested in exactly how this is defined? This may be often
the case, but certainly not always. Many special versions of decision tree learners
have been developed: some use a cost function on attributes and try to find trees
that combine high accuracy with low cost of the attributes they contain [11];
some take different misclassification costs into account when building the tree
[12]; some do not aim for the highest accuracy but for balanced precision-recall
[13]; etc. The fact that researchers have developed such learning algorithms shows
that users sometimes do have more specific desiderata than just high predictive
accuracy.

By integrating decision tree learning into inductive databases, we hope to
arrive at an approach for decision tree learning that is just as precise as asso-
ciation rule learning: the user specifies what kind of trees she wants, and the
system looks for such trees.

Here are some queries the user might be interesting in:

1. find {T |size(T) < 8 ∧ acc(T) > 0.8 ∧ cost(T) < 70}
2. find one element in {T |size(t) < 8 ∧ acc(t) > 0.8 ∧ cost(t) < 70}
3. find {T |size(T) < 8 ∧ (∀T ′|size(T ′) < 8 ⇒ acc(T ′) < acc(T))}
4. find {T |T = (t(X, t(Y, l(+), l(−)), t(Z, l(), l()),

X ∈ [A,B,C], Y ∈ [D,E], acc(T) > 0.8}

In the first query, the user asks for all decision trees T of size less than 8
nodes, of global accuracy higher than 0.8 and of cost lower than 70 (assuming
that each item has a given cost). To describe the tree of interest, other criteria
such as the number of misclassified examples (error), the accuracy computed for
a particular class, the precision, the recall, the area under the roc curve (auc)
for two-class problems might also be interesting.

Integrating Decision Tree Learning into Inductive Databases 63

Since the user is interested in all the trees that fulfil his criteria, the query
can not be answered by triggering a standard greedy algorithm. Such a query
implies the use of a decision tree learner that can perform an exhaustive search
in the search space of all possible trees that fulfil these constraints. The number
of such trees might be huge and this query might not be tractable. Note that
without constraints, the number of decision trees that can be constructed from
a database containing d attributes and a possible values for each attribute has∏d−1

i=0
(d − 1)ai

as a lower bound. As in the association rules case presented in
section 2 we assume that the queries are constrained enough so that a realistic
number of models are looked for and stored. The kind of constraints required to
satisfy this criterion is still an open question.

In the second query, the user asks for one tree that fulfils some criteria. This
tree can normally be computed by a regular greedy tree learner, though for some
greedy learners there may be no guarantee that they find a valid tree if one
exists.

With the third query, the user is looking for the set of trees of size lower
than 8 with maximal accuracy. Again, this means that the search space of trees
of size lower than 8 must be exhaustively covered to ensure that the accuracy of
the tree is maximal.

In the last query, the user gives syntactic constraints on the shape of the tree
and on some attributes that must be used in the tree.

3.2 Representing Trees in a Relational Database

The virtual mining view that holds the predictive models should be precise
enough to enable the user to ask SQL queries as easily as possible without having
to design new keywords for the SQL language. Figure 2 shows the database
framework we propose for integrating decision trees into IDB. We use the table
presented in section 2 to represent the data. We assume in the following that all
the data-dependent measures (such as accuracy) are referring to these data. The
decision trees generated from the data D can be stored in the same database as
D and as the possible association rules computed from D, by using the following
schema:

1. The Tree sets table is inspired by the Sets table created for association rules.
We choose to represent a node of a tree by the itemset that characterises
the examples that belong to this node. For instance, if the itemset is AB,
examples in this node must fulfil the criteria A = true and B = false. In
association rules, only the presence of certain items is required: there is no
condition that specifies the absence of an item. To cope with association
rules derived from trees such that the one corresponding to the leaf L2 of
the tree given in the figure 2 (AB ⇒ −), a sign attribute is thus added to
the table to indicate wether the presence (1) or the absence (0) of an item
is required.
As in the Sets table, a unique identifier (isid) is associated to each itemset
and, for each itemset of size n, there are n rows (isid, itemj , signj)1≤j≤n

64 Élisa Fromont and Hendrik Blockeel

Trees charac

treeID size error accuracy auc cost ...

T1

T2

. .

Tree sets

isid item sign

i0 ∅ 1

i1 A 1

i2 A 1

i2 B 1

l1 A 1

l1 B 1

l1 + 1

i3 A 1

i3 B 0

l2 A 1

l2 − 1

l2 B 0

l3

l4

.

all trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

.

T1 L2 1

.

T1 L3 1

.

T1 L4 1

T2

T3

.

greedy trees

treeID isid leaf

T1 i1 0

T1 i2 0

T1 L1 1

.

T1 L2 1

.

T1 L3 1

.

T1 L4 1

Fig. 2. Storing decision trees

where itemj is the jth item of the itemset identified by isid and signj is its
sign. i0 stands for the empty itemset.

2. The all trees and greedy trees tables give a precise description of each tree in
terms of the itemsets from Tree sets. A unique identifier (treeID) is associ-
ated to each tree and each itemset corresponding to a node in this tree is as-
sociated to his treeID. A boolean attribute leaf differentiates internal nodes
of the tree (leaf = 0) from the leaves (leaf = 1). At each level k of the tree,
nodes are composed by k-itemsets. The all trees table is supposed to hold
all possible trees, whereas the greedy trees table holds an implementation-
dependent subset of all trees (more specifically those trees that might be
found by greedy learners under certain conditions and constraints).

3. The Trees charac table gives all the characteristics of the tree the user
might be interested in. For each tree identified by treeID corresponds a
row (size, error, accuracy, cost, auc) that are the computed characteristics
of the tree (see section 3.1).

Integrating Decision Tree Learning into Inductive Databases 65

3.3 Querying Decision Trees Using Virtual Views

The structure created is sufficient to make some interesting queries on the data,
provided that the data mining algorithms connected to the database compute
the different characteristics of the association rules or of the trees that hold
in the IDB. The following queries are examples of what can be done on such
database :

SELECT trees_charac.* FROM trees_charac, all_trees

WHERE trees_charac.treeID = all_trees.treeID AND

accuracy > 0.8 and size < 8;

This query selects the characteristics of all trees that can be computed from the
database with accuracy higher than 0.80 and size lower than 8.

SELECT treeID FROM trees_charac, greedy_trees

WHERE trees_charac.treeID = greedy_trees.treeID

and trees_charac.error < 10;

This query selects a greedy-computed tree with an error lower than 10.

SELECT trees_charac.* FROM trees_charac, all_trees

WHERE trees_charac.treeID = all_trees.treeID

AND accuracy = (select max(accuracy) from trees_charac);

This query selects the characteristics of the tree with maximum accuracy from
all the possible computed trees.

SELECT treeID FROM greedy_trees, tree_sets

WHERE greedy_trees.isid = tree_sets.isid

AND (tree_sets.isid

IN (select isid from tree_sets where item = ‘‘A’’));

This query selects a greedy-computed tree which contains the item “A”.

3.4 Querying Decision Trees Using Itemsets

The framework is flexible enough to allow queries with constraints on metrics
that were not included in the virtual view from the beginning. The user can
create his own virtual mining view using information on the support of the
itemsets. We illustrated this with the notions of accuracy and size.

The accuracy of a specific leaf in the tree can be computed from the support
of the itemsets that belong to the leaf [14] using the formula (on figure 2):

acc(L1) =
support(+AB)

support(AB)
. . . acc(L2) =

support(−AB)

support(AB)
.

The mean accuracy of each leaf is the global accuracy of the tree. This can be
computed without any information on the actual structure of the tree using the

66 Élisa Fromont and Hendrik Blockeel

formula (on figure 2):

acc(T) =
acc(L1) ∗ support(AB) + acc(L2) ∗ support(AB) + . . .

support(∅)

=
support(+AB) + support(−AB) + . . .

support(∅)
.

Some itemsets do not have any support associated with because they include
“negative” item. In this case, some formula such as:

support(AB−) = support(A−)− support(AB−)

can be used to compute the support of all itemsets from the support of the
“positive” itemsets [15].

These formulas can be translated into the SQL language to compute all the
characteristics in the tree charac table. We consider that, as in Section 2, we
have a Supports table that countains the support of all itemsets.

acc(T1)= SELECT SUM(Supports.support) /

(SELECT Supports.support FROM Supports

WHERE Supports.isid = ‘‘I0’’) as accuracy

FROM Supports, all_trees

WHERE Supports.isid = all_trees.isid

AND all_trees.treeID = T1

GROUP BY all_trees.treeID

size(T1) = SELECT COUNT(*) FROM all_trees

WHERE all_trees.treeID = T1

3.5 Implementation

An Apriori-like algorithm for association rule mining was connected to a stan-
dard Oracle Database by the ADReM group to use constraints such as the sup-
port of the itemsets, the confidence of the rules and the presence or absence of
some item in the resulting association rules. We connected to the same system
a decision tree learner named Clus. Clus is a predictive clustering tree learner
developed by Jan Struyf that uses a standard recursive top-down induction algo-
rithm to construct decision trees. First, a large tree is built based on the training
data then the tree is pruned according to some user constraints. The constraints
described by [16] were implemented in this generic and efficient system [17] so
it currently supports constraints on the size of the tree (number of nodes), on
the error of the tree and on the syntax of the tree. The error measure used for
classification trees learning is the number of incorrectly predicted classes. The
syntactic constraints allow the user to introduce expert knowledge in the tree
by specifying a partial tree, i.e, a subtree including the root and so the most
important attributes of the tree. Other constraints discussed in section 3.1 have
to be implemented in the system. For the moment, queries such as the following
one can be used:

Integrating Decision Tree Learning into Inductive Databases 67

SQL> select * from trees_charac where err < 8 and sz= 9;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

0 9 3 0,98

1 rows selected.

SQL>select * from trees_charac where err < 8 and sz <= 8;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

1 7 4 0,973

1 rows selected.

SQL> select * from trees_charac where sz< 4;

TREE_ID SZ ERROR ACCURACY

------- -- ----- --------

2 3 50 0,667

1 rows selected.

All the trees computed with the different queries could be stored in a “log”
table that can be queried just as easily. After the session above, this table would
contain:

TREE_ID SZ ERROR ACCURACY

---------- ---------- ---------- ----------

0 9 3 0,98

1 7 4 0,973

2 3 50 0,667

4 Perspectives

There are many open problems related to the proposed approach. For instance,
for efficiency reasons, the system should be able to look at the “log” table that
contains the previously computed trees to check if the answer of the current query
has not already been computed before triggering a data mining algorithm. If the
user asks for all trees of size less than 8 and then later for all trees of size less than
6, the results computed from the first query should be reusable for the second
query. The “log” table should then also contain the previously asked queries
together with the computed trees, which raises the question of how to store
the queries themselves in the database. This entire problem, called interactive

mining because it refers to the reutilisation of queries posed within the same
working session, has been investigated for association rules [18], but not yet for
decision tree learning.

Another type of problem occurs if the database has been modified between
two queries. Is it possible to use some previously computed predicted models to

68 Élisa Fromont and Hendrik Blockeel

compute more efficiently new predictive models from a modified database? This
problem known has incremental learning has already been studied for decision
trees [19] when a new example is added to the database.

These functionalities has to be integrated into the prototype along with the
extension of the framework to multi-valued attributes.

Besides, as predictive models ultimately aim at predicting the class of new
examples, it would be interesting to include that possibility in the IDB. This is
currently non-trivial in our approach, it requires complicated queries.

Generally, the limitations of our approach with respect to what can be ex-
pressed, and how difficult it is to express it, are still unclear. With respect to
query complexity, it may be useful to consider an extended relational model
where trees are an abstract data type with a number of predefined operators,
instead of being stored as sets of tuples.

Another perspective will be the integration of other predictive models such as
Bayesian Network in the same IDB framework already designed for association
rules and decision trees mining. The user might be interested in query such
as “find the Bayesian network of size 3 with maximal probability”. Again, a
structure to store Bayesian networks has to be designed and algorithm than can
build Bayesian networks under constraints has to be implemented.

5 Conclusion

In this paper we have studied how decision tree induction could be integrated in
inductive databases following the ADReM approach. Considering only boolean
attributes, the representation of trees in a relational database is quite similar to
that of association rules, with this difference that the conjunctions describing
nodes may have negated literals whereas itemsets only contain positive liter-
als. A more important difference is that a decision tree learner typically returns
one tree that is “optimal” in some not-very-precisely-defined way, whereas the
IDB approach lends itself more easily to mining approaches that return all re-
sults fulfilling certain well-defined conditions. It is therefore useful to introduce a
greedy trees table in addition to the all trees table, where queries to greedy trees

trigger execution of a standard tree learner and queries to all trees trigger ex-
ecution of an exhaustive tree learner. We have described a number of example
queries that could be used, presented a preliminary implementation that handles
such queries, and discussed open questions and perspectives of this work.

Acknowledgement

Hendrik Blockeel is a post-doctoral fellow of the Fund For Scientific Research
of Flanders (FWO-Vlaanderen). This work is funded through the GOA project
2003/8, “Inductive Knowledge bases”, and the FWO project ”Foundations for
inductive databases”. The authors thank Jan Struyf, Sašo Džeroski and the
ADReM group for many interesting discussions, and in particular Jan for his help
with the Clus system and Adriana Prado for her help with the IDB prototype.

Integrating Decision Tree Learning into Inductive Databases 69

References

1. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Comm.
Of The Acm 39 (1996) 58–64

2. Meo, R., Psaila, G., Ceri, S.: An extension to sql for mining association rules. Data
Min. Knowl. Discov. 2 (1998) 195–224

3. Imielinski, T., Virmani, A.: Msql: A query language for database mining. Data
Min. Knowl. Discov. 3 (1999) 373–408

4. Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In: KDID. (2005) 124–138

5. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query
language for relational databases. In: SIGMOD’96 Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMKD’96), Montreal, Canada (1996)

6. De Raedt, L.: A logical database mining query language. In Cussens, J., Frisch,
A., eds.: ILP00. Volume 1866 of LNAI., SV (2000) 78–92

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (1994) 487–499

8. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational
databases. In: PKDD: 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases. LNCS, Springer (2006) To appear

9. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
11. Turney, P.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic

decision tree induction algorithm. Journal of Artificial Intelligence Research 2

(1995) 369–409
12. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive.

In: Knowledge Discovery and Data Mining. (1999) 155–164
13. Xiaobing, W.: Knowledge representation and inductive learning with xml. In: WI

’04: Proceedings of the Web Intelligence, IEEE/WIC/ACM International Confer-
ence on (WI’04), Washington, DC, USA, IEEE Computer Society (2004) 491–494

14. Pance, P., Dzeroski, S., Blockeel, H., Loskovska, S.: Predictive data mining us-
ing itemset frequencies. In: Zbornik 8. mednarodne multikonference Informacijska
druzba. Ljubljana: Institut ”Jozef Stefan”, Informacijska druzba (2005) 224–227

15. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Proceed-
ings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery. Volume 2431 of LNCS., Springer-Verlag (2002) 74–85

16. Garofalakis, M.N., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Min. Knowl. Discov. 7 (2003) 187–214

17. Struyf, J., Dzeroski, S.: Constraint based induction of multi-objective regression
trees. In: KDID. (2005) 222–233

18. Goethals, B., den Bussche, J.V.: On supporting interactive association rule mining.
In: Proceedings of the Second International Conference on Data Warehousing and
Knowledge Discovery. Volume 1874 of LNCS., Springer (2000) 307–316

19. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4 (1989)
161–186

70 Élisa Fromont and Hendrik Blockeel

An Integrated Multi-task Inductive Database and
Decision Support System VINLEN: An Initial

Implementation and First Results

Kenneth A. Kaufman, Ryszard S. Michalski, Jaroslaw Pietrzykowski, and
Janusz Wojtusiak

Machine Learning and Inference Laboratory, George Mason University
{kaufman, michalski, jarek, jwojt}@mli.gmu.edu

Abstract. A brief review of the current research on VINLEN multitask induc-
tive database and decision support system is presented. VINLEN integrates a
wide range of knowledge generation operators that given input data and/or
knowledge create new knowledge. The central operator of VINLEN is a natural
induction module that generates hypotheses from data in the form of attribu-
tional rules. Such rules are easy to understand and interpret because they di-
rectly correspond to equivalent natural language descriptions. This operator is
illustrated by an application to discovering relationships between lifestyles and
diseases in men. The conclusion outlines plans for future research.

1 Introduction

This paper briefly reviews our current research on the development of VINLEN, a
multitask inductive database and decision support system. In VINLEN, inductive in-
ference capabilities are integrated with a database and a knowledge base. Standard
relational database operators, implemented through an SQL client, are combined with
knowledge generation operators (KGOs) using Knowledge Query Language (KQL).

KGOs operate on knowledge segments, consisting of a combination of one or more
relational tables linked to relevant knowledge component in the VINLEN knowledge
base. A KGO takes as input knowledge segments, and generates an output knowledge
segment.

Two important capabilities are required from knowledge generation operators:
(1) that their results are in a form easy to understand and interpret by users, (2) that
KGO-generated results are in forms that can be accepted as input by compatible KGO
operators. A compatible operator is the one that can use that knowledge if it is submit-
ted to it.

The central knowledge generation operator in VINLEN is implemented in the natu-
ral induction module that creates inductive generalizations of or discovers patterns in
data in forms that appear natural to people, by employing attributional calculus as a
representation language [8]. Attributional calculus is a logic system that combines
elements of propositional, predicate, and multiple-valued logics for facilitating induc-

71

tive inference. It serves both as an inference system and as knowledge representation
formalism.

Attributional descriptions, the primary form of knowledge representation in
VINLEN, are more expressive than conventional decision rules that use only <attrib-
ute-relation-value> conditions. Attributional rules use conditions that may involve
more than one attribute and relate them to a subset of values or to other attributes.
Section 3 gives more details on this topic.

2 An Overview of VINLEN

Research on the VINLEN system grows out of our previous efforts on the develop-
ment of INLEN, an early system deeply integrating databases and inductive learning
capabilities for the purpose of multistrategy learning, data mining, and decision sup-
port e.g. [9]. The advantages such integration and of inductive databases are now be-
ing widely recognized, as evidenced by this workshop and earlier efforts e.g. [2, 4, 5].

VINLEN represents a step beyond the approach to inductive databases taken by
some authors, namely, it not only integrates database and a knowledge base contain-
ing selected results of inductive inference (using the capabilities of database), but also
is a host of inductive and deductive inference operators, as well as various other data
analysis and pattern discovery capabilities. It supports inferences resulting from a se-
ries of applications of its operators according to a script in knowledge query language
(KQL). This way it can automatically conduct experiments that involve creating, stor-
ing and managing of the relevant data and knowledge laying the groundwork for
higher levels of sophistication in inductive databases functionality based, for example,
on a meta-learning approach. Therefore, it provides a powerful tool for conducting
experiments and may avoid some pitfalls resulting from too limited exploration of
data or from the parameters of the methods [1].

An important concept in VINLEN is that of a knowledge system that consists of a
database, which can be local or distributed, and a knowledge base. The term “knowl-
edge system” signifies a system integrating a database and a relevant knowledge base
to support knowledge mining and knowledge application to the problem at hand. A
knowledge base contains handcrafted knowledge and results of applying a range of
knowledge generation and management operators to data in the database and/or to
prior knowledge in the knowledge base.

The prior knowledge contains definitions of the domains and types of attributes in
the database, data constraints, value hierarchies of structured attributes, known rela-
tionships binding attributes, and any other background knowledge that users may
have represented in the system. During the operation of an inductive database, the
knowledge base is populated by newly generated data descriptions, hypothetical pat-
terns, data classifications, statistical information, results from hypothesis testing, etc.

The data in each VINLEN knowledge system are stored internally in relational ta-
bles, as are other system components. Most of the entities utilized by the system,
such as events (a.k.a. examples), datasets, attributes, attribute domains, rule condi-
tions, rules, rulesets, and classifiers, are presented in individual tables in the database,
and connected via relations.

72 Kaufman et al.

Events are stored in an event table, which is populated either from external source,
manually by the user, or by a VINLEN operator, for example, by an operator that se-
lects most representative events from the training dataset. In addition to regular attrib-
ute values, events may contain meta-values, such as “unknown”, “irrelevant” and
“not-applicable” which require a special handling during the learning or knowledge
application processes [10]. The “unknown” values, denoted by a “?”, represent cases
when a regular attribute value exists, but is unknown for some reason, the “irrele-
vant” and “non-applicable” values represent domain knowledge provided by the user.

Each event may carry additional meta-information, such as event significance and
event frequency. The event significance is a value assigned to an event by the user or
by the program to represent some form of importance of the event for problem at
hand. For different types of problems it may have a different meaning. For example,
in concept learning, it may represent the typicality of the event; in optimization via
evolutionary computation, it represents the value of the fitness function for that event.
Event frequency is a number of occurrences of the given event in the training or test-
ing data.

Prior knowledge and knowledge generated by VINLEN are stored in a hierarchy of
relational tables that can be used by KGOs. Rule-based classifiers learned from the
data are in the form of families of attributional rulesets. Their components, such as se-
lectors (conditions), complexes (conjunctions of conditions), exceptions, single rules,
rulesets, and alternative rulesets are considered as individual entities, and as such are
represented by separate tables connected by relations. Parameter sets for individual
operators are stored in method-specific tables. This storage methodology facilitates
an efficient access to all components of the classifiers through a standard SQL inter-
face.

A Target Knowledge Specification is a generalization of a database query; specifi-
cally, it is a user’s request for a knowledge segment to be created by the system,
based on the data and knowledge already present. The core of VINLEN consists of
Inductive Database Operators, which call upon various programs for knowledge gen-
eration (e.g., rule learning, conceptual clustering, target data generation, optimization,
etc.), as well as data management. These operators can be invoked by a user directly,
or through KQL.

To provide a general overview and easy access to all VINLEN operators, we have
developed a visual interface that consists of VINLEN views at different abstraction
levels. Fig. 1 presents the most abstract view of the main panel of VINLEN.

The central part contains icons for managing database (DB), knowledge base (KB),
and knowledge systems (KS). By clicking on DB, KB, or KS, the user can select and
access database, knowledge base, and knowledge system that are available to
VINLEN. Each of the rectangular buttons allows the user to access a family of
knowledge generation operators of a given type.

For example, the button “Learn Rules” allows one to access operators that learn
ordinary attributional rules, rules with exceptions, multi-head rules, and rule-trees. A
similar multi-function role have other buttons, such as “Access attributes”, “Improve
rules”, ”Learn trees”, “Create clusters”, “Access scout”, “Define dataset”, etc.

All operators are integrated through Knowledge Query Language (KQL) that is an
extension of the SQL database query language. In addition to conventional data man-
agement operators, KQL includes operators for conducting inductive and deductive

The Inductive Database and Decision Support System VINLEN 73

inference, statistical analysis, application and visualization of learned knowledge, and
various supportive functions. KQL allows a user to define knowledge scouts that are
KQL scripts for automatically executing a series of knowledge generation operators in
search for knowledge of interest to the user.

Fig. 1. The front panel of VINLEN (a black and white version of the original)

Due to a wide range of capabilities and the types of operators it involves, many of
which are unique to VINLEN, KQL is very different from other high-level languages
developed for data exploration, many of which have been Prolog-based.

Among the non-Prolog-based languages, M-SQL [6] is philosophically somewhat
similar to KQL in that it builds upon the SQL data query language. It integrates in it,
only one inductive operator, in contrast to VINLEN that adds to it a wide range of op-
erators. In [7], the inductive the M-SOL operator is used to analyze users’ internet ac-
tivity. KQML [3] allows the user to query for specific pieces of knowledge, but it
does not support multiple discovery operators and the abstract templates that are
available in KQL.

A somewhat related to KQL is also a query language presented in [2] that has the
capability for specifying the type of knowledge to search for, e.g., rules with the con-
fidence level above a given threshold. Being a Prolog-based language, it has the capa-
bility for directly expressing relational descriptions, but does not involve such a wide
range and versatile operators that VINLEN does. While VINLEN can also search for
rules with a confidence above a certain threshold, it can also seek rules with maxi-
mum confidence.

74 Kaufman et al.

3 VINLEN Operators

As mentioned earlier, VINLEN aims at providing user with an extensive set of differ-
ent knowledge generation and data management operators, and with a language,
KQL, to develop scouts for executing sequences of these operators. Such scouts can
thus automatically perform knowledge discovery experiments.

