
The Fourth International Workshop

on

Knowledge Discovery from

Data Streams

The rapid growth in information science and technology in general and the com-
plexity and volume of data in particular have introduced new challenges for the
research community. Databases are growing incessantly and many sources pro-
duce data continuously. In most real world applications, the process generating
the data is not strictly stationary. In many cases, we need to extract some sort of
knowledge from this continuous stream of data. Examples include customer click
streams, telephone records, large sets of web pages, multimedia data, scientific
data, and sets of retail chain transactions. These sources are called data streams.
Learning from data streams is an incremental task that requires incremental al-
gorithms that take drift into account.

The goal of this workshop is to promote an interdisciplinary forum for re-
searchers who deal with sequential learning, anytime learning, real-time learn-
ing, online learning, temporal and spatial learning, etc. from data streams. The
workshop papers present significant contributions in learning decision trees, asso-
ciation rules, clustering, preprocessing, feature selection, etc. from data streams
and related themes.

This is the fourth workshop in this series. The workshop web page is avail-
able at http://www.machine-learning.eu/iwkdds-2006/. There were 17 sub-
missions. The program committee accepted 9 full papers, 4 short papers and 1
poster paper.

This year the workshop has a special emphasis on learning from sensor net-
works in ubiquitous environments. In that direction, the workshop includes also
an invited talk, by Hillol Kargupta, one of the leading researchers in distributed
mining data streams.

We would like to thank the ECML/PKDD 2006 organizers, the authors of
the submitted papers, and the members of the Program Committee for all efforts
to make this workshop possible.

J. Gama, R. Klinkenberg and J. Aguilar

Organization

Program Chairs

João Gama, University of Porto, Portugal
Ralf Klinkenberg, University of Dortmund, Germany
Jesús S. Aguilar-Ruiz, University of Seville, Spain

Program Committee

Michaela Black, University of Ulster, Coleraine, Northern Ireland, UK
Andre Carvalho, University of Sao Paulo, Brazil
Pedro Domingos, University of Washington, Seattle, WA, USA
Francisco Ferrer, University of Seville, Spain
Mohamed Gaber, Monash University, Victoria, Australia
João Gama, University of Porto, Portugal
Ray Hickey, University of Ulster, Coleraine, Northern Ireland, UK
Hillol Kargupta, University of Maryland, Baltimore, MD, USA
Ralf Klinkenberg, University of Dortmund, Germany
Jeremy Z. Kolter, Stanford University, CA, USA
Miroslav Kubat, University Miami, FL, USA
Mark Last, Ben-Gurion University, Israel
Mark Maloof, Georgetown University, Washington, DC, USA
S. Muthu Muthukrishnan, Rutgers University and AT&T Research, USA
Masayuki Numao, Osaka University, Japan
Pedro Pereira Rodrigues, University of Porto, Portugal
Josep Roure, Carnegie Mellon University, Pittsburgh, PA, USA
Jesús S. Aguilar-Ruiz, University of Pablo de Olavide, Spain
Bernhard Seeger, University Marburg, Germany
Elaine Parros Sousa, University of Sao Paulo, Brazil
Min Wang, IBM Watson Research Center, Hawthorne, NY, USA
Wei Wang, University of North Carolina, Chapel Hill, NC, USA
Xiaoyang Wang, University of Vermont, Burlington, VT, USA
Gerhard Widmer, University of Linz, Austria
Philip S. Yu, IBM Watson Research Center, Yorktown Heights, NY, USA

Sponsors

The workshop is supported by Kdubiq - Knowledge Discovery in Ubiquitous
Environments - European Coordinated Action of FP6 and Adaptive Learning
Systems II Project (POSI/EIA/55340/2004).

ii

Table of Contents

Invited Talk

Peer-to-Peer Distributed Data Stream Mining and Monitoring
Hillol Kargupta, University of Maryland, Baltimore, MD, USA 1

Contribution Papers

Accurate Schema Matching on Streams
Szymon Jaroszewicz, Lenka Ivantysynova and Tobias Scheffer 3

High-Order Substate Chain Prediction Based on Massive Sensor Outputs
Nguyen Viet Phuong and Takashi Washio .13