Basic functionality of VINLEN allows the user to browse, edit, copy, delete, print,
define, import and export data and knowledge. More advanced functions support data
selection, attribute evaluation and selection, attribute discretization, and estimation of
parameter settings for operators to achieve a desired result, ,and a range of learning
and knowledge discovery functions. The rule learning module is based on the AQ21
program for natural induction [15].

As mentioned earlier, VINLEN’s knowledge representation is based on attribu-
tional calculus [8]. The basic unit of knowledge representation is an attributional rule
in the form:

Consequent <= Premise |_ Exception,

where Consequent, Premise, and Exception are conjunctive descriptions, or com-
plexes, which are conjunctions of attributional conditions. An attributional condition
(a.k.a. selector) can be viewed as equivalent to a simple natural language statement.
Its general form is:

[L relsym R],
where:

L (the left side or referent) contains one attribute, or several attributes joined by

“ &” or “ v” , called internal conjunction and disjunction, respectively. L can also be
one of the standard derived attributes: count, max, min, and avg.

R (the right side or reference) is an expression specifying a value or a subset of val-

ues from the domain of the attribute(s) in L. If the subset contains values of a nominal
(unordered) attribute, they are joined by the symbol “ v” (called internal disjunction);
if the subset contains consecutive values of a linear attribute, they are represented by
joining the extreme values by operator “ ..” , called range. R can also be a single attrib-
ute of the same type as the attribute or attributes in L.

relsym is a relational symbol from the set: {=,

���
>, � , <, � }. Relational operators

{=,
�
} apply to all types of attributes. Relations {>, � , <, � } apply only to linear at-

tributes.

Brackets [], may be omitted, if their omission causes no confusion. If brackets are

used, the conjunction of two selectors is usually written as their concatenation. If an
attribute, x, is binary, the condition [x = 1] can be written simply as the literal x, and
[x = 0] as the literal ~x. Thus, if attributes are binary, attributional conditions reduce
to propositional literals.

The Inductive Database and Decision Support System VINLEN 75

An attributional condition is called basic, if its left side, L, is a single attribute, the
relational symbol is one of { =, >, � , <, � }, and the right side, R, is a single value;
otherwise, it is called extended.

Examples of basic conditions:

[x1 = 1], alternatively, x1 (The value x1 is 1)
[x1 = 0], alternatively, ~ x1 (The value x1 is 0, the alternative notations assume that
x1 is binary)
[color = red] (The color is red)
[length < 5”] (The length is smaller than 5 inches)
[temperature � 32° C] (The temperature is greater than or equal to 32° C)
[tools={mallet, knife}] (The tools are mallet and knife)

Examples of extended conditions:
[color = red v blue v green] (The color is red, blue or green)
[blood-type

�
 A] (The blood type is not A)

[length= 4..12] (The length is between 4 and 12, inclusive)
[color

�
 green] (The color is not green)

[height > width] (The height is greater than the width)
[height v width < 3 m] (The height or the width is smaller than 3 m)
[height & width � 7 cm] (The height and width are both at least 7 cm)
[height & width < length] (Both the height and the width are smaller than the length)

Operators “ v” and “ &” when applied to non-binary attributes or to their values are

called internal disjunction and conjunction, respectively.

A set of attributional rules with the same consequent (e.g., indicating the same
class) is called an attributional ruleset. A set of attributional rulesets whose conse-
quent spans all values of an output (dependent variable) is called an attributional
classifier.

The design of VINLEN includes the following learning and inference capabilities:
� Learning complete and consistent attributional classifiers
� Optimizing attributional classifiers
� Discovering strong patterns in data (attributional rules that represent strong regu-

larities but may be partially inconsistent with the data)
� Generation of multi-head attributional rules (with more than one attribute in the

consequent of a rule);
� Deriving optimized decision trees from attributional classifiers e.g. [13];
� Applying attributional classifiers to data, and evaluating the results in the case of

testing data;
� Discovering conceptual clusters in data e.g. [11];
� Determining the optimum of a given function using non-Darwinian evolutionary

computation [14];

76 Kaufman et al.

To facilitate the interpretability and understandability of learned knowledge,
VINLEN includes operators that visualize knowledge in the form of concept associa-
tion graphs and generalized logic diagrams e.g. [12].

It should be mentioned that although all the knowledge generation operators de-
scribed above have been developed, implemented, and tested individually, so far only
some of them have been fully integrated in VINLEN. The process of integration of so
many operators, and developing an appropriate graphical user interface for each them
is a very labor-intensive effort, and it will take some time before it is completed.

4 Knowledge scouts

As mentioned earlier, VINLEN operators (learning and inference operators, as well as
data and knowledge management operators) can be arranged into knowledge scouts.
A knowledge scout is a KQL script that for automatically applying various operators
in search of target knowledge in the database. The target knowledge is defined ab-
stractly by specifying properties of pieces of knowledge that are of interest to the
given user (or a specified group of users). Simple examples of target knowledge
specification are “ Determine a general classifier from the dataset DS, that maximizes
the criterion of attributional classifier ACQ” , or “ Determine a conceptual clustering of
the dataset DS that optimizes the clustering quality criterion CCQ.”

Here is very simple example of a knowledge scout in the form of a one-line KQL

script:

CREATE RULES GDP-Classifier TYPE CC FROM TR1 USING AQ21

WHERE decision is “GDP”, searchscope = 3

This script instructs VINLEN to apply a rule learning operator to the data set TR1,
using the AQ21 module with the searchscope parameter set to 3 (the width of the
beam search used in the learning module). Since settings of other parameters are not
specified, the default values will be used. The goal of applying the learning operator
is to learn a consistent and complete (CC) classifier for the output attribute “ GDP”
The classifier is to be stored in the knowledge base under the name “ GDP-Classifier.”

In order to synthesize target knowledge, a knowledge scout may consist of many
lines of KQL code that request an execution of a sequence of KQL operators involv-
ing data, intermediate results, previously learned knowledge and background knowl-
edge. The latter may include the types of attributes, their domains (including hierar-
chies of structured attributes), problem constraints, and rules for constructing derived
attributes. At every step of running knowledge scout, an application of one operator
may depend on the results of previous operators. This is possible due to the inclusion
of tests of properties of data and knowledge components, of the results of their appli-
cation to data, and the use of a branching operator in KQL. For example, a condition
for repeating a learning operator may be:

“ If the average consistency of attributional rules in the classifier is smaller that .95
or the number of rules in the classifier is greater than 10, the accuracy of the classifier

The Inductive Database and Decision Support System VINLEN 77

on the testing data is smaller than .93, and the number of learning runs is smaller than
50, repeat the run with the searchscope 15, otherwise, return the results.”

5 An Example of Application to a Medical Domain

This section illustrates an application of the learning module of VINLEN to a problem
of determining relationships between lifestyles and diseases of non-smoking males,
aged 50-65, and displaying results in the form of a concept association graph. The
study employed a database from the American Cancer Society that contained 73,553
records of responses of patients to questions regarding their lifestyles and diseases.
Each patient was described in terms of 32 attributes: 7 lifestyle attributes (2 Boolean,
2 numeric, and 3 rank), and 25 Boolean attributes denoting diseases. The learning op-
erator determined patterns (approximate attributional rules) characterizing the rela-
tionships between 25 diseases and the lifestyles and other diseases. Fig. 2 shows one
example of discovered patterns (HBP stands for High Blood Pressure, Rotundity is a
discretized ratio of the patient’s weight to his height and YinN denotes the years the
patient lived in the same neighborhood).

 [Arthritis = Present] <=
[HBP=present: 432, 1765] &
[Education<=college_grad: 940, 4529] &
[Rotundity>=low: 1070, 5578] &
[YinN > 0: 1109, 5910]: p = 325, n = 1156; P = 1171, N = 6240

Fig. 2. A pattern for Arthritis discovered in the medical database.

The two numbers listed within each condition after the colon denote the numbers
of positive and negative examples in the training set covered by that condition, re-
spectively; p and n, are the numbers of positive and negative examples in the training
set covered by the entire rule, respectively; and P and N are the numbers of positive
and negative examples in the training data for that class (here, Arthritis), respectively.

The pattern in Fig. 2 defines a set of conditions under which patients had arthritis
relatively frequently. These conditions include the presence of high blood pressure, no
education beyond college, more than “ very low” rotundity, and the patient’s having
lived in his current neighborhood at least one year. In the training data, about 16% of
the patients had arthritis (P / (P + N)), but among patients satisfying the pattern, the
percentage grows to 22% (p / (p + n)). The most significant factor in the pattern is
high blood pressure, which by itself has consistency of about 19%. The discovered
patterns were visualized using a concept association graph. Fig. 3. presents one such
graph that was automatically generated using the CAG visualization operator.

78 Kaufman et al.

Fig. 3. Concept Association Graph representing seven patterns in the medical database.

The thickness of links in CAG reflects the condition’ s consistency, and its annota-
tion (+, –, v, or ^) indicates the type of the relationship between condition and conse-
quent. Specifically, “ +” and “ -“ represent a positive and negative monotonic relation-
ship, respectively; and “ v” and “ ^” indicate that extreme values of the attribute
indicate higher or lower values of the consequent attribute, respectively.

While no claim is made as to the medical validity and significance of these results,
they indicate, however, that the developed methodology is potentially capable of dis-
covering important patterns in the data and representing them in an understandable
way, either as qualitative relationships in the form of association rules, or graphically
via a concept association graph.

6 Summary and Future Work

The paper described current research on VINLEN, a large-scale system for integrating
operators for data management, data analysis, knowledge discovery for classification,
clustering and optimization, for data and knowledge visualization, knowledge testing
and application, and decision support. The underlying knowledge representation is
based on attributional calculus that combines features of propositional, predicate, and
multi-valued logic for the purpose of facilitating knowledge discovery.
Individual operators can be invoked by the user individually, via graphical user inter-
face, or automatically, via a knowledge scout, which is a script in high level language,
called knowledge query language (KQL). KQL is an extension of SQL that adds to it
various knowledge generation, management, visualization and application operators.

The system is still under development. In this paper, we focused on two central op-
erators already implemented in VINLEN, namely, the operator for learning attribu-
tional classifiers, and the operator for visualizing such classifiers using concept asso-

The Inductive Database and Decision Support System VINLEN 79

ciation graphs. These operators have been illustrated by an example in medical
domain.

Other operators, such conceptual clustering, intelligent target data and generation,
function optimization via Learnable Evolution, and database manipulation through an
SQL client have been partially implemented. Various statistical operators, modules
for applying knowledge to data for generating decisions, and a mechanism for creat-
ing knowledge query language scripts to guide data exploration tasks are under devel-
opment.

The main contribution of the VINLEN project is the development of a general
methodology for a tight integration of a database, knowledge base, data management
operators, knowledge generation operators, a knowledge query language, and a user-
oriented visual interface. Research on VINLEN aims at achieving methodological ad-
vances and for developing new tools for knowledge mining in databases, and for the
decision support based on the knowledge discovered.

Acknowledgments

Research described here has been conducted in the Machine Learning and Inference
Laboratory at George Mason University and has been supported in part by the Na-
tional Science Foundation under Grants No. IIS-9906858 and IIS-0097476, and in
part by the UMBC/LUCITE #32 grant. In a few cases, presented results have been
obtained under earlier funding from the National Science Foundation, the Office of
Naval Research, or the Defense Advanced Research Projects Agency. The findings
and opinions expressed here are those of the authors, and do not necessarily reflect
those of the above sponsoring organizations.

References

1. Blockeel, H.: Experiment Databases: A Novel Methodology for Experimental Research. In:
Bonchi, F., Boulicaut, J-F. (eds.): Knowledge Discovery in Inductive Databases. 4th Interna-
tional Workshop, KDID’05, Revised, Selected and Invited Papers. Lecture Notes in Com-
puter Science, Vol. 3933. Springer-Verlag, Berlin Heidelberg New York (2006) 72-85

2. De Raedt, L.: A Perspective on Inductive Databases. ACM SIGKDD Explorations Newslet-
ter, Vol. 4, Issue 2. ACM Press, New York, NY, USA (2002) 69-77

3. Finin, T., Fritzson, R., McKay, D. and McEntire, R.: KQML as an Agent Communication
Language. Proceedings of the Third International Conference on Information and Knowl-
edge Management, CIKM’ 94. ACM Press (1994) 456-463

4. Flach, P. and Dzeroski, S.: Editorial: Inductive Logic Programming is Coming of Age. Ma-
chine Learning, Vol. 44, Number 3. Springer Netherlands (2001) 207-209

5. Hätönen, K. Mika Klemettinen, M., Miettinen, M.: Remarks on the Industrial Application of
Inductive Database Technologies. In: Boulicaut, J-F., De Raedt, L., Mannila, H. (eds.): Con-
straint-Based Mining and Inductive Databases, European Workshop on Inductive Databases
and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected
Papers. Lecture Notes in Computer Science, Vol. 3848. Springer (2005) 196-215

6. Imielinski, T., Virmani, A. and Abdulghani, A.: DataMine: Application Programming Inter-
face and Query Language for Database Mining. In: Proceedings of the 2nd International

80 Kaufman et al.

Conference on Knowledge Discovery and Data Mining, KDD’ 96. AAAI Press (1996) 256-
261

7. Meo, R., Vernier,F., Barreri, R., Matera, M. and Carregio, D.: Applying a Data Mining
Query Language to the Discovery of Interesting Patterns in WEB Logs. Workshop on Induc-
tive Databases and Constraint Based Mining, Hinterzarten, Germany (2004)

8. Michalski, R.S.: ATTRIBUTIONAL CALCULUS: A Logic and Representation Language
for Natural Induction. Reports of the Machine Learning and Inference Laboratory, MLI 04-
2, George Mason University, Fairfax,, VA (April 2004)

9. Michalski, R.S., Kerschberg, L., Kaufman, K. Ribeiro, J.: Mining For Knowledge in Data-
bases: The INLEN Architecture, Initial Implementation and First Results. Intelligent Infor-
mation Systems: Integrating Artificial Intelligence and Database Technologies, Vol. 1, No. 1
(August 1992) 85-113

10. Michalski, R.S., Wojtusiak, J.: Reasoning with Meta-values in AQ Learning. Reports of the
Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA (June
2006)

11. Seeman, W.D., Michalski, R. S.: The CLUSTER3 System for Goal-oriented Conceptual
Clustering: Method and Preliminary Results. Proceedings of The Data Mining and Informa-
tion Engineering Conference, Prague, Czech Republic, July 11-13, 2006.

12. Sniezynski, B., Szymacha, R., Michalski, R. S.: Knowledge Visualization Using Optimized
General Logic Diagrams. Proceedings of the Intelligent Information Processing and Web
Mining Conference, IIPWM 05, Gdansk, Poland, June 13-16, 2005.

13. Szydlo, T., Sniezynski, B., Michalski, R. S.: A Rules-to-Trees Conversion in the Inductive
Database System VINLEN. Proceedings of the Intelligent Information Processing and Web
Mining Conference, IIPWM 05, Gdansk, Poland, June 13-16, 2005.

14. Wojtusiak, J., Michalski, R. S.: The LEM3 Implementation of Learnable Evolution Model
and Its Testing on Complex Function Optimization Problems. Proceedings of Genetic and
Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-12, 2006.

15. Wojtusiak, J., Michalski, R. S., Kaufman, K., Pietrzykowski, J.: Multitype Pattern Discov-
ery Via AQ21: A Brief Description of the Method and Its Novel Features. Reports of the
Machine Learning and Inference Laboratory, MLI 06-2, George Mason University, Fairfax,
VA (2006)

The Inductive Database and Decision Support System VINLEN 81

82 Kaufman et al.

Frequent Pattern Mining and Knowledge Indexing
Based on Zero-suppressed BDDs

Shin-ichi Minato and Hiroki Arimura

Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan.

Abstract. Frequent pattern mining is one of the fundamental techniques for
knowledge discovery and data mining. In the last decade, a number of efficient
algorithms for frequent pattern mining have been presented, but most of them
focused on just enumerating the patterns which satisfy the given conditions,
and it was a different matter how to store and index the result of patterns
for efficient inductive analysis. In this paper, we propose a fast algorithm of
extracting all/maximal frequent patterns from transaction databases and si-
multaneously indexing the result of huge patterns using Zero-suppressed BDDs
(ZBDDs). Our method is fast as competitive as the existing state-of-the-art al-
gorithms, and not only enumerating/listing the patterns but also indexing the
output data compactly on main memory. After mining, the result of patterns
can efficiently be analyzed by using algebraic operations. The data structures
of BDDs have already been used in VLSI logic design systems successively,
but our method will be the first practical work of applying the BDD-based
techniques for data mining area.

1 Introduction

Frequent pattern mining is one of the fundamental techniques for knowledge discovery
and data mining. Since the introduction by Agrawal et al.[1], the frequent pattern
mining and association rule analysis have been received much attentions from many
researchers, and a number of papers have been published about the new algorithms
or improvements for solving such mining problems[7, 9, 19]. However, most of such
pattern mining algorithms focused on just enumerating or listing the patterns which
satisfy the given conditions and it was a different matter how to store and index the
result of patterns for efficient inductive data analysis.

In this paper, we propose a fast algorithm of extracting all/maximal frequent pat-
terns from transaction databases, and simultaneously indexing the result of huge pat-
terns on the computer memory using Zero-suppressed BDDs (ZBDDs). Our method
does not only enumerate/list the patterns but also indexes the output data compactly
on main memory. After mining, the result of patterns can efficiently be analyzed by
using algebraic operations.

The key of our method is to use BDD (Binary Decision Diagrams) -based data
structure for representing sets of patterns. BDDs[4] are graph-based representation of
Boolean functions, now widely used in VLSI logic design and verification area. For the
data mining applications, it is important to use Zero-suppressed BDDs (ZBDDs)[12], a
special type of BDDs, which are suitable for handling large-scale sets of combinations.
Using ZBDDs, we can implicitly enumerate combinatorial item set data and efficiently
compute set operations over the ZBDDs. The preliminary idea of using ZBDDs is
presented in our last workshop paper[15], and after that we developed a fast pattern
mining algorithm based on this data structure. Our work will be the first practical
result of applying the BDD-based technique for data mining area.

For a related work, FP-tree[9] receives a great deal of attention because it supports
fast manipulation of large-scale item set data using compact tree structure on the main

83

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.

Fig. 1. BDD and binary tree: F = (a ∧ b) ∨ c .

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a⊕ b
F3 = b
F4 = a ∨ b

Fig. 2. Shared multiple BDDs.

memory. Our method is a similar approach to handle sets of combinations on the main
memory, but will be more efficient in the following points:

– ZBDDs are a kind of DAGs for representing item sets, while FP-tree is a tree
representation. In general, DAGs can be more compact than trees.

– Our method uses ZBDDs not only as internal data structure but also as output
data structure. It provides an efficient knowledge index for consequent inductive
analysis.

Our mining algorithm is based on a recursive depth-first search of the database
represented by ZBDDs. We show two versions of algorithms, generating all frequent
patterns and generating maximal ones. Experimental result shows that our method
is fast as competitive as the existing state-of-the-art algorithms, such as ones based
on FP-trees. Especially for the cases where the ZBDD nodes are well shared, expo-
nential speed up are observed comparing to the existing algorithms based on explicit
table/tree representation.

Recently, the data mining methods are often discussed in the context of Inductive
Databases[3, 11], the integrated processes of knowledge discovery. In this paper, we
also show a number of examples of the post processing after frequent pattern mining.
We place the ZBDD-based method as a basis of integrated discovery processes to effi-
ciently execute various operations finding interest patterns and analyzing information
involved in large-scale combinatorial item set databases.

2 BDDs and Zero-suppressed BDDs

Here we briefly describe the basic techniques of BDDs and Zero-suppressed BDDs for
representing sets of combinations efficiently.

2.1 BDDs

BDD (Binary Decision Diagram) is a directed graph representation of the Boolean
function, as illustrated in Fig. 1(a). It is derived by reducing a binary tree graph
representing recursive Shannon’s expansion, indicated in Fig. 1(b). The following re-
duction rules yield a Reduced Ordered BDD (ROBDD), which can efficiently represent
the Boolean function. (see [4] for details.)

– Delete all redundant nodes whose two edges point to the same node. (Fig. 3(a))
– Share all equivalent sub-graphs. (Fig. 3(b))

ROBDDs provide canonical forms for Boolean functions when the variable order is
fixed. Most researches on BDDs are based on the above reduction rules. In the follow-
ing sections, ROBDDs will be referred to as BDDs (or ordinary BDDs) for the sake
of simplification.

84 Shin-ichi Minato and Hiroki Arimura

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Fig. 3. Reduction rules of ordinary BDDs

0

0

x
1

Jump

f f

Fig. 4. ZBDD reduction rule.

As shown in Fig. 2, a set of multiple BDDs can share thier subgraphs each other
under the same fixed variable ordering. In this way, we can handle a number of Boolean
functions simultaneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly represent many practical Boolean
functions including AND, OR, parity, and arithmetic adder functions. Using Bryant’s
algorithm[4], we can efficiently construct a BDD for the result of a binary logic op-
eration (i.e. AND, OR, XOR), for given a pair of operand BDDs. This algorithm is
based on hash table techniques, and the computation time is almost linear to the data
size unless the data overflows the main memory. (see [13] for details.)

Based on these techniques, a number of BDD packages have been developed in
1990’s and widely used for large-scale Boolean function manipulation, especially pop-
ular in VLSI CAD area.

2.2 Sets of Combinations and ZBDDs

BDDs are originally developed for handling Boolean function data, however, they can
also be used for implicit representation of sets of combinations. Here we call “sets of
combinations” for a set of elements each of which is a combination out of n items.
This data model often appears in real-life problems, such as combinations of switching
devices(ON/OFF), fault combinations, and sets of paths in the networks.

A combination of n items can be represented by an n-bit binary vector, (x1x2 . . . xn),
where each bit, xk ∈ {1, 0}, expresses whether or not the item is included in the combi-
nation. A set of combinations can be represented by a list of the combination vectors.
In other words, a set of combinations is a subset of the power set of n items.

A set of combinations can be mapped into Boolean space by using n-input vari-
ables for each bit of the combination vector. If we choose any one combination vector,
a Boolean function determines whether the combination is included in the set of com-
binations. Such Boolean functions are called characteristic functions. For example,
the left side of Fig. 5 shows a truth-table representing a Boolean function (abc)∨ (bc),
but also represents a set of combination {ab, ac, c}. Using BDDs for characteristic
functions, we can implicitly and compactly represent sets of combinations. The logic
operations AND/OR for Boolean functions correspond to the set operations intersec-
tion/union for sets of combinations. By using BDDs for characteristic functions, we
can manipulate sets of combinations efficiently. They can be generated and manip-
ulated within a time roughly proportional to the BDD size. When we handle many
combinations including similar patterns (sub-combinations), BDDs are greatly re-
duced by node sharing effect, and sometimes an exponential reduction benefit can be
obtained.

Zero-suppressed BDD (ZBDD)[12, 14] is a special type of BDDs for efficient
manipulation of sets of combinations. ZBDDs are based on the following special re-
duction rules.

– Delete all nodes whose 1-edge directly points to the 0-terminal node, and jump
through to the 0-edge’s destination, as shown in Fig. 4.

– Share equivalent nodes, similarly to ordinary BDDs.

Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs 85

Fig. 5. Effect of ZBDD reduction rule.

Notice that we do not delete the nodes whose two edges point to the same node,
which used to be deleted by the original rule. The zero-suppressed deletion rule is
asymmetric for the two edges, as we do not delete the nodes whose 0-edge points to
a terminal node. It is proved that ZBDDs are also gives canonical forms as well as
ordinary BDDs under a fixed variable ordering.

Here we summarize the features of ZBDDs.

– In ZBDDs, the nodes of irrelevant items (never chosen in any combination) are au-
tomatically deleted by ZBDD reduction rule. In ordinary BDDs, irrelevant nodes
still remain and they may spoil the reduction benefit of sharing nodes. An exam-
ple is shown in Fig. 5. In this case, the item d is irrelevant, but ordinary BDD
for characteristic function Fz(a, b, c) and Fz(a, b, c, d) become different forms. On
the other hand, ZBDDs for Fz(a, b, c) and Fz(a, b, c, d) become identical forms
and completely shared.

– Each path from the root node to the 1-terminal node corresponds to each com-
bination in the set. Namely, the number of such paths in the ZBDD equals to
the number of combinations in the set. In ordinary BDDs, this property does not
always hold.

– When no equivalent nodes exist in a ZBDD, that is the worst case, the ZBDD
structure explicitly stores all items in all combinations, as well as using an explicit
linear linked list data structure. Namely, (the order of) ZBDD size never exceeds
the explicit representation. If more nodes are shared, the ZBDD is more compact
than linear list.

Table 1 shows the most of primitive operations of ZBDDs. In these operations, ∅,
1, P.top are executed in a constant time, and the others are almost linear to the size
of graph. We can describe various processing on sets of combinations by composing
of these primitive operations.

2.3 ZBDD-based Database Analysis
In this paper, we discuss the method of manipulating large-scale transaction databases
using ZBDDs. Here we consider binary item set databases, each record of which holds
a combination of items chosen from a given item list. Such a combination is called a
tuple (or a transaction).

For analyzing those large-scale transaction databases, frequent pattern mining[2]
and maximum frequent pattern mining[5] are especially important and they have been
discussed actively in the last decade. Since the introduction by Agrawal et al.[1], a
number of papers have been published about the new algorithms or improvements
for solving such mining problems[7, 9, 19]. Recently, graph-based methods, such as

86 Shin-ichi Minato and Hiroki Arimura

Table 1. Primitive ZBDD operations

“∅” Returns empty set. (0-termial node)
“1” Returns the set of only null-combination. (1-terminal node)
P .top Returns the item-ID at the root node of P .
P .offset(v) Subset of combinations not including item v.
P .onset(v) Gets P − P .offset(v) and then deletes v from each combination.
P .change(v) Inverts existence of v (add / delete) on each combination.
P ∪Q Returns union set.
P ∩Q Returns intersection set.
P −Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

Table 2. Statistics of typical benchmark data.

Data name #I #T total|T | avg|T | avg|T |/#I
T10I4D100K 870 100,000 1,010,228 10.1 1.16%
mushroom 119 8,124 186,852 23.0 19.32%
pumsb 2,113 49,046 3,629,404 74.0 3.50%
BMS-WebView-1 497 59,602 149,639 2.5 0.51%
accidents 468 340,183 11,500,870 33.8 7.22%

FP-growth[9], receive a great deal of attention, since they can quickly manipulate
large-scale tuple data by constructing compact graph structure on the main memory.

ZBDD-based method is a similar approach to handle sets of combinations on
the main memory, but will be more efficient because ZBDDs are a kind of DAGs
for representing item sets, while FP-growth uses a tree representation for the same
objects. In general, DAGs can be more compact than trees.

Another important point is that our method uses ZBDDs not only as internal
data structure but also as output data structure. The most of existing state-of-the-
art pattern mining algorithms focused on just enumerating or listing the patterns
which satisfy the given conditions, and it was a different matter how to store and
index the result of patterns for efficient data analysis. In this paper, we present a fast
algorithm of pattern mining and simultaneously indexing the result of huge patterns
compactly on the main memory for consequent analysis. The results can be analyzed
flexibly by using algebraic operations implemented on ZBDDs.

In addition, we show here why we use ZBDDs instead of ordinary BDDs in this
application. Table 2 lists the basic statistics of typical data mining benchmark data[7].
#I shows the number of items used in the data, #T is the number of tuples included
in the data, avg|T | is the average number of items per tuple, and avg|T |/#I is the
average appearance ratio of each item. From this table, we can observe that the
item’s appearance ratio is very small in many cases. This observation means that
we often handle very sparse combinations in many practical data mining/analysis
problems, and in such cases, the ZBDD reduction rule is extremely effective. If the
average appearance ratio of each item is 1%, ZBDDs are possibly more compact than
ordinary BDDs, up to 100 times. In the literature, there is a first report by Jiang et
al.[10] applying BDDs to data mining problems, but the result seems not excellent
due to the overhead of ordinary BDDs. We must use ZBDDs in stead of ordinary
BDDs for success in many practical data mining/analysis problems.

3 ZBDD-based pattern mining algorithm
In this section, we describe our new algorithm, ZBDD-growth, which extract all fre-
quent patterns from a given transaction database using ZBDDs.

3.1 Tuple-Histograms and ZBDD vectors
A Tuple-histogram is the table for counting the number of appearance of each tuple
in the given database. An example of tuple-histogram is shown in Fig. 6. This is just
a compressed table of the database to combine the same tuples appearing more than
once into one line with the frequency.

Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs 87

Fig. 6. Example of tuple-histogram. Fig. 7. ZBDD vector for tuple-histogram.

Our pattern mining algorithm manipulates ZBDD-based tuple-histogram repre-
sentation as the internal data structure. Here we describe how to represent tuple-
histograms using ZBDDs. Since ZBDDs are representation of sets of combinations, a
simple ZBDD distinguishes only existence of each tuple in the database. In order to
represent the numbers of tuple’s appearances, we decompose the number into m-digits
of ZBDD vector {F0, F1, . . . , Fm−1} to represent integers up to (2m − 1), as shown
in Fig. 7. Namely, we encode the appearance numbers into binary digital code, as F0
represents a set of tuples appearing odd times (LSB = 1), F1 represents a set of tuples
whose appearance number’s second lowest bit is 1, and similar way we define the set
of each digit up to Fm−1.

In the example of Fig. 7, The tuple frequencies are decomposed as: F0 = {abc, ab, c},
F1 = {ab, bc}, F2 = {abc}, and then each digit can be represented by a simple ZBDD.
The three ZBDDs share their sub-graphs each other.

Now we explain the procedure for constructing a ZBDD-based tuple-histogram
from original database. We read a tuple data one by one from the database, and
accumulate the single tuple data to the histogram. More concretely, we generate a
ZBDD of T for a single tuple picked up from the database, and accumulate it to
the ZBDD vector. The ZBDD of T can be obtained by starting from “1” (a null-
combination), and applying “Change” operations several times to join the items in
the tuple. Next, we compare T and F0, and if they have no common parts, we just
add T to F0. If F0 already contains T , we eliminate T from F0 and carry up T to F1.
This ripple carry procedure continues until T and Fk have no common part. After
finishing accumulations for all data records, the tuple-histogram is completed.

Using the notation F .add(T) for addition of a tuple T to the ZBDD vector F , we
describe the procedure of generating tuple-histogram H for given database D.

H = 0
forall T ∈ D do

H = H .add(T)
return H

When we construct a ZBDD vector of tuple-histogram, the number of ZBDD nodes
in each digit is bounded by total appearance of items in all tuples. If there are many
partially similar tuples in the database, the sub-graphs of ZBDDs are shared very well,
and compact representation is obtained. The bit-width of ZBDD vector is bounded
by log Smax, where Smax is the appearance of most frequent items.

Once we have generated a ZBDD vector for the tuple-histogram, various operations
can be executed efficiently. Here are the instances of operations used in our pattern
mining algorithm.

– H .factor0(v): Extracts sub-histogram of tuples without item v.
– H .factor1(v): Extracts sub-histogram of tuples including item v and then delete

v from the tuple combinations. (also considered as the quotient of H/v)

88 Shin-ichi Minato and Hiroki Arimura

Fig. 8. Example of FP-tree.

ZBDDgrowth(H, α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowth(H1, α) ;
F0 ←ZBDDgrowth(H0 + H1, α) ;
F ← (v · F1) ∪ F0 ;
Cache(H) ← F ;
return F ;

}

Fig. 9. ZBDD-growth algorithm.

ZBDDgrowthMax(H, α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowthMax(H1, α) ;
F0 ←ZBDDgrowthMax(H0 + H1, α) ;

F ← (v · F1) ∪ (F0 − F0.permit(F1)) ;

Cache(H) ← F ;
return F ;

}
Fig. 10. ZBDD-growth-max algorithm.

– v ·H : Attaches an item v on each tuple combinations in the histogram F .
– H1 + H2: Generates a new tuple-histogram with sum of the frequencies of corre-

sponding tuples.
– H .tuplecount: The number of tuples appearing at least once.

These operations can be composed as a sequence of ZBDD operations. The result is
also compactly represented by a ZBDD vector. The computation time is bounded by
roughly linear to total ZBDD sizes.

3.2 ZBDD vectors and FP-trees
FP-growth[9], one of the state-of-the-art algorithm, constructs “FP-tree” for a given
transaction database, and then searches frequent patterns using this data structure.
An example of FP-tree is shown in Fig. 8. We can see that FP-tree is a “trie” of tuples
with their frequencies. In other words, FP-growth is based on the tree repre-
sentation of tuple-histograms. Namely, ZBDD-growth is based on logically same
internal data structure as FP-growth. This is the reason why we call this algorithm
ZBDD-growth. However, ZBDD-based method will be more efficient because ZBDDs
can share the equivalent subgraphs and computation time is bounded by the ZBDD
size. The benefit of ZBDDs is especially remarkable when a huge number of patterns
are produced.

3.3 Frequent Pattern Mining Algorithm
Our algorithm, ZBDD-growth, is based on a recursive depth-first search over the
ZBDD-based tuple-histogram representation. The basic algorithm is shown in Fig. 9.

In this algorithm, we choose an item v used in the tuple-histogram H , and compute
the two sub-histograms H1 and H0. (Namely, H = (v · H1) ∪ H0.) As v is the top
item in the ZBDD vector, H1 and H0 can be obtained just by referring the 1-edge

Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs 89

P .permit(Q)
{

if(P =“0” or Q =“0”) return “0” ;
if(P = Q) return F ;
if(P =“1”) return “1” ;
if(Q =“1”)

if(P include “1”) return “1” ;
else return “0” ;

R← Cache(P, Q) ;
if(R exists) return R ;
v ←TopItem(P,Q) ; /* Top item in P, Q */
(P0, P1)←factors of P by v ;
(Q0, Q1)←factors of Q by v ;
R← (v · P1.permit(Q1)) ∪ (P0.permit(Q0 ∪Q1)) ;
Cache(P, Q) ← R ;
return R ;

}
Fig. 11. Permit operation.

and 0-edge of the highest ZBDD-node, so the computation time is constant for each
digit of ZBDD.

The algorithm consists of the two recursive calls, one of which computes the subset
of patterns including v, and the other computes the patterns excluding v. The two
subsets of patterns can be obtained as a pair of pointers to ZBDDs, and then the final
result of ZBDD is computed. This procedure may require an exponential number
of recursive calls, however, we prepare a hash-based cache to store the result of each
recursive call. Each entry in the cache is formed as pair (H,F), where H is the pointer
to the ZBDD vector for a given tuple-histogram, and F is the pointer to the result of
ZBDD. On each recursive call, we check the cache to see whether the same histogram
H has already appeared, and if so, we can avoid duplicate processing and return the
pointer to F directly. By using this technique, the computation time becomes almost
linear to the total ZBDD sizes.

In our implementation, we use some simple techniques to prune the search space.
For example, if H1 and H0 are equivalent, we may skip to compute F0. For another
case, we can stop the recursive calls if total frequencies in H is no more than α. There
are some other elaborate pruning techniques, but they needs additional computation
cost for checking the conditions, so sometimes effective but not always.

3.4 Extension for Maximal Pattern Mining

We can extend the ZBDD-growth algorithm to extract only the maximal frequent
patterns[5], each of which is not included in any other frequent patterns. The algorithm
is shown in Fig. 10.

The difference from the original algorithm is only one line, written in the frame
box. In this part, we check each pattern in F0, and delete it if the pattern is included
in one of patterns of F1. In this way, we can generate only maximal frequent patterns.
This is basically the same approach as used in MAFIA[5].

The process of deleting non-maximal patterns is basically a very time consuming
task, however, we found that one of the ZBDD-based operation, called permit opera-
tion by Okuno et al.[17], can be used for solving this problem1. P .permit(Q) returns
a set of combinations in P each of which is a subset of some combinations in Q.
For example, when P = {ab, abc, bcd} and Q = {abc, bc}, then P .permit(Q) returns
{ab, abc}. The permit operation is efficiently implemented as a recursive procedure of
ZBDD manipulation, as shown in Fig. 3.4. The computation time of permit operation
is almost linear to the ZBDD size.
1 Permit operation is basically same as SubSet operation by Coudert et al.[6], defined for

ordinary BDDs.

90 Shin-ichi Minato and Hiroki Arimura

Table 3. “One-pair-missing.”

a2b2a3b3· · ·an−1bn−1anbn

a1b1 a3b3· · ·an−1bn−1anbn

a1b1a2b2 · · ·an−1bn−1anbn

...
. . .

...
a1b1a2b2a3b3· · · anbn

a1b1a2b2a3b3· · ·an−1bn−1

Table 4. Results for “one-pair-missing.”

n #Patterns (output) ZBDD-growth FP-growth
|ZBDD| Time(sec) Time(sec)

8 58,974 35 0.01 0.11
10 989,526 45 0.01 1.93
12 16,245,774 55 0.01 32.20
14 263,652,486 65 0.02 518.90
15 1,059,392,916 70 0.02 1966.53
16 4,251,920,574 75 0.02 (timeout)

Table 5. Generation of tuple-histograms.

Data name #T total|T | |ZBDD Vector|Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
mushroom 8,124 186,852 8,006 1.2
pumsb 49,046 3,629,404 1,750,883 188.5
BMS-WebView-1 59,602 149,639 46,148 18.3
accidents 340,183 11,500,870 3,877,333 107.0

4 Experimental Results

Here we show the experimental results to evaluate our new method. We used a
Pentium-4 PC, 800MHz, 1.5GB of main memory, with SuSE Linux 9. We can deal
with up to 20,000,000 nodes of ZBDDs in this machine.

4.1 Experiment for Mathematical Example

First, we present the experiment for a set of artificial examples where ZBDD-growth is
extremely effective. The database, named “one-pair-missing,” has the form as shown
in Table 3. Namely, this database has n records each of which contains (n−1) pairs of
items but only one pair is missing. It may produce an exponential number of frequent
patterns. The experimental results with frequency threshold α = 1 are shown in Table
4. We can observe the exponential explosion of the number of patterns, but only linear
size of ZBDDs are needed for representing such a huge number of patterns. In such
cases, ZBDD-growth runs extremely fast, while FP-growth requires exponential time
depending on the output data size.

4.2 Experiments for Benchmark Examples

Next we show the results for the benchmark examples[8], written in previous section.
Table 5 shows the time and space for generating ZBDD vectors of tuple-histograms.

In this table, #T shows the number of tuples, total|T | is the total of tuple sizes (total
appearances of items), and |ZBDD| is the number of ZBDD nodes for the tuple-
histograms. We can see that tuple-histograms can be constructed for all instances in
a feasible time and space. The ZBDD sizes are almost same or less than total|T |.

After generating ZBDD vectors for the tuple-histograms, we applied ZBDD-growth
algorithm to generate frequent patterns. Table 6 show the results for the selected
benchmark examples, “mushroom,” “T10I4D100K,” and “BMS-WebView-1.” The
execution time includes the time for generating the initial ZBDD vectors for tuple-
histograms.

The results shows that ZBDD-growth is much faster than FP-tree for “mushroom,”
but not effective for ”T10I4D100K.” ”T10I4D100K” is known as an artificial database,
consists of randomly generated combinations, so there are almost no relationship
between the tuples. In such cases, ZBDD nodes cannot be shared well, and only the
overhead factor is revealed. For “BMS-WebView-1,” ZBDD-growth is slower than FP-
growth when the output size is small, however, an exponential factor of reduction is
observed for the cases of generating huge patterns. Especially for α = 31, 30, more
than 1 Tera patterns are generated and compactly stored in the memory, that has
never been possible by using conventional data structures.

Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs 91

Table 6. Results for benchmark examples.

Data name: #Frequent (output) ZBDD-growth FP-growth
Min. freq. α patterns |ZBDD| Time(s) Time(s)

mushroom: 5,000 41 11 1.2 0.1
1,000 123,277 1,417 3.7 0.3

200 18,094,821 12,340 9.7 5.4
16 1,176,182,553 53,804 7.7 244.1
4 3,786,792,695 59,970 4.3 891.3
1 5,574,930,437 40,557 1.8 1,322.5

T10I4D100K: 5,000 10 10 81.3 0.7
1,000 385 382 135.5 3.1

200 13,255 4,288 279.4 4.5
16 175,915 89,423 543.3 13.7
4 3,159,067 1,108,723 646.0 38.8
1 2,217,324,767 (mem.out) − 317.1

BMS-WebView1: 1,000 31 31 27.8 0.2
200 372 309 31.3 0.4
50 8,191 3,753 49.0 0.8
34 4,849,465 64,601 120.8 8.3
32 1,531,980,297 97,692 133.7 345.3
31 8,796,564,756,112 117,101 138.1 (timeout)
30 35,349,566,550,691 152,431 143.9 (timeout)

Table 7. Results of maximal pattern mining.

Data name: #Maximal (output) ZBDD-growth-max T ime(max)

Min. freq. α freq. patterns |ZBDD| Time(s) /T ime(all)

mushroom: 5,000 3 10 1.2 1.00
1,000 467 744 4.1 1.10

200 3,111 4,173 10.7 1.10
16 24,060 13,121 8.1 1.06
4 39,456 14,051 4.2 0.98
1 8,124 8,006 1.2 0.70

T10I4D100K: 5,000 10 10 107.1 1.32
1,000 370 376 203.1 1.50

200 1,938 2,609 462.8 1.66
16 68,096 66,274 922.4 1.70
4 400,730 372,993 1141.2 1.77
1 77,443 532,061 140.5 −

BMS-WebView1: 1,000 29 30 34.9 1.25
200 264 289 41.2 1.32
50 3,546 3,064 71.2 1.45
34 15,877 16,854 173.1 1.43
32 15,252 17,680 196.6 1.47
31 13,639 17,383 208.7 1.51
30 11,371 16,323 219.7 1.53

4.3 Maximal Frequent Pattern Mining
We also show the experimental results of maximal frequent pattern mining using
ZBDD-growth-max algorithm. In Table 7, we show the results for the same examples
as used in the experiment of original ZBDD-growth. The last column T ime(max)/T ime(all)

shows the ratio of computation time between the ZBDD-growth-max and the orig-
inal ZBDD-growth algorithm. We can observe that the computation time is almost
the same (up to twice) between the two algorithms. In other words, the additional
computation cost for ZBDD-growth-max is almost the same order as the original
algorithm. Our ZBDD-based ”permit” operation can efficiently filter the maximal
patterns within a time depending on the ZBDD size, which is almost the same cost
as manipulating ZBDD vectors of tuple-histograms.

5 Post Processing for Generated Frequent Patterns
Our ZBDD-based method features that the algorithm uses ZBDDs not only as in-
ternal data structure but also as output data structure indexing a huge number of
patterns compactly on the main memory. The results can be analyzed flexibly by
using algebraic operations implemented on ZBDDs. Here we show several examples
of the post processing operations for the output data.

92 Shin-ichi Minato and Hiroki Arimura

(Sub-pattern matching for the frequent patterns): For the result of frequent
patterns F , we can efficiently filter a subset S, such that each pattern in S contains
a given sub-pattern P .

S = F
forall v ∈ P do:

S = S.onset(v).change(v)
return S

Inversely, we can extract a subset of patterns not satisfying the given conditions. It is
easily done by computing F −S. The computation time for the sub-pattern matching
is much smaller than the time for frequent pattern mining.

The above operations are sometimes called constraint pattern mining. In con-
ventional method, it is too time consuming to generate all frequent patterns before
filtering. Therefore, many researchers consider the direct methods of constraint pat-
tern mining without generating all patterns. However, using ZBDD-based method, a
huge number of patterns can be stored and indexed compactly on main memory, so in
many cases, it is possible to generate all frequent patterns and then processing them
using algebraic ZBDD operations.
(Extracting Long/Short Patterns): Sometimes we are interested in the long/short
patterns, consists of a large/small number of items. Using ZBDDs, all combinations of
less than k out of n items are efficiently represented in a polynomial size, bounded by
O(k · n). This ZBDD represents a length constraint of patterns. We then apply inter-
section (or difference) operation to the frequent patterns with the length constraint
of ZBDD. In this way, we can easily extract a set of long/short frequent patterns.
(Comparison of Two Sets of Frequent Patterns): Our ZBDD manipulation
environment can efficiently store more than one results of frequent pattern mining
together. So, we can compare the two sets of frequent patterns generated with different
conditions. For example, if the database is gradually changing as time passing, the
tuple-histograms and frequent patterns are not the same forever. Our ZBDD-based
method can store and index a number of snapshot of pattern sets and easily show the
intersection, union, and difference between any pair of snapshots. When many similar
ZBDDs are generated, their ZBDD nodes are effectively shared into a monolithic
multi-rooted graph, so the memory requeirement is much less than storing each ZBDD
separately.
(Calculating Statistical Data): After generating a ZBDD for a set of patterns,
we can quickly count a number of patterns by using a primitive ZBDD operation
S.count. The computation time is linearly bounded by ZBDD size, not depending on
the amount of pattern counts. We can also efficiently calculate other statistical mea-
sures, such as Support and Confidence, which are often used in probabilistic analysis
and machine learning.
(Finding Disjoint Decompositions in Frequent Patterns): In the recent pa-
per[16], we presented an efficient ZBDD-based method for finding all possible simple
disjoint decompositions in a set of combinations. If a given set of patterns f can be
decomposed as f(X, Y) = g(h(X), Y), and X and Y has no common items, we then
call it a simple disjoint decomposition.

This decomposition method extracts another aspect of hidden structures from
complicated itemset data. The decomposition procedure is enough fast for handling
large-scale sets of patterns. It will be a powerful tool for database analysis.

6 Conclusion
In this paper, we presented a new method of ZBDD-based frequent pattern mining
algorithm. Our method generates a ZBDD for a set frequent patterns from the ZBDD
vector for the tuple-histogram of a given transaction database. Our experimental
result shows that our ZBDD-growth algorithm is fast as competitive as the existing

Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs 93

state-of-the-art algorithms, such as FP-growth. Especially for the cases where the
ZBDD nodes are well shared, exponential speed up are observed comparing to the
existing algorithms based on explicit table/tree representation. On the other hand,
for the cases where ZBDD nodes are not well shared, or number of patterns is very
small, ZBDD-growth method is not effective and the overhead factor reveals.

However, we do not have to use ZBDD-growth algorithm for all instances. We
may use the existing methods for the instances where they are more effective than
ZBDD-growth. In addition, we can develop a hybrid program that using FP-tree or
simple array for internal data structure, but the output is constructed as a ZBDD.

A ZBDD can be regarded as a compressed “trie” for representing a set of patterns.
ZBDD-based method will be useful as a fundamental techniques for database analysis
and knowledge indexing, and will be utilized for various applications of inductive data
analysis.

References
1. R. Agrawal, T. Imielinski, and A. N. Swami, Mining Association rules between sets of

items in large databases, In P. Buneman and S. Jajodia, edtors, Proc. of the 1993 ACM
SIGMOD International Conference on Management of Data, Vol. 22(2) of SIGMOD
Record, pp. 207–216, ACM Press, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast Discovery of
Association Rules, In Advances in Knowledge Discovery and Data Mining, MIT Press,
307–328, 1996.

3. J.-F. Boulicaut, Proc. 2nd International Workshop on Knowledge Discovery in Inductive
Databases (KDID’03), Cavtat-Dubrovnik, 2003.

4. Bryant, R. E., Graph-based algorithms for Boolean function manipulation, IEEE Trans.
Comput., C-35, 8 (1986), 677–691.

5. D. Burdick, M. Calimlim, J. Gehrke, MAFIA: A Maximal Frequent Itemset Algorithm
for Transactional Databases, In Proc. ICDE 2001, 443–452, 2001.

6. O. Coudert, J. C. Madre, H. Fraisse, A new viewpoint on two-level logic minimization,
in Proc. of 30th ACM/IEEE Design Automation Conference, pp. 625-630, 1993.

7. B. Goethals, “Survey on Frequent Pattern Mining”, Manuscript, 2003.
http://www.cs.helsinki.fi/ u/goethals/publications/survey.ps

8. B. Goethals, M. Javeed Zaki (Eds.), Frequent Itemset Mining Dataset Repository, Fre-
quent Itemset Mining Implementations (FIMI’03), 2003.
s http://fimi.cs.helsinki.fi/data/

9. J. Han, J. Pei, Y. Yin, R. Mao, Mining Frequent Patterns without Candidate Generation:
A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, 8(1), 53–87,
2004.

10. L. Jiang, M. Inaba, and H. Imai: A BDD-based Method for Mining Association Rules, in
Proceedings of 55th National Convention of IPSJ, Vol. 3, pp. 397-398, Sept. 1997, IPSJ.

11. H. Mannila, H. Toivonen, Multiple Uses of Frequent Sets and Condensed Representa-
tions, In Proc. KDD, 189–194, 1996.

12. S. Minato: Zero-suppressed BDDs for set manipulation in combinatorial problems, In
Proc. 30th ACM/IEEE Design Automation Conf. (DAC-93), (1993), 272–277.

13. S. Minato: “Binary Decision Diagrams and Applications for VLSI CAD”, Kluwer Aca-
demic Publishers, November 1996.

14. S. Minato, Zero-suppressed BDDs and Their Applications, International Journal on Soft-
ware Tools for Technology Transfer (STTT), Springer, Vol. 3, No. 2, pp. 156–170, May
2001.

15. S. Minato and H. Arimura: Efficient Combinatorial Item Set Analysis Based on Zero-
Suppressed BDDs”, In Proc. of IEEE/IEICE/IPSJ International Workshop on Chal-
lenges in Web Information Retrieval and Integration (WIRI-2005), pp. 3-10, Apr., 2005.

16. S. Minato: Finding Simple Disjoint Decompositions in Frequent Itemset Data Using Zero-
suppressed BDD, In Proc. of IEEE ICDM 2005 workshop on Computational Intelligence
in Data Mining, pp. 3-11, ISBN-0-9738918-5-8, Nov. 2005.

17. H. Okuno, S. Minato, and H. Isozaki: On the Properties of Combination Set Operations,
Information Procssing Letters, Elsevier, 66 (1998), pp. 195-199, 1998.

18. Ricardo Baeza-Yates, Berthier Ribiero-Neto, “Modern Information Retrieval”, Addison
Wesley, 1999.

19. M. J. Zaki, Scalable Algorithms for Association Mining, IEEE Trans. Knowl. Data Eng.
12(2), 372–390, 2000.

94 Shin-ichi Minato and Hiroki Arimura

Quantitative Episode Trees?

Mirco Nanni1 and Christophe Rigotti1,2

1KDD Laboratory, University of Pisa and ISTI-CNR Pisa, Italy
2INSA-LIRIS UMR 5205 CNRS, Lyon, France

Abstract. Among the family of the local patterns, episodes are com-
monly used when mining a single or multiple sequences of discrete events.
An episode reflects a qualitative relation is-followed-by over event types,
and the refinement of episodes to incorporate quantitative temporal in-
formation is still an on going research, with many application opportu-
nities. In this paper, focusing on serial episodes, we design such a refine-
ment called quantitative episodes and give a corresponding extraction
algorithm. The three most salient features of these quantitative episodes
are: (1) their ability to characterize main groups of homogeneous behav-
iors among the occurrences, according to the duration of the is-followed-
by steps, and providing quantitative bounds of these durations organized
in a tree structure; (2) the possibility to extract them in a complete way;
and (3) to perform such extractions at the cost of a limited overhead
with respect to the extraction of standard episodes.

1 Introduction

Sequential data is a common form of information available in several appli-
cation contexts, thus naturally inducing a strong interest for them among data
analysts. A decade-long attention has been paid by researchers in data mining
to study forms of patterns appropriated to this kind of data, such as sequential
patterns [1] and episodes [7]. In particular, in this paper we will focus on serial
episodes, that are sequences of event types extracted from single or multiple in-
put sequences, and that reflect a qualitative relation is-followed-by between the
event types.

Episodes have natural applications into several domains, including for in-
stance the analysis of business time series [2], medical data [8], geophysical
data [9] and also alarm log analysis for network monitoring (especially in telecom-
munications) [5]. However, in many applications episodes clearly show some lim-
itations, due to the fact that the information provided by the is-followed-by
relation is not always enough to properly characterize the phenomena at hand.
This, in particular, pulls our research toward the refinement of episodes to in-
corporate quantitative temporal information, able to describe the time intervals
observed for the is-followed-by relation.
? This research is partly funded by EU contracts IQ IST-FP6-516169, and GeoPKDD

IST-FP6-014915.

95

In this paper, we propose a refinement of episodes called quantitative episodes,
that provides quantitative temporal information in a readable, tree-based graph-
ically representable form. These quantitative episodes describe the main groups
of homogeneous behaviors within the occurrences of each episode, according to
the elapsed times between the consecutive event types of the episode. Moreover,
they are not provided in an isolated way, but in trees giving a global view of
how the occurrences of the corresponding episode differentiate in homogeneous
groups along the elements of the pattern. From a computational point of view,
the main interest of the quantitative episodes is that they can be mined in a
sound and complete way without increasing the cost of extractions significantly
when compared to extractions of episodes alone. This is achieved through an
extraction algorithm that tightly integrates episode extraction with a computa-
tionally reasonable analysis of temporal quantitative information.

This paper is organized as follows: in Section 2 some preliminary definitions
needed concerning episodes are recalled from the literature; Section 3, then,
introduces quantitative episodes; Section 4 presents the principle of an algorithm
for efficiently extracting quantitative episodes, which is evaluated experimentally
in Section 5; finally, in Section 6 we briefly review the related literature and
conclude with a summary in Section 7.

2 Preliminary definitions

We briefly introduce standard notions [7], or give equivalent definitions when
more appropriated to our presentation.

Definition 1. (event, event sequence,operator v) Let E be a set of event
types and ≺ a total order on E. An event is a pair denoted (e, t) where e ∈ E
and t ∈ N. The value t denotes the time stamp at which the event occurs. An
event sequence S is a tuple of events S = 〈(e1, t1), (e2, t2), . . . , (el, tl)〉 such that
∀i ∈ {1, . . . , l − 1}, ti < ti+1∨ (ti = ti+1 ∧ ei ≺ ei+1). Given two sequences of
events S and S′, S′ is a subsequence of S, denoted S′ v S, if S′ is equal to S or
if S′ can be obtained by removing some elements in S.

Definition 2. (episode, occurrence, minimal occurrence, support) An
episode is a non empty tuple α of the form α = 〈e1, e2, . . . , ek〉 with ei ∈ E for
all i ∈ {1, . . . , k}. In this paper, we will use the notation e1 → e2 → . . . → ek

to denote the episode 〈e1, e2, . . . , ek〉 where ’→’ may be read as ’is followed by’.
The size of α is denoted |α| and is equal to the number of elements of the tuple
α, i.e., |α| = k. The prefix of α is the episode 〈e1, e2, . . . , ek−1〉. We denote it
as prefix (α). An episode α = 〈e1, e2, . . . , ek〉 occurs in an event sequence S if
there exists at least one sequence of events S′ = 〈(e1, t1), (e2, t2), . . . , (ek, tk)〉
such that ∀i ∈ {1, . . . , k − 1}, ti < ti+1 and S′ v S. The pair 〈t1, tk〉 is called an
occurrence of α in S. Moreover, if there is no other occurrence 〈t′1, t′k〉 such that
[t′1, t

′
k] ⊂ [t1, tk], then the pair 〈t1, tk〉 is called a minimal occurrence of α. The

support of α in S, denoted support(α, S), is the number of minimal occurrences
of α in S.

96 Mirco Nanni and Christophe Rigotti

Intuitively, a minimal occurrence is simply an occurrence that does not
strictly contain another occurrence of the same episode. These episodes and
their occurrences correspond to the serial episodes of [7]. For instance, let S =
〈(a, 0), (b, 1), (c, 1), (b, 2)〉 be an event sequence and α = a → b be an episode.
Then, α has two occurrences in S: 〈0, 1〉 and 〈0, 2〉. The former is a minimal
occurrence, while the latter is not, since [0, 1] ⊂ [0, 2]. Notice that there is no
occurrence of episode α′ = b → c.

These definitions, and the ones introduced in the rest of the paper, are given
for a single sequence S, but they extend trivially to multiple sequences. In that
case the support is the sum of the number of occurrences in all sequences.

3 Quantitative episodes

3.1 Informal presentation

The idea of quantitative episodes essentially consists in dividing the set of oc-
currences of an episode into homogeneous, significantly populated groups. Ho-
mogeneity, in particular, is obtained when on each step, made of two consecutive
elements of the episode, the occurrences in the same group show similar tran-
sition times (i.e., similar times elapsed between an element and the next one
within the episode). The result can be graphically summarized through a tree-
like structure, as the one depicted in Figure 1 that represents homogeneous
groups of occurrences of an episode α = A → B → C → D. The figure can be
read in the following way:

– The episode has 1000 occurrences in the sequence of events, and this value
is written under the first event of the episode.

– Among these 1000 occurrences, there are 2 subgroups that show homoge-
neous duration for step A → B: one (the upper branch of the split) corre-
sponds to transition times between 2 and 10, and covers 500 occurrences; the
other (lower branch) corresponds to transition times in interval [15, 20] and
covers 400 occurrences. Notice that 100 occurrences of A → B → C → D are
lost, meaning that they exhibit a rather isolated duration for step A → B
and cannot be associated with other occurrences to form a significantly pop-
ulated group.

– In the largest group obtained above, all occurrences present similar step
durations for steps B → C and C → D, and are kept together in a single
group. The other group, containing 400 occurrences, is split further into
homogeneous groups w.r.t. duration of step B → C. Notice that the resulting
homogeneous groups overlap, sharing a subset of occurrences and resulting
in non-disjoint time intervals. Indeed, we can observe that the total count of
occurrences in the two groups (205+202) is greater than the original total
amount (400), since some occurrences are counted twice.

Quantitative Episode Trees 97

– One of these two groups is further split into two (disjoint) groups while the
other is not.

– Each path from the root to a leaf in the tree corresponds to a group of
occurrences that shows an homogeneous behavior along all the steps of the
episode, and covers a sufficient number of occurrences (in this example, at
least 90). This homogeneous behavior can be represented by the sequence of
time intervals on the path, and can be added to the episode as a quantitative
feature to form a main grouping quantitative episode. The tree in Figure 1
depicts four such patterns (one for each path from the root to a leaf). The
tree relates these patterns together, showing how the occurrences can be
differentiated into groups along the steps of the episode.

90

490500

1000

400

205

490

100

200202

[2,10]

[15,20]

[5,20]

[10,40]

[35,60]

[10,15]

[10,30]

[30,45]

[5,20]

DCBA

Fig. 1. Tree of quantitative episodes for episode α = A → B → C → D.

3.2 Quantitative episode definition

Definition 3. (quantitative episode) A quantitative episode (q-episode) is a
pair P = 〈α, IT 〉 where α is an episode of size k > 1, and IT = 〈it1, . . . , itk−1〉,
with ∀i ∈ {1, . . . , k − 1}, iti = [ai, bi] ⊂ N+ (i.e., iti is an interval in N+). The
size of P , denoted |P | is defined as |P | = |α|.

The iti intervals are intended to represent values of elapsed time between
the occurrences of two consecutive event types of the episode α. For instance
〈A → B → C → D, 〈[15, 20], [10, 40], [5, 20]〉〉 is one of the q-episodes depicted
in Figure 1.

To handle the time stamps of the events corresponding to all event types
within an episode the definition of occurrence needs to be modified as follows.

Definition 4. (occurrence) An occurrence of an episode α = 〈e1, e2, . . . , ek〉
in an event sequence S is a tuple 〈t1, t2, . . . , tk〉 such that there exists S′ =
〈(e1, t1), (e2, t2), . . . , (ek, tk)〉 satisfying ∀i ∈ {1, . . . , k− 1}, ti < ti+1 and S′ v S.

Notice that subsequence S′ in the definition above can be formed by non-
contiguous elements of sequence S. Using this definition of occurrence, the notion
of minimal occurrence can be redefined accordingly.

98 Mirco Nanni and Christophe Rigotti

Definition 5. (minimal occurrence) An occurrence 〈t1, . . . , tk〉 of an episode
α in event sequence S is a minimal occurrence if (1) there is no other occurrence
〈t′1, . . . , t′k〉 of α such that [t′1, t

′
k] ⊂ [t1, tk], and (2) if k > 2 then 〈t1, . . . , tk−1〉 is

a minimal occurrence of prefix (α).

As we will consider only minimal occurrences of episodes, we will simply use
the term occurrence, when there is no ambiguity.

For a step ei → ei+1 in an episode α, and its durations among a set of occur-
rences of α, now we define how these duration values are grouped. Informally,
groups correspond to maximal sets of duration values that form dense inter-
vals, where dense means that any sub-interval of significant size ws contains a
significant number of values ns. More precisely, ws ∈ R, ws ≥ 1 and ns ∈ N+

are termed the density parameters and characterize the groups in the following
definition.

Definition 6. (occurrence groups) Let O be a set of occurrences of episode α
and i be an integer parameter such that 1 ≤ i < |α| (i identifies a step ei → ei+1).
Let ∆i(x) = ti+1 − ti for any occurrence x = 〈t1, . . . , t|α|〉 (i.e., the duration of
step ei → ei+1 for occurrence x). Then, the occurrence groups of O at level i,
denoted as group(O, i), are defined as follows:

group(O, i) = { g | g is a maximal subset of O s.t.:
∀a, b ∈ [minx∈g ∆i(x), maxx∈g ∆i(x)],

b− a ≥ ws ⇒ |{x ∈ g | ∆i(x) ∈ [a, b]}| ≥ ns}

For example, consider the set of occurrences O = {x1, . . . , x8} having the
respective durations 3,4,6,6,9,15,16,16 for step ei → ei+1 (i.e., the values of ∆i).
Let the density parameters be ws = 3 and ns = 2 (i.e., at least two elements
in any sub-interval of size 3). Then group(O, i) = {{x1, . . . , x5}, {x6, x7, x8}}
(corresponding respectively to the durations 3, 4, 6, 6, 9 and 15, 16, 16).

The next definition specifies the tree structure of the occurrence groups.

Definition 7. (occurrence group tree) Let O be the set of occurrences of
episode α. Then, the occurrence group tree (group tree for short) of α is a
rooted tree with labelled edges such that:

– the tree has |α| levels, numbered from 1 (the root) to |α| (the deepest leaves);
– each node v is associated with a set v.g of occurrences of α;
– the root is associated with root .g = O, i.e., with all the occurrences of α;
– if a node v at level i, 1 ≤ i < |α|, is such that group(v.g, i) = {g1, . . . , gk},

then it has k children v1, . . . , vk, with vj .g = gj , i ∈ {1, . . . , k}.
– each edge connecting node v at level i with its child vj is labelled with the

interval [minx∈vj .g ∆i(x), maxx∈vj .g ∆i(x)];

Notice that such tree is unique, up to permutations in the order of the children
of each node. Then, the main grouping q-episodes correspond simply to the sets
of occurrences that have not been separated from the root to a leaf and that
have a significant size.

Quantitative Episode Trees 99

Definition 8. (main grouping q-episode) A q-episode P = 〈α, IT 〉 is said
to be a main grouping q-episode if the group tree of α contains a path from the
root to a leaf v such that:

– the labels of the edges met along the path correspond to the intervals in IT ;
– and |v.g|, called the support of P , is greater or equal to σg, a user defined

minimum group size.

For instance, Figure 1 depicts a tree of main grouping q-episodes for α =
A → B → C → D and σg = 90 (a group tree restricted to paths forming main
grouping q-episodes).

Since a minimal occurrence of α can be obtained only by extending a minimal
occurrence of prefix (α), we have the following simple property that is used as a
safe pruning criterion in the extraction principle.

Theorem 1. Let α be an episode such that |α| > 1. If there exists a main group-
ing q-episode 〈α, IT 〉, then there exists a main grouping q-episode 〈prefix (α), IT ′〉.

4 Extracting q-episodes

In this section we present the principles of an algorithm called Q-epiMiner to
find all main grouping q-episodes. It interleaves frequent episode extraction and
group tree computation in a tight and efficient way. A more detailed presentation
of the algorithm is given in the report [10].

Let α = 〈e1, . . . , en〉 be an episode. For each event type ei in α, i > 1, we
consider a list Di that collects the durations between ei−1 and ei, i.e., the values
∆i−1(x) for all occurrences x of α, and we suppose that each Di is sorted by
increasing duration value. By convention, for the sake of uniformity, D1 contains
a duration of 0 for all occurrences (there is no element before e1).

In the following, we describe how these lists D1, . . . , Dn can be used to com-
pute the group tree of pattern α, and then how they can be updated when
expanding α with an event type en+1.

Splitting one node. Splitting the group of occurrences of α associated to one node
of the tree at level i (to obtain its children at level i + 1) can be done simply by
a single scan of the elements in the group if these elements are ordered by the
duration between ei and ei+1. We use a function named splitGroup performing
this simple treatment. We suppose that it takes as input a list of occurrences in
a group, sorted by duration of ei → ei+1, and gives as output a collection of all
maximal sublists satisfying the density criterion.

Computing the whole tree. Suppose that we have already computed the groups
of occurrences denoted g1, . . . , gk that are associated respectively to the nodes
v1, . . . , vk of a level i of the tree. These groups are split in the following way to
obtain the nodes of the next level. Firstly, we create for each node vj an empty

100 Mirco Nanni and Christophe Rigotti

list denoted vj .sortedGroup. Then we scan Di+1 from first to last element, and
for each occurrence found in Di+1 if the occurrence is in a group gj then we insert
the occurrence at the end of vj .sortedGroup. Now, we have at hand for each vj

its group of occurrences sorted by increasing duration between ei and ei+1. Then,
we can apply on each vj .sortedGroup the splitGroup function to compute the
children of vj and their associated groups of occurrences and thus obtain the
next level of the group tree. Repeating this process allows to build the group
tree in a levelwise way, taking advantage of the sorted lists D1, . . . , Dn. In the
following, we assume that such a tree is computed by a function computeTree,
applied on a tuple 〈D1, . . . , Dn〉.

Obtaining the information needed to compute the tree. The other key operation is
the efficient computation of the sorted lists D′

1, . . . , D
′
n, D′

n+1 of a pattern α → e.
Suppose that we know the list Le of occurrences of α → e, and the sorted lists
D1, . . . , Dn of occurrences of α. Then, the main property used is that D′

1, . . . , D
′
n

are sublists of, respectively, D1, . . . , Dn, since each occurrence of α → e comes
from the expansion of an occurrence of α. So a list D′

i can be obtained simply
by scanning Di from the first to the last element and picking (in order) the
occurrences in Di that have been extended to form an occurrence of α → e. The
result is a list D′

i sorted by increasing duration between ei−1 and ei. The case of
the list D′

n+1 is different since it contains the same occurrences as Le, so D′
n+1

is simply a copy of Le, but has to be sorted by increasing duration (between
en and en+1). Having at hand the sorted lists D′

1, . . . , D
′
n, D′

n+1 we can then
compute the group tree of α → e by calling computeTree(〈D′

1, . . . , D
′
n, D′

n+1〉).

Integration with the extraction of episodes. One remaining problem to be solved
is to build the occurrence list of the episode under consideration (as the list
Le for α → e). Fortunately, several approaches to extract episodes, or closely
related patterns like sequential patterns, are based on the use of such occurrence
lists (e.g., [7, 9, 13]), providing the information needed to update the duration
lists Di. Due to space limitation we will not detail this principle here. The basic
idea is that if we store in a list L the locations (positions in the data sequence)
of the occurrences of a pattern α, then for an event type e, we can use1 L to
build the list Le of occurrences of α → e. In our case, for the occurrences of
an episode α = 〈e1, . . . , en〉 the location information stored in L are simply the
time stamps of the last element en of α, sorted by increasing value. We use a
function expand that takes the input sequence S and L, and that returns a set
Lexp of tuples 〈e, Le〉. The set Lexp contains for each event type e, the list Le

of locations of occurrences of α → e. As for L, the location information in Le

are the time stamps of the last element of α → e and Le is sorted by increasing
location value.

The overall enumeration strategy of the episodes used is a standard depth-
first prefix-based strategy because it fits both with the episode extraction and

1 Together with other information, like the data sequence itself, or the location of the
occurrences of e.

Quantitative Episode Trees 101

with the use of the sorted lists Di to derive the sorted lists D′
i to compute the

group trees. The strategy can simply be sketched as follows: when an episode α
is considered we use it as a prefix to expand it and to obtain new episodes of
the form α → e, and then, one after the other, we consider and expand each of
these α → e.

Pruning strategy and correctness. Consider an episode α such that all leaves at
level |α| of its group tree are associated to groups of size strictly less than σg (α
has no corresponding main grouping q-episode, but α itself can have a support
greater or equal to σg). By Theorem 1, we can also safely avoid the expansion of
α, since this expansion cannot correspond to any main grouping q-episode. The
exhaustive enumeration strategy of the episodes and the safety of the pruning
strategy ensure the correctness of the general extraction principle.

5 Experiments

In this section we present the results of a set of experiments mainly aimed at
studying how the size of the input data and the value of some input parameters
impact on the performances of the Q-epiMiner algorithm described in this paper.
The experiments presented are made on datasets containing several sequences.
As mentioned previously, the definitions extended trivially to that case (the
support is simply the sum of the support in all sequences). The only change
in the abstract algorithm is that the occurrence locations are not simply time
stamps, but sequence identifiers together with time stamps in the sequences. The
algorithm was implemented in C, and all experiments were performed on a Intel
Xeon 2Ghz processor with 1Gb of RAM over a Linux 2.6.14 platform.

5.1 Performance analysis on synthetic datasets

In order to collect large datasets having controlled characteristics, we randomly
generated them by means of the Quest Synthetic Data Generator from IBM2,
by varying the number of input sequences generated (from 10K to 250K), the
sequence length3 (from 5 to 70) and the number of different event types used
(from 5K to 20K). Where not specified hereafter, the following default parameter
values were adopted: 100K input sequences, sequence length equal to 25, 5K
event types, ws = 8 and ns = 4.

The curves in Figure 2(left) show the execution times of the prototype over
datasets of increasing size and for three different numbers of event types used
in the data. The σg parameter was set to 40 for 10K sequences and then was
increased proportionally, up to 1000 for 250K sequences. As we can see, the exe-
cution time always grows almost linearly, having a higher slope when fewer event
2
http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data mining/mining.shtml

3 The parameter of the generator controlling the number of events per time stamp
was set to 1.

102 Mirco Nanni and Christophe Rigotti

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

N. event types = 5k
N. event types = 10k
N. event types = 20k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

Serial Episodes
Quantitative Episodes

Fig. 2. Scalability w.r.t. number of input sequences.

types are in the data4. A similar scalability analysis is provided in Figure 2(right),
where Q-epiMiner is compared against the extraction of serial episodes having
at least a support of σg (this extraction is performed using the frequent episodes
mining technique embedded in Q-epiMiner, without computing the durations,
groups and trees, and implemented with the same low level optimizations). The
values of σg were the same as in the previous experiment. The two curves are very
close, meaning that the overhead introduced by the computation of main group-
ing q-episodes is well balanced by the pruning it allows. Finally, similar results
are obtained by varying the length of the input sequences (see Figure 3(left)),
where both curves have an apparently-quadratic growth (σg was set to 80 for
length 5 and then was increased proportionally, up to 1120 for length 70). Obvi-
ously, for very long sequences usual episode constraints, like maximum window
size, might be used [7].

Figure 3(right) reports the behaviour of the prototype when the minimum
size of the groups is varied from 100 to 2000, and again its comparison to the
mining of frequent serial episodes at minimum support σg. Here also, the two
algorithms behave very similarly, this time showing a fast drop in the execution
time as σg grows – as usual for frequent pattern mining algorithms. Due to space
limits, we do not report the results obtained by varying the density parameters,
that, however, seemed to have only a very limited impact on execution times of
the algorithm on this kind of data.

5.2 Experiments on a real dataset

In this set of experiments we used real world data consisting of the July 2000
weblog from the web server of the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley5. In a preprocessing
step, all non-HTML pages where removed and user sessions were extracted,

4 Fewer event types with the same number of sequences leads to higher supports for
the remaining event types and more frequent patterns of large size.

5 http://www.cs.berkeley.edu/logs/http

Quantitative Episode Trees 103

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

R
un

ni
ng

 ti
m

e
[s

ec
.]

Avg. input sequence length

Serial Episodes
Quantitative Episodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

Fig. 3. Scalability w.r.t. input sequence length and min. group size σg, with 100K
sequences.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 140 160 180 200 220 240 260

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

QE w/o pruning

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

ec
.]

ns

ws = 60
ws = 120
ws = 180

Serial Episodes

Fig. 4. Berkely dataset: Scalability w.r.t. σg and effects of the density parameters.

resulting in 90295 user sessions (used as input sequences) of average length of
13.0 with 72014 distinct pages.

In Figure 4 two graphs are plotted that describe the performances of the Q-
epiMiner prototype on the Berkeley dataset for different minimum group sizes
(graph on the left, with ws = 120 and ns = 15) and different density parameters
(on the right, with σg = 200). The first plot confirms the results obtained on
synthetic data, i.e., execution times drop very quickly as σg decreases. Moreover,
an additional curve is plotted that represents a version of Q-epiMiner that does
not apply any pruning based on the absence of a main grouping q-episode, but
only applies a pruning based on the support of the episodes (an episode is not
expanded only when its support is strictly less than σg). This curve shows the
effectiveness of the full pruning made by Q-epiMiner. It should also be noticed
that on this dataset, Q-epiMiner performs even better than the serial episode
miner (with minimum support set to σg), confirming the fact that the pruning
capabilities of the prototype are able to balance its potential overhead.

Finally, Figure 4(right) shows that, quite reasonably, the execution time de-
creases with larger minimum density parameter ns (since they allow a stronger

104 Mirco Nanni and Christophe Rigotti

s s σgw = 100, n = 1, = 50551

[1,549]

[993,1850]

210

257

256

158

[14,30]

[3,608]
w = 5, n = 10, = 20s s σg

[5,35] [2,21]

134 25141

24

23

179

[25,35]

[50,60]

[16,26]

Fig. 5. Examples of trees of main grouping q-episodes.

pruning), and increases with larger window sizes ws (which acts in the opposite
direction).

We conclude this section by providing in Figure 5 two sample outputs ob-
tained from the Berkeley dataset. In particular, we notice that the first tree
contains two groups that split at the first step, showing well separated intervals
of times ([1, 549] against [993, 1850]). On the contrary, the second one contains
three groups that split only at the third step, two of which overlap ([16, 26] and
[25, 35]). In both cases, each time a group splits some of the occurrences it con-
tains are lost, i.e., they are not part of any subgroup (of size at least σg) created
by the split.

6 Related work

The need of quantitative temporal information in patterns over event se-
quences has been pointed in recent works in the data mining literature [12, 3, 11,
4, 6, 9].

An important difference between these approaches and the q-episodes intro-
duced here, is that the former provide patterns in isolation, while q-episodes are
related in tree structures. Such trees give a global view of how the occurrences of
a pattern differentiate in homogeneous groups along the sequence of event types
(from the first to the last element of the pattern).

Different notions of intervals are also considered. In [6] the intervals are not
determined by the data but are fixed by the user; only the interval between the
beginning and the end of a pattern is considered in [9]; and in [3] intervals are
derived from intervals of occurrences of patterns of size two only.

The other approaches [12, 11, 4] compute the intervals from the data and
for all pattern lengths, as in the case of the q-episodes. However, among these
approaches, only [4] considers an exhaustive extraction (at the cost of intrinsi-
cally expensive algorithmic solutions), while the others compute only some of
the patterns using heuristics and/or non-deterministic choices.

Finally, it should be noticed that the overhead of computing the quantitative
temporal information was not assessed in these previous works.

Quantitative Episode Trees 105

7 Conclusion

In this paper we introduced quantitative episodes, an extension of serial
episodes that refines standard episodes by integrating quantitative temporal in-
formation. A tight integration of episode extraction and group tree computation
allowed to obtain a complete and efficient algorithm that adds a negligible over-
head to the extraction of serial episodes, as assessed by the experimental results
on performances. We think that these features, and the possibility of an easy-
to-grasp representation of the output into a graphical tree-like structure, make
the approach suitable for many applications.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of ICDE, pages
3–14, 1995.

2. G. Das, L. K.I., H. Mannila, G. Renganathan, and P. Padhraic Smyth. Rule
discovery from time series. In Proc. of KDD, pages 16–22, 1998.

3. C. Dousson and T. V. Duong. Discovering chronicles with numerical time con-
straints from alarm logs for monitoring dynamic systems. In Proc. of IJCAI, pages
620–626, 1999.

4. F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated
sequences. In Proc. of the SIAM Conference on Data Mining (SDM), 2006.

5. K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. TASA:
Telecomunications alarm sequence analyzer or: How to enjoy faults in your network.
In Proc. of IEEE Network Operations and Management Symposium, pages 520–
529, 1996.

6. Y. Hirate and H. Yamana. Sequential pattern mining with time intervals. In Proc.
of PAKDD, 2006.

7. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–298, November 1997.

8. N. Meger, C. Leschi, N. Lucas, and C. Rigotti. Mining episode rules in STULONG
dataset. In Proc. of the ECML/PKDD Discovery Challenge, 2004.

9. N. Meger and C. Rigotti. Constraint-based mining of episode rules and optimal
window sizes. In Proc. of PKDD, pages 313–324, 2004.

10. M. Nanni and C. Rigotti. Quantitative episode trees. Technical report, 17 pages,
2006.

11. A. Vautier, M.-O. Cordier, and R. Quiniou. An inductive database for mining
temporal patterns in event sequences. In Proc. of ECML/PKDD Workshop on
Mining Spatial and Temporal Data, 2005.

12. M. Yoshida et al. Mining sequential patterns including time intervals. In Proc.
of SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools and
Technology II, 2000.

13. M. Zaki. Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, Special issue on Unsupervised Learning, 42(1/2):31–60, Jan/Feb 2001.

106 Mirco Nanni and Christophe Rigotti

IQL: A Proposal for an Inductive Query

Language

Siegfried Nijssen and Luc De Raedt

Institut für Informatik, Albert-Ludwidgs-Universität,
Georges-Köhler-Allee, Gebäude 097, D-79110, Freiburg im Breisgau, Germany.

snijssen@informatik.uni-freiburg.de

Abstract. The inductive query language IQL is introduced. It is in-
tended as a general, descriptive, declarative, extendable and implementable
language for inductive querying that supports the mining of both local
and global patterns, reasoning about inductive queries and query pro-
cessing using logic, as well as the flexible incorporation of new primitives
and solvers. IQL is an extension of the tuple relational calculus with func-
tions, a typing system and various primitives for data mining. We hope
that it will be useful as an overall specification language for integrating
data mining systems and principles.

1 Introduction

The area of inductive databases [7], inductive query languages, and constraint-
based mining [1] has promised a unifying theory and framework for reasoning
about data mining principles and processes, which should also result in powerful
inductive query languages for supporting complex data mining tasks and scenar-
ios. The key idea is to treat patterns and models as first-class citizens that can
be queried and manipulated. The slogan: “From the user point of view, there
is no such thing as real discovery, just a matter of the expressive power of the
available query language” has been advocated.

There has been a lot of progress in the past few years witnessed by the intro-
duction of several inductive query languages, such as MINE RULE [10], MSQL
[8], DMQL [6] and XMine [3]; Microsoft’s Data Mining Extensions (DMX) of
SQL Server [13]; the algebra of the 3W model [9]; the logic based query lan-
guages of MolFEA [11] and Datalog++ [5], which all have contributed new in-
sights. MINE RULE, MSQL, DMQL and XMine focus on the derivation of either
frequent itemsets or association rules; notation wise, these languages are exten-
sions of the industry standard SQL language. Microsoft’s SQL server includes
a larger set of algorithms, and provides an interface for learning, clustering and
applying a wider range of data mining algorithms, including association rules,
decision trees and Bayesian networks. The algebra of the 3W model supports
assocation rule discovery as well as learning rule based classifiers. The language
of MolFEA allows for the discovery of patterns under constraints, and is more
abstract. Datalog++ is somewhat similar to our proposal, but takes Datalog as
its starting point and is less focused on the representation of constraints.

107

Despite this plethora of languages, there is still no comprehensive theory
of inductive querying or a unifying query language. In this paper, we propose
the inductive query language IQL, which addresses some of the limitations of
existing approaches. We designed IQL with the following goals with in mind:

– to provoke discussion on inductive query languages;

– to encompass a rich variety of data mining tasks, including: local pattern
mining over different domains, clustering, classification, regression as well as
probabilistic modeling;

– to support reasoning about queries, their execution and their optimization
using logic;

– to integrate data mining primitives in a database language; as database
language we employ an extension of the tuple relational calculus rather than
SQL because it is simpler and better grounded in theory;

– to design an extendable language, in which other researchers can describe
and possibly implement their constraints, primitives and approaches; if this
succeeds, IQL might become a unifying description language for data mining;

– to design an implementable language, even though we wish to stress that –at
this point– we are not concerned with the efficiency of the resulting system
but rather with the underlying abstract principles.

The paper is organized as follows: Section 2 provides an intuitive introduction
to our query language; Section 3 introduces IQL in more detail. Within the IQL
we believe that certain primitives should be supported. These are provided in
Section 4. An intuition of how the query language could be evaluated is provided
in Section 5; the kind of reasoning it supports is discussed in Section 6. A scenario
is described in Section 7. Finally we conclude.

2 Some Example Queries

The best way to introduce the ingredients of a language, and hence also those of
IQL, is by providing some examples. IQL is derived from and extends the query
language we introduced earlier [11]. An example inspired on that language, but
rewritten in IQL is :

create table R as

{< pattern : S, freq1 : freq(S, D1), freq2 : freq(S, D2) > | S ∈ Sequences ∧

S � “C −H − 0− n” ∧ freq(S, D1) ≤ 0 ∧ freq(S, D2) ≥ 1 };

This query generates a relation in which the tuples consist of sequential patterns
and their frequency in datasets D1 and D2. Furthermore, all patterns must occur
at least once in dataset D2, must not occur in D1 and must be more general
than (i.e., a substring of) “C −H −O − n” . This query thus corresponds to a
typical local pattern mining step.

108 Siegfried Nijssen and Luc De Raedt

As a second example, consider

create view R′ as

{ T + < target : D(T) > |D ∈ DecisionTrees[< A : Int, B : Int >→< C : Int >] ∧

C45(D, R) ∧ T ∈ R }.

This query creates a view R′, which extends the relation R with the attribute
target. The value of target is the prediction made by a decision tree generated by
C45 on the projection of R to the attributes A, B and C (as the class attribute).
So, this query does not only generate a decision tree but also applies it to a data
set, which corresponds – in part – to a cross-over operation.

These two examples illustrate the following key ingredients of IQL:

– queries are generating relations of the form { tuple | condition (tuple) };
– IQL is an extension on the relational tuple calculus;
– the result of a query is a relation, hence, the closure property is satisfied;
– the values of the tuples can be complex, e.g. sequences, functions, etc.; we also

allow for operations such as “+” and “-” on tuples, which join, respectively
remove attributes from tuples;

– the traditional logical connectives such as ∧,∨,¬ are permitted;
– IQL is able to employ functions; for instance,: freq(t, D), which computes

the frequency of the pattern t in the dataset D;
– classifiers (such as a decision tree) are regarded as functions; so IQL is not

only able to employ functions, but also to generate and manipulate them;
– IQL employs a typing system; for instance the decision tree D maps tuples

with attributes A and B onto their classes C;
– as in [4] there are virtual tables representing domains;
– as in the language by [11], there are some built-in predicates such as �,

which denotes generality, and freq(p, D), which denotes the frequency of
the pattern p in the dataset D;

– calls to specific algorithms, such as C45, can be integrated; this will be
realized using templates, cf. Section 4.

Let us now define these ingredients in a more formal manner.

3 Manipulation of data

To manipulate data as well as pattern and functions, we shall employ an exten-
sion of the tuple relational calculus. The tuple relational calculus is a standard
theoretical query language for relational databases. By using the relational calcu-
lus, we keep the desirable closure property: the result of each query is a relation.
Furthermore, the relational calculus is based on logic and is therefore declarative.

Essential in the relational model is that data is stored in relations, each of
which consists of a set of tuples. A tuple is an expression of the form < n1 :
v1, . . . , nk : vk > where ni is an attribute, and vi a value out of the domain Di

IQL: A Proposal for an Inductive Query Language 109

of the attribute ni, e.g. the tuple < a : 0, b : 1 >. For reasons of convenience,
we allow tuples to be joined or subtracted using the + and − symbols 1. The
schema of a tuple is denoted by < n1 : D1, . . . , nk : Dk >. For instance, in the
above example, this is < a : Boolean, b : Boolean >. A relation is then a set of
tuples over a particular schema, e.g. R = { < a : 0, b : 1 >, < a : 1, b : 0 > }.
We will also say that the schema of a relation is {< n1 : D1, . . . , nk : Dk >}. In
tuple relational calculus, variables range over tuples in relations.

The syntax of the tuple relational calculus is then defined as follows. A query
is an expression of the form {t|q}, where t is a tuple and q is a formula. A formula

is built from the traditional connectives ∧, ∨ and ¬, and contains variables that
can be quantified using the ∃ and ∀ quantifiers. The following atoms are allowed:

– atoms of the form e1θe2, where θ ∈ {≥,≤, >, <, =, 6=} and ei is a term.
Constants, attributes a of tuples t (denoted by t.a) and tuples with one
attribute can be used as terms.

– t ∈ R, where t is a tuple variable, and R is a relation.

From a data mining perspective, a dataset is conceived as a set of tuples,
each of which contains information about an example. One crucial aspect of
IQL is that we allow for arbitrary domains. For instance, we shall consider the
domain of graphs, sequences, . . . , and even those of particular functions. For such
domains, there will typically be special built-in operators such as for instance
the generality or covers relation � stressed by [11]. Similarly, we can conceive a
pattern set as a set of tuples, each of which contains a pattern.

Even though we assume that the inductive database conceptually deals with
domains such as graphs or sequences, this does not mean that we claim that
an inductive database should be able to store such structures entirely in an
attribute. For instance, an attribute in the graph domain could also be imple-
mented as an identifier pointing to another relation storing the real graphs. At
this point, we make an abstraction as to how such objects are incorporated or
implemented, and essentially only assume that they can be manipulated and
passed on using the IQL calculus.

From a data mining perspective, a crucial extension is that we allow for
functions. Functions take tuples, relations and attributes as arguments. The
signature of a function is therefore denoted by

(type1, . . . , typen) → typen+1,

where typei either specifies a domain, or a schema. Predicates are functions
where typen+1 = Boolean. Functions and predicates are incorporated in IQL by
allowing expressions of the form f(e1, . . . , en) where f is a function and the ei

are expressions with type typei. These expressions can occur in atoms, as well
as in tuples, as they denote particular values with typen+1.

To deal with the special nature of classifiers, which, similar to patterns, can be
conceived as domains, but can also be applied as functions, we introduce function

1 For simplicity we shall assume that no clashes occurs (as e.g. in < temp : 5 > + <

temp : 6 >).

110 Siegfried Nijssen and Luc De Raedt

domains. Similar to a pattern domain, a function domain has a name, for instance
DecisionTrees, but also a signature, which defines the signature of an object
that is used as function. An example is the function domain DecisionTrees[< A :
Int, B : Int >→< C : Int >], which contains decision trees that can be applied
to tuples with schema < A : Int, B : Int >.

The final elements of the IQL are:

– we order the domains in a hierarchy. For instance, the DecisionTrees and
SVMs domains are both specializations of the Classifiers domain. We require
that functions that operate on high-level abstract domains, also work on
all specializations of that domain. This makes it possible to store several
different types of classifiers in a single relation, and to apply all classifiers in
this relation to classify the same examples.

– we allow ‘overloading’ of fuctions. This is convenient, for instance, as it allows
to implement the freq and � functions for several pattern domains, without
requiring new symbols.

– we introduce a virtual relation of schema {< element:D >} for every data
mining domain D (similar to [4]). These relations are necessary at the im-
plementation level to make sure that the schema of every tuple variable in
a query is known, and it is clear which overloaded function should be used;

– we allow new relations to be created that contain the result of a query, and
we allow for the definition of views and functions.

The following example illustrates the last three points.

create function f(id : Int) as { t − < id > | t ∈ D ∧ t.id = id }
create table F as { < pattern : S, id : v.id, freq : freq(S, f(v.id)) > |

v ∈ ID ∧ S ∈ Sequences ∧ freq(S, f(v.id)) ≥ 10 };

In this example, the function f creates a subset of the database D having a
particular value id for the corresponding attribute. The second query then looks
for sequences that are frequent in the corresponding subsets of D. The Sequences

relation is a virtual relation for the Sequences domain, which specifies the type
of the tuple variable S in the query and clarifies that we are looking for frequent
sequences. The type of S determines which definition of the overloaded freq

function should be used.

4 Primitives

To introduce primitives that should be supported by the inductive database, we
will use queries that we call templates. A template is a query that is solved by
a data mining algorithm, if certain parameters are substituted. For example, a
frequent itemset miner solves the following template problem:

{I|I ∈ Itemsets ∧ freq(I, R) ≥ θ},

where the underlined terms, like I, are terms that are allowed to be substituted.
The underlying idea is that an algorithm can solve a certain query, if its template

IQL: A Proposal for an Inductive Query Language 111

matches the query; a template matches a query if the query can be obtained by
substituting the terms in the template appropriately (i.e., such that types are
taken into account). The above template introduces the domain Itemsets, and
hence the types of functions should be specified. For this case, we could e.g.
specify that freq is a function with the type

(Itemsets, {< tid : Int, itemset : Itemsets >}) → Integer.

Overall, every data mining algorithm introduces models and patterns in a
certain domain, introduces virtual relations over these domains, introduces func-
tions and predicates that can be applied to the domain, and defines templates
of queries that are solved by the data mining algorithm.

Local pattern mining In general, we can define that a frequent pattern mining
algorithm implements the following meta-template:

{ P | P ∈ Pattern ∧ freq(P , R) ≥ θ };

this query itself is not implementable before Pattern has been substituted with
a derivative type that is a concrete domain, such as Itemsets or Sequences. El-
ements of a template that need to be substituted before the template represents
an implementable algorithm, are double underlined.

Algorithms for mining under condensed representations, such as closed, free,
or nonderivable itemset miners, implement the meta-template:

{P |P ∈ Pattern ∧ freq(P , R) ≥ θ ∧ representation(P ,Pattern, R)};

here representation is a predicate with signature (Pattern, {< element : Pattern >
}, {< tid : Integer, data : Pattern >}). Concrete miners for mining condensed
representations substitute the representation with the name of a representation,

such as closed, free, generator, etc.
Observe that if a predicate representation is implemented, but not as part of

a template, we can still find the condensed representation by postprocessing the
output of a frequent pattern mining algorithm. Thus, the template determines
whether the algorithm allows a constraint to be pushed in the search process or
not.

The template that was solved by MolFEA is [11]:

{ S | S ∈ Pattern ∧ φ(S) },

where φ is a boolean formula supported by MolFEA, which depends only on
S and relations of the proper types. For every pattern domain, we believe that
an inductive database should support the functions � and freq; furthermore,
it should implement the frequent pattern mining template. This is sufficient to
answer almost any local pattern mining query without pushing the constraint.
For some pattern domains, for example, sequences, a solver can then be added to
the database with a broader template, such as MolFEA, to allow the inductive
database to push constraints in the mining process.

112 Siegfried Nijssen and Luc De Raedt

A recent branch of research involves that of mining top k patterns, where
the top k patterns are determined according to some convex measure, such as
the χ2 test. A template which is answered by a top k free itemset miner is:

create view R′ as { < itemset : I, measure : measure(I, R) > |
I ∈ Itemsets [< itemset : Itemsets > → < target : Bool >] ∧
isFree(I, Itemsets, R) };

{I|I ∈ R′ ∧ rank(I, R′) ≤ k}

Here rank is a function that determines the rank of an itemset in a relation
with attributes itemset and measure that is sorted according to this measure.
For the measure function the ‘target’ attribute of an itemset has to be specified,
with which a correlation is computed. This query illustrates that itemsets can
also be interpreted as classifiers: they predict true iff the itemset is contained
in an example; therefore, itemsets can be specialized as classifiers. The relation
R is supposed to contain a target attribute. The isFree function, as previously
defined, assumes that R is a relation containing itemsets. Thus, it can also be
applied on a relation with an additional target attribute.

Observe that the view will not be materialized if we have an algorithm that
matches this template. However, assume that the user adds a minimum frequency
constraint in the view, then an alternative query evaluation plan may arise, in
which the view is evaluated first, and then postprocessed.

Classification algorithms In general, an algorithm for learning a classifier imple-
ments the following template:

{ C | C ∈ Classifiers [< X >→< target : String >] ∧AlgorithmName(C, R) };

here Classifiers is the name of the classification model, for example, DecisionTrees;
AlgorithmName refers to the algorithm that learns the decision tree, for example
C45. Relation R contains, or refers to, the examples from which the classifier
is to be learned. This relation must have a scheme compatible with that of the
classifier that is learned (i.e., the set of attributes in the relation must be a
superset, and of corresponding types).

To deal with additional constraints on the model that is learned, additional
functions can be introduced. A typical function that should be supported by an
inductive database is the accuracy function:

accurary(C, D) = |{T |T ∈ D ∧C(T) 6= T.“target(C)”}|/|D|,

which counts the number of examples in dataset D for which the target predicted
by classifier C does not match the actual value of this attribute; “target(C)”
represents the name of the attribute in the righthand side of the signature of the
classifier.

For particular classifiers, such as decision trees, additional functions should
be supported. In the case of decision trees, the size(T) should return the size of
the decision tree.

IQL: A Proposal for an Inductive Query Language 113

A constraint on the accuracy of a classifier can now easily be applied through
atoms like accuracy(C, D) ≤ 0.9. However, for many algorithms, such as deci-
sion tree learners, this will mainly mean that their result will be filtered; if the
constraint is not satisfied, the decision tree is removed. Some algorithms, how-
ever, may choose to take into account constraints on accuracy and size [12]. The
templates of these algorithms are specializations of the template above, also
matching atoms involving the accuracy and size functions.

Probabilistic Models Probabilistic models differ from classifiers in that they do
not output a single class, but a probability distribution over some target at-
tributes.

{ C | C ∈ ProbModels [< X >→ {< target : String, probability : Float >}] ∧

AlgorithmName(C, R) };

This template reflects this property; a probabilistic model returns a relation,
in which for each target attribute class a probability is stored. An inductive
database should support facilities for using such probabilistic models as classifiers
though we shall not go into the syntactic details of this here.

Clustering Clusterings are similar to probablistic models in that they do not
target a specific class attribute, but rather try to find meaningful groups within
the data. For instance, assume that we have a k-means clustering algorithm that
puts examples into multiple clusters and assigns a degree of membership for each
cluster (for example, according to the distance to the cluster centre). Then the
following template formalizes such an algorithm:

{T + L | C ∈ KMeansClusterings[X → cluster : Int,membership : Float] ∧

myKMeans(n, C, R) ∧ T ∈ R ∧ L ∈ C(T)},

where X is a subset of the attributes of R and n is the number of clusters in the
k-means clustering. For each example this query outputs the clusters that it is
in, and the degree of this membership. Observe that in this template, learning
and prediction are combined into one template. For many clustering algorithms,
it is difficult to separate these operations. However, if a clustering algorithm
generates a function that can assign clusters to unseen examples, then it can be
handled as a classifier.

5 Query Evaluation

Until now we have mainly focused on the elements of IQL. In this section, we
want to argue that the language is also executable and implementable. In this
preliminary draft, we focus on the following subset of IQL:

– all tuple variables are either existentially quantifier or do occur in the left-
hand side of the query;

114 Siegfried Nijssen and Luc De Raedt

– if the query is written in disjunctive normal form, every conjunction must
contain a non-negated atom t ∈ R for every tuple variable occuring in the
conjunction.

A central concept in database theory is that of query safety, which states that
the result of each query should be finite. Even though we shall not provide a
formal definition of safety for IQL queries, under the restrictions specified above,
IQL queries are safe provided that all relations are finite. This will clearly not
be the case when dealing with virtual relations.

An essential observation is that templates can be seen as definitions of func-
tions. Every variable that occurs in the lefthand side of the template, can be
considered an output of the function; all other variables and relations are in-
puts. Assume that a template can be matched against the data, i.e., there is a
substitution such that from the template a subset of the atoms of the query can
be obtained, then we can replace this part of the query with a call to a function
that represents the data mining algorithm. As long as data mining algorithms
then generare finite results, the query language is safe.

Overall, we can now proceed as follows. Without loss of generality we assume
that the formula is in disjunctive normal form. The result of the query then con-
sists of the union of the results of the individual conjunctions. We call the tuple
variables that occur in the lefthand side of the original query the projection vari-

ables. To make the union well-defined, we require that the projection variables
occur with the same schema in all conjunctions.

The query is executable if we can match the templates in a non-overlapping
way, such that all references to virtual data mining relations are matched; then,
each set of atoms that is matched, is replaced by an appropriate function call
to the data mining algorithm; a tuple variable that was part of the output of
the template, is replaced by a tuple variable that ranges over the result of the
data mining algorithm2; We can evaluate the query by walking recursively from
left to right through the query, constantly maintaining an assignment for all
tuple variables. If we encounter an atom T ∈ R, we recurse on every possible
assignment of T . After we have evaluated the entire query for an assignment
to all tuple variables, the projection of that assignment can be computed and
stored as a result of the query.

6 Reasoning

Due to its embedding in logic, IQL allows one to reason about queries, as [11].
For instance, consider the sequence :

create table R as { < pattern : S, freq : freq(S, D1 ∪D2) > |

S ∈ Sequences ∧ freq(S, D1 ∪D2) ≥ 5 };

{< pattern : S, freq : freq(S, D1) > |S ∈ Sequences ∧ freq(S, D1) ≥ 5};

2 We still assume that name clashes are absent.

IQL: A Proposal for an Inductive Query Language 115

and assume that the queries are posed sequentially. Then one can actually see
that the answer to the first query is a superset of that of the second one. There-
fore, rather than calling the frequent pattern miner again for the second query,
one might simply go through the result of the first one to verify which patterns
satisfy the second ferquency constraint. Examples of this kind of reasoning, and
a deeper discussion of these issues, is provided in [11]. Observe, however, that
the frequencies of all frequent sequences have to be computed to finally answer
the second query, as the frequencies in the second query may be smaller than in
the first.

In IQL, this type of reasoning can be extended to constraints on other do-
mains. For instance, a decision tree with minimum accuracy 0.9 on a dataset R
is also a decision tree with minimum accuracy 0.8 on the same dataset.

Due to its close connection to relational calculus, there are similar optimiza-
tion possibilities in IQL as in relational calculus. For instance, consider this
query:

{T +C(T)|T ∈ R∧C ∈ DecisionTrees[< A : Int >→< B : Int >]∧C45(C, R)},

to evaluate this query, the query optimizer should first construct the decision
tree, and then apply it to all examples; it should not choose to construct the
decision tree repeatedly for every example again.

Furthermore, the query optimizer should be aware that it is desirable to
push a constraint in an algorithm if possible; for example, if a specialized closed
itemset miner is available, it should be used. At this point, it remains an open
question and important topic for further research as to what good optimization
strategies for query evaluation are.

7 Scenario

IQL should support the description of scenarios [2]. In this section we will demon-
strate a typical scenario, in which a pattern miner is used to find frequent pat-
terns, these frequent patterns are then used to create features, and finally a
classification model is learned.

The first step in this scenario is easily described. Assume that we have a
database of molecules HIV, and we are looking for subgraphs with a high support
in active molecules, but a low support in the inactive molecules:

create function hiv(d : String) as

{ T− < activity > | T ∈ HIV ∧ T.activity = d }

create table R as

{ S | S ∈ Graphs[< graph : Graphs >→< target : Boolean >]∧
freq(S, hiv(active)) ≥ 10 ∧ freq(S, hiv(inactive)) ≤ 10 }

The subgraphs S are conceived to be classifiers of relations containing a graphs

attribute; they predict 1 iff the graphs attribute contains the specified subgraph.

116 Siegfried Nijssen and Luc De Raedt

For the second step of the scenario we require an additional construction in
the language. To apply a classification algorithm, we need to create a table in
which every column corresponds to one pattern in the relation R. For this we
need a construction for creating tables with arbitrary dimension. To deal with
this issue, we allow tuples of the form < value1 : value2 > in the lefthand side
of queries, in which an attribute is created that obtains its name value1 from an
attribute of another table and its value as usual. This allows us to formulate the
following query:

create function f(Data : {< id : Int, graph : Graphs, activity : String >})as
{< id : T.id, string(G) : G(T), activity : T.activity > |T ∈ Data ∧G ∈ R}

create table Features as f(HIV)

In this query, we assume that the string function creates an appropriate name
for the subgraph. This query can be evaluated in two steps. First, a relation with
schema {< id : T.id,name : String, value : Bool, activity : T.activity >} can be
created. From the name attribute in this table, the names of the new attributes
are collected. Then, for every grouping of tuples according to id and activity, all
< name, value > values are collected, and used to fill in the row.

The result of this query is a relation in which columns denote whether a graph
contains a certain subgraph or not. We can build a decision tree for this relation.

create table R′ as

{D|D ∈ DecisionTrees

[schema-of(Features)− < id, activity >→< activity : Bool >]∧C45(D,Features)}.

Here, schema-of returns the schema of relation Features; the classifier should
use the features in this relation, excluding the id and activity attributes. Finally,
we can use this decision tree to predict the activity of molecules in a dataset HIV′.

create table HIVPredictions as

{T ′ + D(T)|T ∈ f(HIV′) ∧D ∈ R′ ∧ T ′ ∈ HIV′ ∧ T.id = T ′.id}.

This query shows how using traditional data manipulation operations, we can
associate the prediction of a molecule to its original representation, instead of
to its binary feature representation.

8 Conclusions

We presented a relational calculus for data mining. The key ingredients were
the inclusion of functions, and the use of models as functions in the relational
tuple calculus. This allowed us to integrate a large set of algorithms into IQL,
including classification algorithms and clustering algorithms.

Even though IQL was presented in a rather informal way, we believe that IQL
can already be used as a description language and interface to a wide variety of

IQL: A Proposal for an Inductive Query Language 117

data mining algorithms and techniques in a uniform and theoretically appealing
way. The authors would also like to herewith invite other groups interested in the
development of inductive query languages to describe their favorite constraint
based mining tools within IQL.

Nevertheless, there are many remaining issues for further research concerning
IQL. One of these concerns a more formal definition of the syntax and semantics
of IQL, which we could not work out here due to space restrictions. Another
concerns the extension of the evaluation strategy to more general IQL state-
ments, and the development of an optimization strategy grounded in logical
reasoning. Finally, an implementation of IQL could help to support our claims
even though implementation and efficiency are not the primary aim of this work.

Acknowledgements This work was supported by the EU FET IST project IQ
(“Inductive Querying”), contract number FP6-516169.

References

1. F. Bonchi and J-F. Boulicaut. Knowledge Discovery in Inductive Databases, 4th

International Workshop, Revised Selected and Invited Papers. LNCS 3933. 2006.
2. J-F. Boulicaut, L. De Raedt, and H. Mannila. Constraint-Based Mining and Induc-

tive Databases, European Workshop on Inductive Databases and Constraint Based

Mining. LNCS 3848. 2004.
3. D. Braga, A. Campi, A. Ceri, S. Lanzi, and M. Klemetinen. Mining association

rules from XML data. In Proceedings of the 4th International Conference on Data

Warehousing and Knowledge discovery, LNCS 2454, 2002.
4. T. Calders, B. Goethals, and A. Prado. Integrating pattern mining in relational

databases. In PKDD, 2006.
5. F. Giannotti, G. Manco, and F. Turini. Specifying mining algorithms with iterative

user-defined aggregates. In IEEE Transactions Knowledge and Data Engineering,
pages 1232–1246, 2004.

6. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data mining query
language for relational databases. In Proceedings of the ACM SIGMOD Workshop

on research issues on data mining and knowledge discovery, 1996.
7. T. Imielinski and H. Mannila. A database perspective on knowledge discovery. In

Communications of the ACM, volume 39(11), pages 58–64, 1996.
8. T. Imielinski and A. Virmani. MSQL: A query language for database mining. In

Data Mining and Knowledge Discovery, volume 2(4), pages 373–408, 1999.
9. T. Johnson, L. V. Lakshmanan, and R. Ng. The 3w model and algebra for unified

data mining. In Proc. VLDB Int. Conf. Very Large Data Bases, pages 21–32, 2000.
10. R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules.

In Data Mining and Knowledge Discovery, volume 2(2), pages 195–224, 1998.
11. L. De Raedt. A perspective on inductive databases. In SIGKDD Explorations,

volume 4(2), pages 69–77, 2003.
12. J. Struyf and S. Dzeroski. Constraint based induction of multi-objective regression

trees. In KDID, pages 222–233, 2005.
13. Z. Tang and J. MacLennan. Data Mining with SQL Server 2005. Wiley, 2005.

118 Siegfried Nijssen and Luc De Raedt

Mining Correct Properties in Incomplete Databases

François Rioult and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
F-14032 Caen Cédex France

{Francois.Rioult,Bruno.Cremilleux}@info.unicaen.fr

Abstract. Missing values issue in databases is an important problem because miss-
ing values bias the information provided by the usual data mining methods. In this
paper, we are searching for mining patterns satisfying correct properties in pres-
ence of missing values (it means that these patterns must satisfy the properties
in the corresponding complete database). We focus on k-free patterns. Thanks to a
new definition of this property suitable for incomplete data and compatible with the
usual one, we certify that the extracted k-free patterns in an incomplete database
also satisfy this property in the corresponding complete database. Moreover, this
approach enables to provide an anti-monotone criterion with respect to the pattern
inclusion and thus design an efficient level-wise algorithm which extracts correct
k-free patterns in presence of missing values.

1 Introduction

Missing values in databases is a problem as old as the origin of these storage structures.
It is an important issue because information extracted by usual data mining or statistics
methods in incomplete data are biased and do not reflect the sound knowledge on the
domain. We show in Section 2.2 the damages due to missing values in the pattern mining
area. The popular uses of (frequent) patterns (e.g., rules, classification, clustering) are no
longer reliable. The basic idea of elementary techniques to cope with missing values is
to guess them (e.g., use of the mean, the most common value, default value) and com-
plete them. Unfortunately, these techniques are not satisfactory because they exaggerate
correlations [1] and missing values completion remains a hard track.

On the contrary, in this paper, we are searching for mining patterns satisfying proper-
ties in presence of missing values which are also satisfied in the corresponding complete
database. Our key idea is to highlight properties from an incomplete database, these prop-
erties must be consistent in the real database without missing values. We say that these
properties are correct. This can be achieved because some characteristics are not removed
by missing values. For instance, if a pattern is frequent in a database with missing values,
it must be frequent in the corresponding complete database. In Section 3.1, we propose
an operator to define the relation between an incomplete database and every possible
completion.

In this paper, we focus on the property of k-freeness [2]. This property is on the core
of frequent pattern mining, association rules building, and more generally condensed rep-
resentations of frequent patterns [3] which enable multiple uses of frequent patterns. Our
main contribution is to propose a new definition of the k-freeness property in incomplete
data which is fully compatible with the usual one in a database without missing values.

119

This new definition certifies that the extracted patterns satisfying this definition in an
incomplete database are k-free in the corresponding complete database and, in fact, in
every completion of the incomplete database. Moreover, this approach leads to an anti-
monotone criterion with respect to the pattern inclusion and thus allows to design an ef-
ficient level-wise algorithm which extracts k-free patterns in presence of missing values.
This work is a first step toward classification in incomplete databases with generalized
associations and its application to missing values imputation.

The presentation is organized as follows: Section 2 gives the background about the k-
freeness of patterns, briefly shows the damages caused by the missing values and presents
our position statement. Section 3 defines the computation of k-free patterns in presence
of missing values and demonstrates that these patterns are correct in the correspond-
ing complete database. Experiments on benchmark data confirm the effectiveness of our
method (Section 4).

2 Preliminaries
In this section, we introduce the k-free patterns and the generalized association rules
which stem from these patterns. We show the damages due to the missing values and we
give our position statement to solve this pattern mining problem.

Let us consider a database which gathers objects depicted by quantitative or quali-
tative attributes in an attribute/values format (see Table 1). Eight objects are described
by three attributes X1, X2 and X3. In the field of boolean pattern mining, qualitative
attributes need to be discretized in order to get boolean contexts (this article does not
discuss this stage).

attributes
objects X1 X2 X3

o1 + → 0.2
o2 − → 0
o3 + → 0.1
o4 + ← 0.4
o5 − → 0.6
o6 − → 0.5
o7 + ← 1
o8 − ← 0.8

Table 1. Attribute/value format database.

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×
o5 × × ×
o6 × × ×
o7 × × ×
o8 × × ×

Table 2. Boolean context r.

Let r be a database and (A,O, R) a boolean context where O is the set of objects, A
is the set of attributes and R is a binary relation. An object is a subset of A (for example,
o1 = {a1, a3, a5}) and it will be denoted as a string (i.e., a1a3a5). |r| is the number of
objects in r, i.e. |r| = |O|. Table 2 indicates the boolean context where X3 is coded by
the attributes a5 to a7.

A pattern X is a subset ofA, its support is the set of objects containing X (we denote
supp(X) = rX = {o ∈ O | X ⊆ o}) and its frequency F(X) = |supp(X)| is the
number of objects in the support. A classical association rule [4] is an expression X →
Y , where X and Y are two patterns. It is quantified by its frequency (i.e., F(X ∪ Y))
and its confidence: conf(X → Y) = F(X ∪ Y)/F(X).

120 François Rioult and Bruno Crémilleux

2.1 Generalized association rules and k-freeness

We start by recalling generalized patterns [2] because they are at the core of the general-
ized association rules. A generalized pattern is made of boolean attributes and negations
of boolean attributes. For example, the generalized pattern Z = a1a2a3 can be written
as the union of a positive part X = a1a3 and a negative one Y where Y = a2. An object
o supports Z = X ∪ Y if X ⊆ o and Y ∩ o = ∅. To alleviate the notations, we omit the
union sign in the following and write XY instead of X ∪ Y . F(XY) is central: if it is
null, one element of Y is always present with X and ensures a generalized association
between X et Y . These associations lead to the generalized association rules introduced
in [2] which are a generalized form of association rules. The originality of these rules
(also called disjunctive rules) is to conclude on a disjunction of attributes as indicated by
Definition 1, which comes from [2].

Definition 1. A generalized association rule based on Z = X ∪ Y is an expression
X→ ∨Y where X and Y are two classical patterns. It is exact in a database r if every
object of r containing the premise X also contains one attribute of the conclusion Y . We
denote |=r X→ ∨Y ⇐⇒ F(XY , r) = 0.

We define the frequency of a generalized association rule as follows (this definition
diverges with that of the classical association rules).

Definition 2. The frequency F(X→ ∨Y) of X→ ∨Y is the number of objects contain-
ing X and at least one attribute of Y . We get F(X→ ∨Y) = F(X)−F(XY).

Let us move now to k-free patterns. They have been proposed1 by Calders and
Goethals [2], and they are very useful to compute the generalized association rules. A
k-free pattern expresses the absence of correlation between its attributes:

Definition 3 (k-free pattern). A pattern Z is k-free in a complete database r (without
missing values) and we denote kFree(Z, r) if it does not exist any generalized associa-
tion rules based on Z in r, or: ∀X ∪ Y = Z, |Y | ≤ k ⇒ F(XY) 6= 0.

The k-free patterns have excellent properties to sum up the collections of frequent
patterns. For example, in the mushroom dataset [6], there are 2.7 · 109 present patterns,
but 426, 134 1-free and 224, 154 2-free patterns. With k higher than 5, the number of
k-free patterns stays at 214, 530, and they are mined in two minutes. Until now, k-free
patterns have mostly been employed to compute condensed representations of frequent
patterns [3] but they get meaningful properties to produce rules. In particular, 1-free pat-
terns are used to compute the non redundant classical association rules [7,8]. The premise
of such a rule is a 1-free X and its conclusion is the GALOIS closure h(X). The exhibition
of non redundant generalized association rules is more complex. We indicate two tech-
niques. The first mines the 1-free patterns and then compute their generalized closure [9].
It gathers all minimal patterns Y sharing one attribute with every object containing X , it
is obtained by computing the minimal transversals [10] of these objects [9]. The second
technique takes benefit from the anti-monotonicity of the k-freeness and the border the-
ory of this property [11]. The rules are built from the minimal non k-free patterns, which

1 With k = 2, these patterns have been introduced by [5] with the term of disjunction-free sets.

Mining Correct Properties in Incomplete Databases 121

constitute the negative border of the k-free patterns (details are given in [12]). General-
ized association rules stem from non k-free patterns (such a rule X→ ∨Z\X is built from
a non k-free pattern Z where X is the smallest subset of Z such that F(XZ\X) = 0).

Generalized association rules convey correlations with a richer formalism than the
classical ones. They enable new uses such as supervised classification [13] based on
positive and negative rules [14] (i.e., rules concluding on an attribute or its negation). For
example, the rule a1 → a4 ∨ a5 is exact in the data of Table 2 and leads to the positive
rule a1a4 → a5 and the negative one a4a5 → a1.

From the computation point of view, k-freeness is an anti-monotone property and
these patterns can be efficiently mined thanks to the levelwise framework [11]. In order
to check if a candidate pattern is k-free during the scan stage, the frequency of XY is
computed with the inclusion-exclusion principle [15], by using the frequencies of the
subsets of XY : F(XY) =

∑
∅⊆J⊆Y (−1)|J|F(XJ). As we have seen that in practice k

remains low, the difficulty of computing the supports with the inclusion-exclusion prin-
ciple is endurable.

2.2 Damages of missing values on k-free patterns

We show now the damages due to the missing values. Assume that some attributes of the
dataset given in Table 1 are unknown, then missing values appear. We use the character
’?’ to denote that a value is neither present nor absent for every boolean attribute com-
ing from the corresponding attribute in the original database. We have introduced three
missing values in our running example and the database r′ resulting from this operation
is indicated in Table 3.

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ? ? ?
o4 × × ×
o5 × × ×
o6 ? ? × ×
o7 × × ×
o8 × ? ? ×

Table 3. Incomplete DB r′.

Complete DB r Incomplete DB r′

X h(X) X h(X) X h(X) X h(X)
a1 a1a3 a5 a1 a1a3

a2 a1a4 a2 a1a5

a3 a1a5 a3 a3 a2a3

a4 a2a3 a4 a1 a2a5 a3

a5 a3 a2a6 a3 a5 a3 a2a6 a3

a6 a3a6 a2 a6 a3a6

a7 a4 a7 a4a7

Table 4. 1-free 2-frequent patterns and their closures.

The usual support computation for a pattern X in an incomplete database is realized
as follows: an object belongs to the support of X if all of its attributes are present in X .
If one of its attributes is missing or absent, the object does not belong to the support.
How to compute in presence of missing values the supports for generalized patterns?
Definition 3 does not plan this situation and the problem is particularly accurate for com-
puting the frequency of XY . Without any recommendation, computations are performed
by ignoring the missing values (i.e, they are not taken into account).

Table 4 depicts this problem. This table gives the 1-free patterns with a minimum
support of two objects. The left part relates the results in the complete database, the right

122 François Rioult and Bruno Crémilleux

part in the incomplete one. For each pattern, its closure is indicated. The right part lists
the 1-free patterns of r′: a1a4 is 1-free in r and no more in r′. Furthermore, the right
part includes patterns, such as a2a5 and a4a7, which are not in r: we qualify them as
incorrect.

Missing values lead to damages both on free patterns and their closures. Assume that
an attribute a belongs to X’s closure in the complete database: it means that a is always
present with X . If missing values appear on a, it may happen that this association is
broken for some objects: a goes out from the closure (damage on the closure) and Xa
can become free (damage on the free pattern). In our example, a4 is in a7’s closure in
r, while it goes out from this closure in r′ because of the missing value in the object o8.
Thus, a4a7 is incorrectly declared 1-free.

Experiments on benchmarks from the UCI [6] emphasize these damages as well.
Starting from a complete database, we artificially introduce missing values according to
a uniform probability. Then we mine the 3-free patterns and measure the number of incor-
rect patterns relatively to the number of correct patterns in the original context (cf. Fig-
ure 1). The number of incorrect patterns differs according to the databases. It is less than
10% for the datasets pima, wine, liver-disorders, servo and tic-tac-toe
(the corresponding chart is not reported). For the datasets given on the left part of the
figure, the number of incorrect patterns is between 10 and 90% of the number of exact
patterns. In the right part, this quantity goes to 300%, what means that for four computed
patterns, three are incorrect.

In real conditions where the complete database is not known, it is impossible to dif-
ferentiate good and bad patterns, and to say in advance if a small or a big proportion
of incorrect patterns will appear. Our work aims at avoiding the damages by correctly
computing the k-free patterns in incomplete contexts.

page−blocks

lymphography

iris

glass

 0 5 10 15 20

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Missing values rate (%)

In
co

rr
ec

t
p
at

te
rn

s
(%

)

zoo

solar−flare

 0

 50

 100

 150

 200

 250

 300 300

 250

 200

 150

 100

 50

 0
 0 5 10 15 20

Missing values rate (%)

In
co

rr
ec

t
p
at

te
rn

s
(%

)

Fig. 1. Incorrect 3-free patterns in UCI datasets.

2.3 Position of our work

There are several works which address the missing values issue in databases [16,17] but
contributions in the field of data mining are few. Arnaud RAGEL [18] studied association
rules mining in presence of missing values by redefining the support and the confidence,
these rules may be used to a completion (or imputation) goal. More recently, [19] gives
a basic completion method, founded on the probability of the different attributes. The

Mining Correct Properties in Incomplete Databases 123

support of a pattern for an object is no more boolean but probabilistic. [20] computes
prediction rules in the complete part of a database. These rules provide intervals for
continuous attributes.

Our work stems from the following principles:

– we do not want to impute the missing values before the knowledge discovery stage,
because it is a difficult operation without any specific knowledge.

– we wish to mine the whole incomplete database without reducing it to its complete
part. It means that we do not want to remove objects or attributes.

We do not assume any statistical hypothesis about the probability model of the miss-
ing values. In order to deal with missing values, the next section defines a modeling
operator mv(). We will see that this formalization is useful because it allows to define
an incomplete database as the result of an operation removing some values from the com-
plete database. Then computations performed in an incomplete database can characterize
properties which are common to every corresponding complete database.

The following shows that it is possible to discover valid knowledge for the complete
database under these hypothesizes. As stated in introduction, this principle is not surpris-
ing: if we consider that missing values hide the true values of the data, the frequencies of
some patterns will only decrease (we do not know for some objects if they are present). A
frequent pattern in an incomplete database only can be a fortiori frequent in the complete
dataset. We will use the same principle to compute correct k-free patterns in presence of
missing values.

3 Mining k-free patterns in incomplete databases

We propose here a definition of the k-freeness property in an incomplete database. We
show that it enables to compute patterns ensuring the property of freeness in every com-
pletion.

3.1 Missing values modeling operator

As previously explained, our position for the missing value problem requires a model-
ing operator. It defines the relation between an incomplete database and every possible
completion.

Definition 4 (Missing values modeling operator). Let r = (A,O, R) be a boolean
context. An operator mv() is named a missing values modeling operator if it transforms
a complete database r in mv(r) = (A,O,mv(R)). The new binary relation mv(R)
takes its values in {present, absent, missing} and satisfies the following properties,
for every attribute a in A, every object o in O, and value ∈ {present, absent} :

1. mv(R)(a, o) = value ⇒ R(a, o) = value ;
2. R(a, o) = value ⇒ mv(R)(a, o) ∈ {value, absent} ;

Section 2.2 showed that computing the k-free patterns without precaution leads to
incorrect patterns. In our work, we correctly define the computation of the k-freeness
property:

124 François Rioult and Bruno Crémilleux

Definition 5 (k-correct pattern). Let r′ be an incomplete database and mv() a model-
ing operator for the missing values. A pattern Z is k-correct in r′ if for every complete
database r, (mv(r) = r′) ⇒ kFree(Z, r).

3.2 Temporarily deactivating objects

We introduce here the deactivation of objects in an incomplete database. It differentiates
on the one hand the objects which support or not a given pattern, and on the other hand
the incomplete objects where the decision of support can not be taken. The deactivation
enables to quantify the frequency gap between the complete and the incomplete database.
In presence of missing values, the frequencies can indeed only decrease. In our example
(Table 2), F(a3a5, r) = 3 but F(a3a5,mv(r)) = 2 (Table 3 with r′ = mv(r)). In order
to correctly compute the frequency of a pattern X in mv(r), it is necessary to differentiate
the objects of mv(r) having a missing value among the attributes of X . These objects
will be temporarily deactivated in order to compute an estimation of supp(X, r) with the
help of supp(X, mv(r)), because it is impossible to decide if they do contain X or not.

Definition 6 (Deactivated object). For a classical pattern X ⊆ A, an object o ∈ O
is deactivated if ∀a ∈ X, mv(R)(a, o) 6= absent and ∃a ∈ X s.t. mv(R)(a, o) =
missing. We denote DES(X, mv(r)) for the objects of mv(r) deactivated for X .

Figure 2 exemplifies the notion of deactivation, by simultaneously presenting the
complete database r (on the left) and the incomplete one mv(r) (on the right). We sup-
pose that each object of the top part contains X and this part is named rX . The down part
is named rX .

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�

� � � � �� � � �� � � � � � �� � � � � � �� � �� � �

	 	 	
	 	 	

� � �� � �

A
B
C
D
E

F

rX

rX

r mv(r)

mv(r)X

DES(X, mv(rX))

DES(X, mv(r))

Fig. 2. Database mv(r) and deactivated objects for X .

On the right, the hatched zone shows the objects of mv(r) which contain missing
values. It is composed of six sets of objects, which are described below (their composition
is indicated for our example of Table 3, with X = a2a3):

Region A: (o2, o5) the objects without missing value, containing X;

Mining Correct Properties in Incomplete Databases 125

Region B: (no object in our example) the objects initially containing X , whose missing
values do not obscure the presence of X . These objects belong to mv(r)X ;

Region C: (o6) the objects initially containing X , whose missing values hide the pres-
ence of X and constitute DES(X, mv(rX));

Region D: (o8) the objects not containing X in the complete database, but which could
contain it with a suitable imputation of the missing values. The object o8 does not
contain the pattern a2a3 in the complete database of our example, and it is preven-
tively deactivated;

Region E: (o3) the incomplete objects not containing X in the original dataset nor after
any imputation of the missing values;

Region F: (o1, o4, o7) the complete objects which do not contain X .

In the incomplete database mv(r), each object is assigned in three different groups
for deciding the support of X:

Regions A and B: mv(r)X the objects supporting X , in spite of the missing values of
B;

Regions C and D: DES(X, mv(r)) the objects where the support of X is undecidable;
Regions E and F : the objects not supporting X .

The deactivation allows to precisely characterize the support difference between the
incomplete database and the complete one:

Proposition 1. Let X be a classical pattern, r a database and mv a modeling op-
erator. DES(X, mv(rX)) = rX \ mv(r)X and |DES(X, mv(rX))| = F(X, r) −
F(X, mv(r)).

Let us detail this principle for our example and the pattern a2a3: ra2a3 =
{o2, o5, o6} and its frequency is 3. In the incomplete database, its frequency is 2 and
DES(a2a3,mv(ra2a3)) = {o6}: we have the equality of Proposition 1. If the com-
plete dataset r is not known, rX is neither known, nor |DES(X, mv(rX))|. But the
support can be bounded with considering the deactivated objects in mv(r) instead of
mv(rX), because this database contains more objects than mv(rX). In our example
DES(a2a3,mv(r)) = {o6, o8} because of the confusion induced in o8 by the missing
value on a3 and a4. F(a2a3, r) is then between F(a2a3,mv(r)) and F(a2a3,mv(r)) +
|DES(a2a3,mv(r))|, i.e. between 2 and 4.

In the following, it is necessary to define the deactivation for the generalized patterns.
For that purpose, we use the inclusion-exclusion principle:

Definition 7 (Generalized deactivation).
des(XY ,mv(rXY)) =

∑
∅⊆J⊆Y (−1)|J||DES(XJ,mv(rXJ))|.

The set DES(XY ,mv(rXY)) is not defined, so we denote the generalized deac-
tivation with lower cases: des(XY ,mv(rXY)). It allows nevertheless to quantify the
frequency difference between the complete and the incomplete database.

Proposition 2. des(XY ,mv(rXY)) = F(XY , r)−F(XY ,mv(r)).

126 François Rioult and Bruno Crémilleux

This frequency gap can be negative. When the association between X and Y exists
in the complete database (F(XY , r) = 0), one missing value can delete it in the incom-
plete one (F(XY ,mv(r)) > 0). In this case, the difference is negative. In our example,
des(a7a4) = 0− 1 = −1.

For the deactivated objects regarding an association X→ ∨Y , we define
|DES(X→ ∨Y ,mv(rX→∨Y))| = |DES(X, mv(rX))|−des(XY ,mv(rXY)). We then
have a similar behavior as emphasized in Propositions 1 and 2:
|DES(X→ ∨Y ,mv(rX→∨Y))| = F(X→ ∨Y , r)−F(X→ ∨Y ,mv(r)).

Moreover, an object is deactivated for an association X→ ∨Y if it is deactivated
for X , or if it contains X but every attribute of Y is missing. Denoting DES(∧Y,
mv(rX→∨Y)X) for these objects, we have |DES(X→ ∨Y ,mv(rX→∨Y)) = |DES(X,
mv(rX→∨Y))|+ |DES(∧Y, mv(rX→∨Y)X)|.

3.3 k-freeness definition and correction in incomplete databases

With the help of the deactivation of the incomplete objects, the frequency of XY in r can
be bounded by two quantities which are computed in mv(r) :

Property 1. F(XY ,mv(r))−|DES(∧Y, (mv(r))X)| ≤ F(XY , r) ≤ F(XY ,mv(r))+
|DES(X, mv(r))|.

Proof. Proposition 2 says that F(XY , r) = F(XY , mv(r)) + des(XY , mv(rXY)).
The deactivation of an association allows to write des(XY , mv(rXY)) =
|DES(X, mv(rX))| − |DES(X→ ∨Y , mv(rX→∨Y))|. On one hand, we have the upper
bound des(XY , mv(rXY)) ≤ |DES(X, mv(rX))|, and when avoiding the restriction on
the deactivation database, des(XY , mv(rXY)) ≤ |DES(X, mv(r))|. On the other hand,
we break up des(XY , mv(rXY)) = |DES(X, mv(rX))| − (|DES(X, mv(rX→∨Y))| +
|DES(∧Y, mv(rX→∨Y)X)|) = (|DES(X, mv(rX))| − |DES(X, mv(rX→∨Y))|) −
|DES(∧Y, mv(rX→∨Y)X)|. The difference |DES(X, mv(rX))| − |DES(X, mv(rX→∨Y))| is
positive so we have the lower bound des(XY , mv(rXY)) ≥ |DES(∧Y, mv(rX→∨Y)X)|. With-
out the restriction on the deactivation database, des(XY , mv(rXY)) ≥ |DES(∧Y, mv(r)X)|.

The k-freeness property can be defined in incomplete databases with the bounds for
the frequency of XY .

Definition 8 (k-freeness in incomplete databases).

– A pattern Z is k-free in mv(r) and we denote kFree(Z,mv(r)) if and only if
∀XY = Z, |Y | ≤ k, F(XY ,mv(r))− |DES(∧Y, (mv(r))X)| > 0.

– A pattern Z is k-dependent in mv(r) and we denote kDepdt(Z, r) if and only if
∃XY = Z, |Y | ≤ k, F(XY ,mv(r)) + |DES(X, mv(r))| = 0.

k-freeness and k-dependence are independently introduced. Section 3.4 will justify
this distinction because these definitions are not reverse, due to the missing values.

Let us first note that, in a complete database, our definition of the k-freeness is com-
patible with the classical Definition 3. In this case, the set of deactivated objects is empty
when there is no missing values. It is an important point in order to design algorithms
which work indifferently on complete or incomplete contexts.

The k-freeness in an incomplete database is linked to this in a complete database with
the important following theorem:

Mining Correct Properties in Incomplete Databases 127

Theorem 1 (k-freeness correction). Let r′ be an incomplete database and mv() a miss-
ing values modeling operator. For every complete database r such that mv(r) = r′ and
every pattern Z,
- kFree(Z, r′) =⇒ kFree(Z, r);
- kDepdt(Z, r′) =⇒ ¬kFree(Z, r).
The k-free patterns of r′ are k-correct.

Proof. Property 1 shows that F(XY , r) is bounded by F(XY , r′) − |DES(∧Y, r′X)|
and F(XY , r′)+ |DES(X, r′)|. If the lower bound is strictly positive, F(XY , r) is also
strictly positive then non null and the pattern is k-free in r. If the upper bound is null,
F(XY , r) is null and the pattern is not k-free in r.

Computed with Definition 8, the k-free patterns are then k-correct, i.e. they are k-free
in every database completion. In [21,22], this correction is shown for the particular case
when k = 1. These definitions of the k-freeness and the k-dependence allow to compute
properties which are true in every completion: our definitions are correct. They are also
complete because they characterize all k-free patterns in every completion:

Theorem 2 (k-freeness completeness). Let r′ be an incomplete database. If Z is k-
free in every complete database r such that there exists a modeling operator mv() with
mv(r) = r′, then Z is k-free in r′.

Proof. Suppose the converse, i.e. let Z be k-free in every database r such that mv(r) =
r′ but non k-free in r′. ∃XY = Z | F(XY , r′) − DES(∧Y, r′X) ≤ 0. Let r0 be the
database stemming from r′ with replacing each missing value by an absent value, then
mv(r0) = r′. In r0, the deactivation is null because r0 is complete, and the computation
of F(XY , r0) gives the same result as in r′ where it is done with the frequencies of the
present attributes. F(XY , r0) is then null and Z is not k-free is r0 : contradiction.

In an incomplete database, every computed k-free pattern is k-correct and every pat-
tern which is k-free in every completion of the database is covered by this definition.

3.4 Properties of the k-freeness in incomplete databases

The k-freeness and the k-dependency are not complementary: some patterns will be nei-
ther k-free nor k-dependent because it is sometimes impossible to decide if they are
present or not in an object. The table below details the computation of 1-freeness for the
pattern a4a7:

X Y F(XY , mv(r)) |DES(∧Y, mv(r)X)| |DES(X, mv(r))| 1-free? 1-dependent?
a4 a7 1 1 1 1− 1 ≯ 0 : no 1 + 1 6= 0 : no
a7 a4 1 1 1 1− 1 ≯ 0 : no 1 + 1 6= 0 : no

We now give a vital property for designing k-free patterns mining algorithms. It refers
to the (anti)-monotonicity of the k-freeness or dependency. The k-freeness does not sat-
isfy a property of (anti-)monotonicity, but Theorem 3 indicates that the k-dependency is
monotone.

Theorem 3 (Monotonicity of the k-dependency property). The k-dependency prop-
erty is monotone, i.e. for all patterns Z and every database r′, Z ⊆ Z ′ ⇒ (kDepdt(Z, r′)
⇒ kDepdt(Z ′, r′)).

128 François Rioult and Bruno Crémilleux

Proof. Let Z be a k-dependent pattern. ∃XY = Z, F(XY ,mv(r)) +
|DES(X, mv(r))| = 0 or F(XY ,mv(r)) = 0 and |DES(X, mv(r))| = 0.
F(XY ,mv(r)) = 0 means that for all object o ∈ O, X ⊆ o ⇒ Y ∩ o 6= ∅. A for-
tiori, X ⊆ o ⇒ aY ∩ o 6= ∅ for all a ∈ A, then F(XaY , mv(r)) = 0. By induction on
all attributes of Z ′\Z, one deduces that Z ′ is also k-dependent.

With this result, the framework of the level-wise algorithms can be used with the
negation of the k-dependency constraint, and we have written the MV-k-miner proto-
type. The full algorithm is provided in [12].

4 Experiments on UCI benchmarks

We now reproduce the experiments described in Section 2.2 and measure the number of
3-free patterns computed with MVminer in mv(r), compared to r. Results are reported
in Figure 3. Due to the lack of space, only solar-flare and zoo are detailed. In the
other datasets, the same trends appear.

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 15 10 5 0

Missing values rate (%)

3
−

fr
ee

 p
at

te
rn

s
(%

)

 20 0 5 10 15 20
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Missing values rate (%)

3
−

fr
ee

 p
at

te
rn

s
(%

)

solar-flare zoo

Fig. 3. Proportion of 3-free patterns in mv(r) (r gives 100 %).

As expected, the number of patterns recovered by our method decreases according
to the number of missing values. Indeed, each pattern is k-correct or k-free in every
complete dataset, whose number is exponential in the number of missing values. But
MV-k-miner computes only k-correct patterns. While data mining is known to produce
a huge number of patterns, their correctness is essential. Missing values damages are
then avoided and this result opens the way for the uses of k-free patterns mentioned in
Section 2.1.

5 Conclusion

We proposed a definition for the k-free property in an incomplete database. Thanks to
this new definition, the mined patterns are k-correct, or k-free in every completion of the
database: this avoids damages due to missing values. Our perspectives address the clas-
sification with generalized associations and its application to missing values imputation.

Mining Correct Properties in Incomplete Databases 129

References

1. Grzymala-Busse, J., Hu, M.: A comparison of several approaches to missing attribute values
in data mining. In: RSCTC ’00: Revised Papers from the Second International Conference on
Rough Sets and Current Trends in Computing, London, UK. (2001) 378–385

2. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. In: Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD’03). (2003) 71–82

3. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD’02). (2002)

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Intl. Conference on
Very Large Data Bases (VLDB’94), Santiago de Chile, Chile. (1994) 487–499

5. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns. In: ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. (2001) 267–273

6. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
7. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining minimal non-redundant

association rules using frequent closed itemsets. In: International Conference on Deductive
and Object Databases (DOOD’00). (2000) 972–986

8. Zaki, M.: Generating non-redundant association rules. In: ACM SIGKDD international con-
ference on Knowledge discovery and data mining, Boston, USA. (2000) 34–43

9. Rioult, F.: Extraction de connaissances dans les bases de données comportant des valeurs man-
quantes ou un grand nombre d’attributs. PhD thesis, Université de Caen Basse-Normandie,
France (2005)

10. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph transversals,
and machine learning. In: PODS’97. (1997)

11. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3) (1997) 241–258

12. Rioult, F., Crèmilleux, B.: Extraction de propriétés correctes dans des bases de données in-
complétes. In: Actes de la conférence francophone sur l’apprentissage automatique (CAp’06),
Trégastel, France, Presses Universitaires de Grenoble (2006) 347–362

13. Antonie, M.L., Zaı̈ane, O.: An associative classifier based on positive and negative rules. In:
DMKD’04. (2004)

14. Antonie, M.L., Zaı̈ane, O.: Mining positive and negative association rules: An approach for
confined rules. In: PKDD’04. (2004) 27–38

15. Jaroszewicz, S., Simovici, D.: Support approximations using bonferroni-type inequalities. In:
Principles of Data Mining and Knowledge Discovery (PKDD’02). (2002) 212–224

16. Dyreson, C.E.: A Bibliography on Uncertainty Management in Information Systems. In:
Uncertainty Management in Information Systems. Kluwer Academic Publishers (1997)

17. Levene, M., Loizou, G.: Database design for incomplete relations. ACM Transactions on
Database Systems 24(1) (1999) 80–126

18. Ragel, A., Crémilleux, B.: Mvc - a preprocessing method to deal with missing values.
Knowledge-Based Systems 12(5-6) (1999) 285–291

19. Nayak, J., Cook, D.: Approximate association rule mining. In: Florida Artificial Intelligence
Research Symposium, Key West, Florida, USA. (2001) 259–263

20. Jami, S., Jen, T., Laurent, D., Loizou, G., Sy, O.: Extraction de règles d’association pour la
prédiction de valeurs manquantes. In: Colloque Africain sur la Recherche en Informatique
(CARI). (2004)

21. Rioult, F., Crémilleux, B.: Condensed representations in presence of missing values. In:
Symposium on Intelligent Data Analysis, Berlin, Germany. (2003) 578–588

22. Rioult, F., Crémilleux, B.: Représentation condensée en présence de valeurs manquantes. In:
XXIIè congrès Inforsid, Biarritz, France. (2004) 301–317

130 François Rioult and Bruno Crémilleux

Efficient Mining under Flexible Constraints
through Several Datasets

Arnaud Soulet, Jǐŕı Kléma, and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
Campus Côte de Nacre, F-14032 Caen Cédex France

{Forename.Surname}@info.unicaen.fr

Abstract. Mining patterns under many kinds of constraints is a key point
to successfully get new knowledge. In this paper, we propose an efficient
new algorithm Music-dfs which soundly and completely mines patterns
with various constraints from large data and takes into account external
data represented by several heterogeneous datasets. Constraints are freely
built of a large set of primitives and enable to link the information scat-
tered in various knowledge sources. Efficiency is achieved thanks to a new
closure operator providing an interval pruning strategy applied during the
depth-first search of a pattern space. A genomic case study shows both the
effectiveness of our approach and the added-value of background knowledge
such as free texts or gene ontologies in discovery of meaningful patterns.

1 Introduction

In current scientific, industrial or business data mining applications, the critical
need is not to generate data, but to derive knowledge from huge and heterogeneous
datasets produced at high throughput. Putting all this data together has become
a pressing need for developing environments and tools able to explore and discover
new highly valuable knowledge. This involves different challenges, like designing
efficient tools to tackle a large amount of data and the discovery of patterns of a
potential user’s interest through several datasets. Constraints provide a focus on
the most promising knowledge by reducing the number of extracted patterns to
those of a potential interest given by the user. Furthermore, when constraints can
be pushed deep inside the mining algorithm, performance is improved, making the
mining task computationally feasible and resulting in a human-workable output.

This paper addresses the issue of efficient mining under flexible constraints
from large binary data combined with several heterogeneous external datasets
synthetizing background knowledge (BK). Large datasets are characterized mainly
by a large number of columns (i.e., items). This characteristic often encountered
in a lot of domains (e.g., bioinformatics, text mining) represents a remarkable
challenge. Usual algorithms show difficulties in running on this kind of data due to
the exponential search space growth with the number of items. Known level-wise
algorithms can fail in mining frequent or constrained patterns in such data [5].
On top of that, the user often would like to integrate BK in the mining process
in order to focus on the most plausible patterns consistent with pieces of existing

131

knowledge. BK is available in relational and literature databases, ontological trees
and other sources. Nevertheless, mining in a heterogeneous environment allowing a
large set of descriptions at various levels of detail is highly non-trivial. This paper
solves the problem by pushing user-defined constraints that may stem both from
the mined binary data and the BK summarized in similarity matrices or textual
files.

The contribution of this paper is twofold. First we provide a new algorithm
Music-dfs which soundly and completely mines constrained patterns from large
data while taking into account external data (i.e., several heterogeneous datasets).
Except for specific constraints for which tricks like the transposition of data [8, 5]
or the use of the extension [4] can be used, levelwise approaches cannot tackle large
data due to the huge number of candidates. On the contrary, Music-dfs is based
on a depth first search strategy. The key idea is to use a new closure operator en-
abling an efficient interval pruning for varied constraints (see Section 3). In [3], the
authors also benefit from intervals to prune the search space, but their approach is
restricted to the conjunction of one monotone constraint and one anti-monotone
constraint. The output of Music-dfs is an interval condensed representation: each
pattern satisfying the given constraint appears once in the collection of intervals
only. Second, we provide a generic framework to mine patterns with a large set
of constraints based on several heterogeneous datasets like texts or similarity ma-
trices. It is a way to take into account the BK. Section 4 depicts a genomic case
study. The biological demands require to mine the expression data with constraints
concerning complex relations represented by free texts and gene ontologies. The
discovered patterns are likely to encompass interesting and interpretable knowl-
edge.

This paper differs for a double reason from our work in [11]. First, the frame-
work is extended to external data. Second, Music-dfs is deeply different from the
prototype used in [11]: Music-dfs integrates primitives to tackle external data and
thanks to its strategy to prune the search space (new interval pruning based on
prefix-free patterns, see Section 3), it is able to mine large data. Section 4 demon-
strates the practical effectiveness of Music-dfs in a genomic case study and shows
that other prototypes (including the prototype presented in [11]) fail. To the best
of our knowledge, there is no other constraint-based tool to efficiently discover
patterns from large data under a broad set of constraints linking the information
distributed in various knowledge sources.

This paper is organized as follows. Section 2 defines our framework to mine
patterns satisfying constraints defined over several kinds of datasets. In Section 3,
we present the theoretical essentials that underlie the efficiency of Music-dfs and
we provide its main features. Experiments showing the efficiency of Music-dfs
and the cross-fertilization between several sources of information related to the
genomic area are given in Section 4.

2 Defining Constraints Through Several Datasets

Usual data-mining tasks can rarely be represented by a single binary dataset. Often
it is necessary to connect knowledge scattered in several heterogeneous sources. In

132 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

constraint-based mining, the constraints should effectively link different datasets
and knowledge types. For instance, in the domain of genomics, biologists are in-
terested in constraints both on synexpression groups and common characteristics
of the genes and/or biological situations being concerned. Such constraints re-
quire to tackle both transcriptome data (often provided in a transactional format)
and literature databases. This section presents our framework (and the declarative
language) enabling the user to set varied and meaningful constraints.

Let us start with a toy genomic example given in Figure 1. Firstly, the mining
context is made up of a boolean dataset also called internal data (or transcriptome
data) where the items correspond to genes, the transactions represent biological
situations. Secondly, external data (a similarity matrix and a textual dataset) are
considered. They summarize the BK that contains various information on items
(i.e., genes). This knowledge is transformed into a similarity matrix and a set of
texts. Each field of the triangular matrix sij ∈ [0, 1] gives a similarity measure
between the items i and j. The textual dataset provides a description of genes.
Each row of this dataset contains a list of phrases characterizing the given gene.
The mined patterns are composed of items of the internal data, the external data
are used to further specify constraints in order to focus on meaningful patterns.
In other words, the constraints may stem from all the datasets (see the example
of q in Figure 1, Section 4 provides another q′).

Internal data External data

Boolean matrix D
Situations Genes

s1 A E F
s2 B C D
s3 A B C D E F
s4 A B C D

Similarity matrix
A B C D E F

A .07 ? ? .2 0
B .06 ? ? 0
C .07 .05 .04
D .03 .1
E ?

Textual data
A ’metal ion binding’ ’transcription factor’

B ’serine-type peptidase activity’ ’proteolysis’

C ’DNA binding’ ’metal ion binding’

D ’ATP binding’ ’nucleotide binding’

E ’proteolysis’

F ’ATP binding’ ’metal ion binding’

freq, length,... regexpsumsim, svmsim,...

q(X) ≡ freq(X)× length(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, TEXT terms)) ≤ 1 (b)
∧ svsim(X, TEXT)/(svsim(X, TEXT) +mvsim(X, TEXT)) ≥ 0.7 (c)
∧ sumsim(X, TEXT)/svsim(X, TEXT) ≥ 0.025 (d)

Fig. 1. Example of a toy (genomic) mining context and a constraint.

Let I be a set of items, a pattern is a non-empty subset of I. D is a boolean ma-
trix composed of patterns usually called transactions. The constraint-based mining
task aims to discover all the patterns present in D and satisfying a constraint q. A
pattern X is present in D whenever it is included in one transaction of D at least.

The strength and originality of our framework lies also in its flexibility. Con-
straints are freely built of a large set of primitives representing an integrative,
iterative and rich query language. Table 1 provides the meaning of the primi-
tives involved in q and also the constraints used in Section 4. As primitives on
external data are derived from different datasets, the dataset makes another pa-
rameter of the primitive (it is not present in Table 1 to alleviate the writing).

Efficient Mining under Flexible Constraints through Several Datasets 133

The first part (a) of q addresses the internal data and means that the biolo-
gist is interested in patterns having a satisfactory size – a minimal area. Indeed,
area(X) = freq(X)×length(X) is the product of the frequency of X and its length
and means that the pattern must cover a minimum number of situations and con-
tain a minimum number of genes. The other parts deal with the external data: (b) is
used to discard ribosomal patterns (one gene exception per pattern is allowed), (c)
avoids patterns with prevailing items of an unknown function and (d) is to ensure a
minimal average gene similarity. Table 1 also indicates the values of these primitives
in the context of Figure 1. Our framework supports a large set of primitives, other
examples of primitives are {∧,∨,¬, <,≤,⊂,⊆,+,−,×, /, sum,max,min,∪,∩, \}.
The only property which is required on the primitives to belong to our framework
is a property of monotonicity according to each variable of a primitive [11]. The
constraints of this framework are called primitive-based constraints. Let us recall
that the primitives and the constraints defined in [11] only address one boolean
data set.

primitives values

Boolean matrix

freq(X) frequency of X freq(ABC) = 2
length(X) length of X length(ABC) = 3

Textual data

regexp(X,RE) items ofX whose associated phrases match the
regular expression RE

regexp(ABC,′ ∗ ion ∗′)
= AC

Similarity matrix

sumsim(X) similarity sum over the set of item pairs of X sumsim(ABC) = 0.13
svsim(X) number of stated item pairs belonging to X svsim(ABC) = 2
mvsim(X) number of missing item pairs belonging to X mvsim(ABC) = 1

insim(X,min,max) number of item pairs whose similarity lies be-
tween min and max

insim(ABC, 0.07, 1) =
1

Table 1. Examples of primitives and their values in the data mining context of Figure 1.

3 Music-dfs Tool

This section presents the Music-dfs tool (Mining with a User-SpecifIed Constraint,
Depth-First Search approach) which benefits from the primitive-based constraints
presented in the previous section. Efficiency is achieved thanks to the exploitation
of the primitive and constraint properties. We start by giving the key idea of the
safe pruning process based on intervals.

3.1 Main features of the interval pruning

The pruning process performed by Music-dfs is based on the key idea to exploit
properties of the monotonicity of the primitives (see Section 2) on the bounds
of intervals to prune them. This new kind of pruning is called interval pruning.
Given two patterns X ⊆ Y , the interval [X,Y], also called sub-algebra or sub-
lattice, corresponds to the set {Z ⊆ I | X ⊆ Z ⊆ Y }. Figure 2 depicts an example
with the interval [AB,ABCD] and the values of the primitives sumsim and svsim.

134 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

AB

ABCD

ABDABC

0.07/1

?/?

0.2/3

?/?

sumsim(AB)/svsim(AB)

Fig. 2. Illustration of the interval pruning.

Assume the constraint sumsim(X)/svsim(X) ≥ 0.25. As the values associ-
ated to the similarities are positive, sumsim(X) is an increasing function accord-
ing X. Thus sumsim(ABCD) is the highest sumsim value for the patterns in
[AB,ABCD]. Similarly, all the patterns of this interval have a higher svsim(X)
value than svsim(AB). Thereby, each pattern in [AB,ABCD] has its average sim-
ilarity lower or equal than sumsim(ABCD)/svsim(AB) = 0.2/1. As this fraction
does not exceed 0.25, no pattern of [AB,ABCD] can satisfy the constraint and
this interval can be pruned. We say that this pruning is negative because no pat-
tern satisfies the constraint. In the same way, if the values of proper combinations
of the primitives on the bounds of an interval [X,Y] show that all the patterns in
[X,Y] satisfy the constraint, then [X,Y] is also pruned and this pruning is named
positive. For instance, assuming that sumsim(AB)/svsim(ABCD) ≥ 0.02, then
all the patterns in [AB,ABCD] satisfy the constraint.

In a more formal way, this approach is performed by two interval pruning oper-
ators b¦c and d¦e introduced in [11] (but only for primitives handling boolean data).
The main idea of these operators is to recursively decompose the constraint to ben-
efit from the monotone properties of the primitives and then to safely negatively
or positively prune intervals as depicted above. This process works straightfor-
wardly with all the primitives no matter what kind of dataset they regard. This
highlights the generic properties of our framework, as well the feature of pushing
all the parts of the constraint q into the mining step. The next section indicates
how the intervals are built.

3.2 Interval condensed representation

As indicated in Section 1, levelwise algorithms are not suitable to mine datasets
with a large number of items due to the huge number of candidates growing expo-
nentially according to the number of items. We adopt a depth-first search strategy
instead of enumerating the candidate patterns and avoiding subsequent memory
failures. We introduce a new and specific closure operator based on a prefix order-
ing relation ¹. We show that this closure operator is on the core of the interval
condensed representation (Theorem 1) leading to an efficient pruning strategy cov-
ering in depth the search space.

The prefix ordering relation ¹ starts from an arbitrary order over items A <
B < C < . . . as done in [10]. We say that an ordered pattern X = x1x2 . . . xn
(i.e., ∀i < j, we have xi < xj) is a prefix of an ordered pattern Y = y1y2 . . . ym

Efficient Mining under Flexible Constraints through Several Datasets 135

and note X ¹ Y iff we have n ≤ m and ∀i ∈ {1, . . . , n}, xi = yi. For instance,
AD 6¹ ADC because ADC = ACD and AD is not a prefix of ACD.

Definition 1 (Prefix-closure). The prefix-closure of a pattern X, denoted cl¹(X),
is the pattern {a ∈ I|∃Y ⊆ X such that Y ¹ Y ∪ {a} and freq(Y a) = freq(Y)}.

The pattern cl¹(X) gathers together the items occurring in all the transactions
containing Y ⊆ X such that Y is a prefix of Y ∪ {a}. The fixed points of operator
cl¹ are named the prefix-closed patterns. Let us illustrate this definition on our
running example (cf. Figure 1). The pattern ABC is not a prefix-closed pattern
because ABC is a prefix of ABCD and freq(ABCD) = freq(ABC). On the con-
trary, ABCD is prefix-closed. We straightforwardly deduce that any pattern and
its prefix-closure have the same frequency. For instance, as cl¹(ABC) = ABCD,
freq(ABC) = freq(ABCD) = 2. Now we show the property of closure of cl¹:

Property 1 (Closure operator) The prefix-closure operator cl¹ is a closure
operator.

Proof. Extensivity: Let X be a pattern and a ∈ X. We have {a} ⊆ X and ob-
viously, a ¹ a and freq(a) = freq(a). Then, we obtain that a ∈ cl¹(X) and cl¹
is extensive. Isotony: Let X ⊆ Y and a ∈ cl¹(X). There exists Z ⊆ X such
that Z ¹ Za and freq(Za) = freq(Z). As we also have Z ⊆ Y (and freq(Za) =
freq(Z)), we obtain that a ∈ cl¹(Y) and conclude that cl¹(X) ⊆ cl¹(Y). Idem-
potency: Let X be a pattern. Let a ∈ cl¹(cl¹(X)). There exists Z ⊆ cl¹(X) such
that freq(Za) = freq(Z) with Z ¹ Za. As Z ⊆ cl¹(X), for all ai ∈ Z, there is
Zi ⊆ X such that freq(Ziai) = freq(Zi) with Zi ¹ Ziai. We have

⋃
i Zi ¹

⋃
i Zia

and freq(
⋃
i Zi) = freq(

⋃
i Zia) (because freq(

⋃
i Zi) = freq(Z)). As the pattern⋃

i Zi ⊆ X, a belongs to cl¹(X) and then, cl¹ is idempotent. ut
Property 1 is important because it enables to infer results requiring the proper-

ties of a closure operator. First, this new prefix-closure operator designs equivalence
classes through the lattice of patterns. More precisely, two patterns X and Y are
equivalent iff they have the same prefix-closure (i.e., cl¹(X) = cl¹(Y)). Of course,
as cl¹ is idempotent, the maximal pattern (w.r.t. ⊆) of a given equivalence class of
X corresponds to the prefix-closed pattern cl¹(X). Conversely, we call prefix-free
patterns the minimal patterns (w.r.t. ⊆) of equivalence classes. Second, closure
properties enable to prove that the prefix-freeness is an anti-monotone constraint
(see Property 2 in the next section).

Contrary to the equivalence classes defined by the Galois closure [2, 9], equiv-
alence classes provided by cl¹ have a unique prefix-free pattern. This allows to
prove that a pattern belongs to one interval only and provides the important result
on the interval condensed representation (cf. Theorem 1). This result cannot be
achieved without the new closure operator. Lemma 1 indicates that any equiva-
lence class has a unique prefix-free pattern:

Lemma 1 (Prefix-freeness operator). Let X be a pattern, there exists an
unique minimal pattern (w.r.t. ⊆), denoted fr¹(X), in its equivalence class.

136 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

Proof. Supposing that X and Y are two minimal patterns of the same equivalence
class: we have cl¹(X) = cl¹(Y). As X and Y are different, there exists a ∈ X
such that a 6∈ Y and a ≤ min≤{b ∈ Y \X} (or we invert X and Y). As X is
minimal, no pattern Z ⊆ X ∩ Y satisfies that Z ¹ Za and freq(Za) = freq(Z).
Besides, for all Z such that Y ∩X ⊂ Z ⊂ Y , we have Z 6¹ Za because a is smaller
than any item of Y \X. So, a does not belong to cl¹(Y) and then, we obtain that
cl¹(X) 6= cl¹(Y). Thus, we conclude that any equivalence class exactly contains
one prefix-free pattern. ut

Lemma 1 means that the operator fr¹ links a pattern X to the minimal pattern
of its equivalence class, i.e. fr¹(X). X is prefix-free iff fr¹(X) = X. Any equiva-
lence class corresponds to an interval delimited by one prefix-free pattern and its
prefix-closed pattern (i.e., [fr¹(X), cl¹(X)]). For example, AB (resp. ABCD) is
the prefix-free (resp. prefix-closed) pattern of the equivalence class [AB,ABCD].

Now let us show that the whole collection of the intervals formed by all the
prefix-free patterns and their prefix-closed patterns provides an interval condensed
representation where each pattern X is present only once in the set of intervals.

Theorem 1 (Interval condensed representation). Each pattern X present
in the dataset is included in the interval [fr¹(X), cl¹(X)]. Besides, the number of
these intervals is less than or equal to the number of patterns.

Proof. Let X be a pattern and R = {[fr¹(X), cl¹(X)]|freq(X) ≥ 1}. Lemma 1
proves that X is exactly contained in [fr¹(X), cl¹(X)]. The latter is unique. As X
belongs to R by definition, we conclude that R is a representation of any pattern.
Now, the extensivity and the idempotency of prefix-closure operator cl¹ ensure
that |R| ≤ |{X ⊆ I such that freq(X) ≥ 1}|. Thus, Theorem 1 is right. ut

In the worst case the size of the condensed representation is the number of
patterns (each pattern is its own prefix-free and its own prefix-closed pattern).
But, in practice, the number of intervals is low compared to the number of patterns
(in our running example, only 23 intervals sum up the 63 present patterns).

The condensed representation highlighted by Theorem 1 differs from the con-
densed representations of frequent patterns based on the Galois closure [2, 9]: in
this last case, intervals are described by a free (or key) pattern and its Galois
closure and a frequent pattern may appear in several intervals. We claim that the
presence of a pattern in a single interval brings meaningful advantages: the min-
ing is more efficient because each pattern is tested at most once. This property
improves the synthesis of the output of the mining process and facilitates its anal-
ysis by the end-user. The next section shows that by combining this condensed
representation and the interval pruning operators, we get an interval condensed
representation of primitive-based constrained patterns.

3.3 Mining primitive-based constraints in large datasets

When running, Music-dfs enumerates all the intervals sorted in a lexicographic
order and checks whether they can be pruned as proposed in Section 3.1. The
enumeration benefits from the anti-monotonicity property of the prefix-freeness

Efficient Mining under Flexible Constraints through Several Datasets 137

(cf. Property 2). The memory requirements grow only linearly with the number of
items and the number of transactions.

Property 2 The prefix-freeness is an anti-monotone constraint (w.r.t. ⊆).

The proof of Property 2 is very similar to those of the usual freeness [2, 9]. In
other words, the anti-monotonicity ensures us that once we know that a pattern
is not prefix-free, any superset of this pattern is not prefix-free anymore [1, 7].
Algorithms 1 and 2 give the sketch of Music-dfs.

Algorithm 1 GlobalScan

Input: A prefix-pattern X, a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns having X as prefix
1: if ¬PrefixFree(X) then return ∅ // anti-monotone pruning
2: return LocalScan([X, cl¹(X)], q,D) // local mining
∪⋃{GlobalScan(Xa, q,D)|a ∈ I ∧ a ≥ max≤X} // recursive enumeration

Algorithm 2 LocalScan

Input: An interval [X,Y], a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns of [X,Y]
1: if bqc〈X,Y 〉 then return {[X,Y]} // positive interval pruning
2: if ¬dqe〈X,Y 〉 then return ∅ // negative interval pruning
3: if q(X) then return [X,X] ∪⋃{LocalScan([Xa, cl¹(Xa)], q,D)|a ∈ Y \X}
4: return

⋃{LocalScan([Xa, cl¹(Xa)], q,D)|a ∈ Y \X} // recursive division

Music-dfs scans the whole search space by running GlobalScan on each
item of I. GlobalScan recursively performs a depth-first search and stops when-
ever a pattern is not prefix-free (Line 1, GlobalScan). For each prefix-free pattern
X, it computes its prefix-closed pattern and builds [X, cl¹(X)] (Line 2, Glob-
alScan). Then, LocalScan tests this interval by using the operators b¦c and d¦e
informally presented in Section 3.1. If the interval pruning can be performed, the
interval is selected (positive pruning, Line 1 from LocalScan) or rejected (neg-
ative pruning, Line 2 from LocalScan). Otherwise, the interval is explored by
recursively dividing it (Line 3 or 4 from LocalScan). The decomposition of the
intervals is done so that each pattern is considered only once. The next theorem
provides the correctness of Music-dfs:

Theorem 2 (Correctness). Music-dfs mines soundly and completely all the
patterns satisfying q by means of intervals.

Proof. Property 2 ensures us that Music-dfs enumerates all the interval con-
densed representation. Thereby, any pattern is considered (Theorem 1) individu-
ally or globally with the safe pruning stemmed from to the interval pruning (see
Section 3.1). ut

138 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

4 Mining Constrained Patterns from Genomic Data

This section depicts the effectiveness of our approach on a genomic case study. We
experimentally show two results. First, the usefulness of the interval pruning strat-
egy of Music-dfs (the other prototypes fail for such large data, cf. Section 4.2).
Second, BK enables to automatically focus on the most plausible candidate pat-
terns (cf. Section 4.3). This underlines the need to mine constrained patterns by
taking into account external data.

4.1 Gene expression data and background knowledge

In this experiment we deal with the SAGE (Serial Analysis of Gene Expression) [12]
human expression data downloaded from the NCBI website (www.ncbi.nlm.nih.
gov). The final binary dataset contains 11082 genes tested in 207 biological situ-
ations, each gene can be either over-expressed in the given situation or not. The
biological details regarding gene selection, mapping and binarization can be seen
in [6].

BK available in literature databases, biological ontologies and other sources
is used to help to focus automatically on the most plausible candidate patterns.
We have experimented with the gene ontology (GO) and free-text data. First,
the available gene databases were automatically searched and the records for each
gene were built (around two thirds of genes have non-empty records, there is
no information available for the rest of them). Then, various similarity metrics
among the gene records were proposed and calculated. The gene records were also
simplified to get a condensed textual description. The details on text mining, gene
ontologies and similarities are in [6].

4.2 Efficiency of Music-dfs

Let us show the necessity of the depth-first search and usefulness of the interval
pruning strategy of Music-dfs. All the experiments were conducted on a 2.2 GHz
Xeon processor with Linux operating system and 3GB of RAM memory.

The first experiment highlights the importance of the depth-first search. We
consider the constraint addressing patterns having an area ≥ 70 (the minimal
area constraint has been introduced in Section 2) and appearing at least 4 times
in the dataset. Music-dfs only spends 7sec to extract 212 constrained patterns. In
comparison, for the same binary dataset, the levelwise approach1 presented in [11]
fails after 963sec whenever it contains more than 3500 genes. Indeed, the candidate
patterns necessary to build the output do not fit in memory.

Comparison with prototypes coming from the FIMI repository (fimi.cs.
helsinki.fi) shows that efficient implementations like kDCI, LCM (ver. 2),
COFI or Borgelt’s Apriori fail with this binary dataset to mine frequent pat-
terns occuring at least 4 times. Borgelt’s Eclat and Afopt which are depth-first
approaches, are able to mine with this frequency constraint. But they require a

1 We do not use external data because this version does not deal with external data.

Efficient Mining under Flexible Constraints through Several Datasets 139

post-processing step for other constraints than the frequency (e.g., area, similarity-
based constraints).

The next experiment shows the great role of the interval pruning strategy. For
this purpose, we compare Music-dfs with its modification that does not prune.
The modification, denoted Music-dfs-filter, mines all the patterns that satisfy
the frequency threshold first, the other primitives are applied in the post-processing
step. We use two typical constraints needed in the genomic domain and requiring
the external data. These constraints and the time comparison between Music-
dfs and Music-dfs-filter are given in Figure 3. The results show that post-
processing is feasible until the frequency threshold generates reasonable pattern
sets. For lower frequency thresholds, the number of patterns explodes and large
intervals to be pruned appear. The interval pruning strategy decreases runtime
and scales up much better than the comparative version without interval pruning
and Music-dfs becomes in the order of magnitude faster.

 1

 10

 100

 1000

 10000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

 1

 10

 100

 1000

 10000

 100000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

Fig. 3. Efficiency of interval pruning with decreasing frequency threshold. The left image
deals with the constraint freq(X) ≥ thres ∧ lenght(X) ≥ 4 ∧ sumsim(X)/svsim(X) ≥ 0.9 ∧
svsim(X)/(svsim(X)+mvsim(X)) ≥ 0.9. The right image deals with the constraint freq(X) ≥
thres ∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) = 0.

4.3 Use of background knowledge to mine plausible patterns

This genomic case study demonstrates that constraints coming from the BK can
reduce the number of patterns, they can express various kinds of interest and the
patterns that tend to reappear are likely to be recognized as interesting by an
expert. Such an approach requires a tool dealing with external data.

Let us consider all the patterns having a satisfactory size which is translated
by the constraint area ≥ 202. We get nearly half a million different patterns that
are joined into 37852 intervals. Although the intervals prove to provide a good
2 This threshold has been settled by statistical analysis of random datasets having the

same properties as the original SAGE data. First spurious patterns start to appear for
this threshold area.

140 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

condensation, the manual search through this set is obviously infeasible as the
interpretation of patterns is not trivial and asks for frequent consultations with
medical databases. The biologists prefer sets with tens of patterns/intervals only.

Increasing the threshold of the area constraint to get a reasonable number of
patterns is rather counter-productive. The constraint area ≥ 75 led to a small
but uniform set of 56 patterns that was flooded by the ribosomal proteins which
generally represent the most frequent genes in the dataset. Biologists rated these
patterns as valid but uninteresting.

The most valuable patterns expected by biologists – denoted as meaningful or
plausible patterns – have non-trivial size containing genes and situations whose
characteristics can be generalized, connected, interpreted and thus transformed
into knowledge. To get such patterns, constraints based on the external data have
to be added to the minimal area constraint just like in the constraint q given
in Section 2. It joins the minimal area constraint with background constraints
coming from the NCBI textual resources (gene summaries and adjoined PubMed
abstracts). There are 46671 patterns satisfying the minimal area constraint (the
part (a) of the constraint q), but only 9 satisfy q. This shows the efficiency of
reduction of patterns brought by the BK.

A cross-fertilization with other external data is obviously favourable. So, we use
the constraint q′ which is similar to q, except that the functional Gene Ontology is
used instead of NCBI textual resources and a similarity constraint is added (part
(e) of q′).

q′(X) ≡ area(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) ≤ 1 (b)
∧ svsim(X, GO)/(svsim(X, GO) +mvsim(X, GO)) ≥ 0.7 (c)
∧ sumsim(X, GO)/svsim(X, GO) ≥ 0.025 (d)
∧ insim(X, 0.5, 1, GO)/svsim(X, GO) ≥ 0.6 (e)

Only 2 patterns satisfy q′. A very interesting observation is that the pattern3

that was identified by the expert as one of the “nuggets” provided by q is also
selected by q′. This pattern can be verbally characterized as follows: it consists
of 4 genes that are over-expressed in 6 biological situations, it contains at most
one ribosomal gene, the genes share a lot of common terms in their descriptions
as well as they functionally overlap, at least 3 of the genes are known (have a
non-empty record) and all of the biological situations are medulloblastomas which
are very aggressive brain tumors in children. The constraints q and q′ demonstrate
two different ways to reach a compact and meaningful output that can be easily
human surveyed.

5 Conclusion

Knowledge discovery from a large binary dataset supported by heterogeneous BK
is an important task. We have proposed a generic framework to mine patterns with
3 The pattern consists of 4 genes KHDRBS1 NONO TOP2B FMR1 over-expressed in

6 biological situations BM P019 BM P494 BM P608 BM P301 BM H275 BM H876.
BM stands for brain medulloblastoma.

Efficient Mining under Flexible Constraints through Several Datasets 141

a large set of constraints linking the information scattered in various knowledge
sources. We have presented an efficient new algorithm Music-dfs which soundly
and completely mines such constrained patterns. Effectiveness comes from an in-
terval pruning strategy based on prefix free patterns. To the best of our knowledge,
there is no other contraint-based tool able to solve such constraint-based tasks.

The genomic case study demonstrates that our approach can handle large
datasets. It also shows practical utility of the flexible framework integrating hetero-
geneous knowledge sources. The language of primitives applied to a wide spectrum
of genomic data results in constraints formalizing viable notion of interestingness.

Acknowledgements. The authors thank the CGMC Laboratory (CNRS UMR 5534, Lyon) for pro-

viding the gene expression database and many valuable comments. This work has been partially funded

by the ACI “masse de données” (French Ministry of research), Bingo project (MD 46, 2004-07).

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 432–444, 1994.

[2] J. F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representa-
tion of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5–22, 2003.

[3] C. Bucila, J. Gehrke, D. Kifer, and W. M. White. Dualminer: A dual-pruning
algorithm for itemsets with constraints. Data Min. Knowl. Discov., 7(3):241–272,
2003.

[4] C. Hébert and B. Crémilleux. Mining frequent δ-free patterns in large databases.
In A. Hoffmann, H. Motoda, and T. Scheffer, editors, proceedings of the 8th Inter-
national Conference on Discovery Science (DS’05), volume 3735 of Lecture notes in
artificial intelligence, pages 124–136, Singapore, 2005. Springer-Verlag.

[5] B. Jeudy and F. Rioult. Database transposition for constrained (closed) pattern
mining. In KDID, volume 3377 of Lecture Notes in Computer Science, pages 89–
107. Springer, 2004.

[6] J. Kléma, A. Soulet, B. Crémilleux, S. Blachon, and O. Gandrillon. Mining plausi-
ble patterns from genomic data. In D. Lee, B. Nutter, S. Antani, S. Mitra, and
J. Archibald, editors, CBMS 2006, the 19th IEEE International Symposium on
Computer-Based Medical Systems, pages 183–188, Salt Lake City, Utah, 2006.

[7] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[8] F. Pan, G. Cong, A. K. H. Tung, Y. Yang, and M. J. Zaki. CARPENTER: finding
closed patterns in long biological datasets. In proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’03), pages
637–642, Washington, DC, USA, 2003. ACM Press.

[9] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. Lecture Notes in Computer Science, 1540:398–416,
1999.

[10] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In ICDE, pages 433–442. IEEE Computer Society, 2001.

[11] A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints.
In PAKDD, volume 3518 of Lecture Notes in Computer Science, pages 661–671.
Springer, 2005.

[12] V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial analysis of gene
expression. Science, 270:484–7, 1995.

142 Arnaud Soulet, Jǐŕı Kléma and Bruno Crémilleux

Author Index

Arimura Hiroki, 83

Besson Jérémy, 9
Bistarelli Stefano, 21
Blockeel Hendrik, 59
Bonchi Francesco, 21, 35
Boulicaut Jean-François, 9

Crémilleux Bruno, 119, 131

Džeroski Sašo, 47
De Raedt Luc, 9, 107

Fromont Élisa, 59

Giannotti Fosca, 35
Gjorgjioski Valentin, 47

Kaufman Kenneth A., 71
Kléma Jǐŕı, 131

Lucchese Claudio, 35

Michalski Ryszard S., 71
Minato Shin-ichi, 83

Nanni Mirco, 95
Nijssen Siegfried, 107

Orlando Salvatore, 35

Perego Raffaele, 35
Pietrzykowski Jaroslaw, 71

Rigotti Christophe, 95
Rioult François, 119
Robardet Céline, 9

Slavkov Ivica, 47
Soulet Arnaud, 131
Struyf Jan, 47

Trasarti Roberto, 35

Wagstaff Kiri L., 1
Wojtusiak Janusz, 71

	Preface
	Organization
	Invited Talk
	Value, Cost, and Sharing: Open Issues in Constrained Clustering

	Contributed Papers
	Mining Bi-sets in Numerical Data
	Weighted and Probabilistic Instances of the Soft Constraint Based Pattern Mining Paradigm
	On Interactive Pattern Mining from Relational Databases
	Analysis of Time Series Data with Predictive Clustering Trees
	Integrating Decision Tree Learning into Inductive Databases
	An Integrated Multi-task Inductive Database and Decision Support System VINLEN: An Initial Implementation and First Results
	Frequent Pattern Mining and Knowledge Indexing Based on Zero-suppressed BDDs
	Quantitative Episode Trees
	IQL: A Proposal for an Inductive Query Language
	Mining Correct Properties in Incomplete Databases
	Efficient Mining under Flexible Constraints through Several Datasets

	Author Index