Online Prediction of Clustered Streams
Pedro Pereira Rodrigues and Joao Gama .23

Model Averaging via Penalized Regression for Tracking Concept Drift
Kyupil Yeon, Moon Sup Song, Yongdai Kim and Cheolwoo Park33

Incremental Training of Markov Mixture Models
Andreas Kakoliris and Konstantinos Blekas . 47

Improving Prediction Accuracy of an Incremental Algorithm Driven by Error
Margins
José del Campo-Ávila, Gonzalo Ramos-Jiménez, João Gama and Rafael Morales-
Bueno . 57

Analyzing Data Streams by Online DFT
Alexander Hinneburg, Dirk Habich and Marcel Karnstedt .67

Early Drift Detection Method
Manuel Baena-Garcia, José del Campo-Ávila, Raúl Fidalgo-Merino, Albert Bifet,
Ricard Gavaldà and Rafael Morales-Bueno . 77

Mining Frequent Items in a Stream using Flexible Windows
Toon Calders, Nele Dexters and Bart Goethals . 87

iii

Hard Real-time Analysis of Two Java-based Kernels for Stream Mining
Rasmus Pedersen . 97

Dynamic Feature Space and Incremental Feature Selection for the Classification
of Textual Data Streams
Ioannis Katakis, Grigorios Tsoumakas and Ioannis Vlahavas107

User Constraints over Data Streams
Carlos Ruiz Moreno, Myra Spiliopoulou and Ernestina Menasalvas 117

StreamSamp DataStream Clustering Over Tilted Windows Through Sampling
Baptiste Csernel, Fabrice Clerot and Georges Hébrail . 127

Structural Analysis of the Web
Pratyus Patnaik and Sudip Sanyal . 137

Author Index. .145

iv

Peer-to-Peer Distributed Data Stream Mining and Monitoring

Hillol Kargupta
University of Maryland - Baltimore County, Baltimore, MD, USA

(Invited Talk)

Abstract:
Distributed data mining (DDM) deals with the problem of analyzing distributed,
possibly multi-party data by paying attention to the computing, communication,
storage, and human factors-related issues in a distributed environment. Unlike
the conventional off-the-shelf centralized data mining products, DDM systems
are based on fundamentally distributed algorithms that do not necessarily re-
quire centralization of data and other resources. DDM technology is finding in-
creasing number of applications in many domains. Examples include data driven
pervasive applications for mobile and embedded devices, grid-based large scale
scientific and business data analysis, security and defense related applications
involving analysis of multi-party possibly privacy-sensitive data, and peer-to-
peer data stream mining in sensor and file-sharing networks. This talk will focus
on peer-to-peer (P2P) distributed data stream mining and monitoring. It will
first discuss the foundation of approximate and exact P2P algorithms for data
analysis. Then it will present a class of P2P algorithms for eigen-analysis and
clustering in details. The talk will end with a discussion on the future directions
of research on P2P data mining.

1

2

�������� ����	�
������ �� �����	�

������ ����	�
����� �
��� ������	������� �����	 ��
�
��

��������� ������	�
 �� �
�
���	��������� ������� ������� �����������	�
��	�����������
������� �	 �
����� �
�����

�
�����������������
������
���������
�	�

��������� �
 ����
�� ��
 ����
� �� ������! ��
��
��� ��	�
�
��
� ��
��� �� ���� ���
��� ��� ���!
 �������
�" ������
��
�
�
��
�� ������! ��!������� ��
����� ��#
�� ���
� ���
�
� �
��

� ���
����	�
� �� $	��������! ��
 ���������� �� ��
�� ���
� �����! ���	
�" ����

�
��
%�� ��	������ �� ��
�
 ����������
� �
$	��
� ��
����! �� ���
�������
 �
����&���� �� ���
�����
 ��� ���� ���
���" �
 �
���
 � ����
������! ��!������ ���� 	�
� ���� � ����� ��� �
 �� �
����� ��� �� �
�
!	�����

� �� ���� ��
 ���� ������� ������	�
� ���� ��!� ����������"
��
 �
���� �� �
 � ��
� �� ��� !��
� '���������� ��(����������
�
���� ���� �� �

������
� ���� � ��� �
 ���� ��	��
�
����) �

� �� ��
 ��!������ �� �
�
��� �
����" �
 !��
 � ��!���	� ���� �� ��

�
����*� ���
��
�� ��� �
 ��� ��
%
���
��� 	���! ���!
 �������
�"

� ���������	��

�� ���� ������� 	��������	� ���� ������ ���
		
	 ��
 ��

�
� �� � ��
����

		��� 	�
� �� ���� �������
 �
�
���
�
��	 ����	����� ������	
	 ��
 ���
�
����
� ���� � 	����
 ���� ���
���	
� ���
������� �
����
	 ��
 ��
��� ����� �! 	
�
����� ���
	����
�
	 �
��

� ��������
	 ���		 �������
 ����	����� ������	

	�
��	 "#$� �� ������� ����������	 ���� �!�
� ������
 ����
 ������	
	� 	�
��
������� �	 � �
����	��	�� �!�
� !����
� ����
�
� �� ��	�Æ�
�� ����
��������

%
	
��� �
����
	 ������ ��
 ��
	���� ��� 	�
�� ������� �� �
 	���
����
�� ��
�
� �������
��
�
���
��� ��
�� ������� ���������	 �
�
�����
����
�
�
��	 �! ��
 ��	���� 	�
��	 	�� ���� 	��
 	��������� ���
���� �	
��&����
�� ��
����
�
� ����
�	 ������
 � 	��������� ���
���� ���� �
!
�	 ��
	�
�� ��!�������� 	�� �	 ��������
 ���
	� �
	�������	� �� ��
 	�
��	' 	����
���
� (�!�������
��� ��
 ��������
 	�
�� ��!�������� �	 �!�
� ��	�Æ�
���)�	
	
���	
 �� ���� ��������
 ���
	 ��
 �����
 ��� ��
	 �� ��
�� 	
�����	 �� ����
�
 !���� �� ��	�
���� ��
 ��������
	' ����
	� ��	���
��
�
� 	�
�� ����
�	
������!� ��
 	��������� �! ��������
	 �� �������� ����
���
	 �! ��
�� ����
	�

�� ���
� �� �������

 ���� ��
 �����
� ������� �� !�� ��&����
	 ��

��	
� 	��������� !������� ��	���
��
�
� ����
�	 �

� ��
&
��	
 �� �
�	� ��

����
 ��		 ��
� ��
 ������	
	� * ����
�
 ��		 �	 ���
�	�����
 !�� ����	�������
������	
	 ���� �
��� �����	�

� ���� 	��
��	 �	 ��
� ���� !�� ��	���
� ��
�
���� ����	� ��� �
�
����������� ��� ������� ����������	 ��� ��
�	���
���� ���� ��
 ���
� �! �����
�	 �! �
�����
	� ��
 ����� 	������� �! ���
		���

3

���� � 	���� 	����
 �! ����	�����	 �
	���	 �� � ��		 �! ��� �������

 �� ��

���������� �! ��
 �����
� ����� +���� �
����	 ���� ������
 	������� �� ���
�������

 ��� ����
���
	 �! ��
 �
���
�
� �������	�

,
 !�������
 ��
 ������� �����
� �� � ��� ���� �	 ���� ����
��������
�������	 ��� ��	
�� ��
� �� ������� ����������	� ,
 �
��	
 � 	�
�� �������
���������� ���� �	 ���������� �� �����
 � -�
����������. ����/ �
 �
���� ��

�
�� -�
����������. �� �
��	 �! ���������	�� �����	 �� ��������
 	����������

* �	
!�� 	��������� �
��� !�� ��
 ������� �����
� �� ���� �	 � ��	
 �
����
�
�
�� !�� ��� 	������� ���������� ��� �
	������ 	�� � �����
��	�
� �
���
�
���� �	 � ����
����� �		�
 �� ��	
�!� ��
�
!��
� �
 �
	��� ��� 	������� �� �

�
�
�� ���� �
	�
� �� ��
 	��������� ���
����/ �
����
� ����������	 �! 	
�
���
	�
����
�
� ��� ��	���
��
�
� ���
��� �� �
 �����
�� ,
 �
��
� � 	
�
���� �!
���
���� ���� ���
 �� �
 ��	
��
� ���� ��
 ����������

��
 �
	� �! ���	 ���
� �	 �������
� �	 !�����	0 �!�
� �
��
���� �
���
� ���� ��
�
���� #� �
 !�������
 ��
 �����
� 	
����� �� �
���� 1� ,
 ����	
 ��
 	�
��
������� �����
� �� � ��� ���� ���	 ������
 �� ������ ������� ����������
	
�����	� ��� ���� �	 	�Æ�
���� ����� �� ����� �	 �� 	���
 ��� �������	�� ����

��
 ���
��
		 �! ��� 	�������	� ,
 �
���� ��� 	������� �� ��
 �����
� �� �
����
2� ��	�		 ��������
 	��������� �
���	 �� �
���� 3 ��� �
���� ��
&�
���
����
�
	���	 �� �
�������� ���� �� �
���� 4� �
���� 5 �����
	�

 ������ ����

6
��	�
�� ��� %��� "71$ ������
 �� ��
���
� �! ��
 	�
�� ������� �����
�
��� � ��&����� �! 	�
�� ������� ���������	� 8���
�	 �� �
 ���������
�
���� 	�
����
�
� ��� ��	���
��
�
� �
����	� ��
����
�
� ����
�	 ��&����

	��
 	��������� !������ ���� �
!
�	 �� ��������
 ���
	 ��� ���
� 	��������
��!�������� 9����	 "7#� 4� 2$: ��
�
�	 ��
 	��������� �
���	
�����
� �� ��	���
�
�
�
� �������
	 "7;$ �
!
� �� ��
 ��	���
 ����/ ���� �	� �� ��
 ��������
	' ����
	�

��
 ��	���
��
�
� ������� ��
�
� �
 �����
� �� ��
 ����
�
 ��	
�
 �!
�	
!�� 	�
����
�
� ��!�������� ��� �� �����	 ��
�
� ��
���!� ����
& �������
�
������	 < ����	 � !�����
������
�
 �
������ �
��

� �� ����
 ��������
 ��
=���	 ��� � ���
	������� 	����� ��������
 �� >
� "1$�

��
 	�
�� ������� �����
� ��	� ����	 � ���
 �� ��

&����
 �! �
		��
	
��
���
�
 ����������	 "7$� �� ��
 ���
������� �! ������	
	 ��
 �� �
��
	 ��
���
� ����
	 �! �������������� 	������
	� 8�	� ������� 	�	�
�	 < 	�� �)���
"74$� �
���� "77$� ��� ��? "3$ < �����
 	�
��� ��� ��	���
��
�
� 	���������
�
���	� *		
������ ��� �������� ��
 	��������� �
��� �
����
	
&�
��
�
 ���
������ �����
��
/ �����
 �
������ "3$ ���
&�
���
��	 �� 	����
�� �������
�����
�	 �� ����
 ��
 �����
�
� ������������ "72$�

@�� ��������� �
��
	 �� 	������� ��� �� ������
�
��
�� �� �
�
 �����	�
�������� 	����
��
	 ���� �� ��������� ���
 !�� � ����
 �! ���� ������ ��	�	�
��
� ���
 �

� ������
� �� �� ��
 �����&����
�� ��	� ���
�
	���� �		�������
���
	 "5� 73$� �� ��
 ��	� 	���� ��� ���
�
�
	 �
��

� �������� ���
�	 ���
���
	������� ������	
	 "A$�

4

� ������	����� ���	�� ������ �����	��

,
 !��	 �� ��
 !��������
���� ������� ������
������� B��
� ��
 ���
	�
��	 � ��� � ��
� ��������
	 ���� � � � � ��� ��� ���� � � � � ���� �
	�
���
��� ��

���� �	 �� ��
���!� 	
��������� ��
����� ����	 �! ��������
	 9��� ��:�

�� ���
� �� ������� ���	 �����
� ��������������� � 	��������� �
���
����9��� ��: ������
	 ��
 	��������� �! ��������
	 �� ��� �� � ��
 	��������� ��

&����� 	�
����
�
� ��!�������� 	�� �	 ��������
 ���
	 �! 	�� ��!�������� �	
��������
� ��� ��	���
��
�
� ��!��������� ��	���
��
�
� 	��������� �
���	 �
!
�
�� ��
 ����
	 ���� ��� �� � ��� �� C��������� ��	���
��
�
� ��!�������� �	
�����	 ��������
D���
		 ��
 ������	
	 ��

���� �� ���
		���
�

��
 ����������� �! ���	 ���
� �	 �
�
���� ��
� ��
 	��������� �
���
����9��� ��: ������
	 ��	���
��
�
� ��!��������� �� ���
� ��
������
 �� ��	���
�
�
�
� �
���
&����� �� �	 �

		��� ��
&
��	
 � ��		 ��
� ��
 ������	
	 � ��� �/
��
 ���� ����
��
 ���� �
 ����
		 �	 ���� ���	 �	 �������������� ��!
�	���
 !��
����
 ������	
	 ��� ����		���
 !�� 	��
��	� ��
 	��������� ���
���� ����9��� ��:
�	 �����
��	�
� ��� ���
� �� �����
� ,
 ���� ���� �		��
 ���� �� �	 ��		���

�� ������ ��
	�����
 �! ���� ���� ��
	 ������ � �����
� �� �
�
 ���
�����

�� �����
� ��
 	�
�� ������� ���
		 �	 ������ ���
�����
� * �	
� �����
���� 	

�	 �� �� ��� ���� ��������
	 �� � ���
 ����
�����	 �� �� ,
 ����	

���	 �����
� 	
����� �	 !�����	���
��� �� ���
����� �� �������� ���� ���
	 ���
����� ��������� �� �	 �
�� �� ��� � ��
� ������� ���������
 �� �	
����� �� �����

�������� �� ��� ��������� ��� �	 ��� ���� ���
� ��� ��� ���������
 �� �� �� ���
������	 ��� �������� ��
 �� ����� ��� ���������
 �� � ��� � �� ����� ���������� ��
������ � ����������� �� ��� �����
����� 6�	
� �� � �
	��� �! ���	 !���� � �	
�
��� ��	�
� ��
 	���
� ��������
	 ��� ��
�� ���
�
� ����
	 ��� ��� ��	��		 ���
�����	
� ����
	 ������� �!�
� 	��
 ����� �	 �����
���

@�� !���������� �! ��
 �����
� 	
����� �����	 ���� �����
� ���
����	 �!
	
��
�
	� �� �� �����
� ���
����� ����
	 ��
 	���
� �� �
�
�	��� ���
�� ���
�� �	
 �! �
�����
	 �
��

� ��E�
�� ����
	 9���
�
�
	 �! �� ���
 ���� �:� ���
���
���� �	 ��	��
�
� ���
�� ��
 � F ; �	
 ���
	����	 �� � �
����� ���
�����

��������� � ��	
������ ��������� �
������� �� �����
 9	�� � � � � 	�: �
 ��
��������� �������� ��	 ��� ���
 ������� � ��� � ��� ��� � ������� � ���
� 7	 ���
���������� 	� � 	� � � �

���
����

�� ���
� �� !�������
 ��
 ������������ ������ ������� ������ �
 �
!
� ��
	����	�� �����&�������	 ���� �� �
�
 �����	� ��������
��� ��
 �����
�
�	
� ��� Æ ���� ��
 ������
� ���
 ��
 !�������� �
������ ,�
� ��
 ��������� �	
�
	����
� �������
 ���
	� ��
� ��
 �
	������ ���� �	 -����	
. �� ��
 �������
���� �� � !������ �! �� �
�	� 7� Æ �! ��� ���	�

��������� � �������������� ������ ���������� ����
����
 � ���
� ���� ���������
 ���� � � � � ��� ��� ���� � � � � ��� ��
���������	 � ��
���� ����� ��
�����
 �	 ������������ ��� ��������� ��������
 � ��� Æ	 ��� �
������� ��
� ���������
 9��� � � � � � ��� : ��� ���� �� �� �	 �
������� �� � ���������
 9��� � � � � � ��� :
��� ���� �� �� �	 ��� ����������
 �� ��� �	
��� ����	 ���� ��������� 7� Æ	

5

�� ��� ��� ���������
 ��	 ��� ���������
������� 9��� � � � � � ��� : �������
 ���
��
� ������� ���������
 !���������� �� �� �" ���	 ��������
��	 ���
��
������ 9��� � � � � � ��� : �������
 ��� ��
� ������� ���������
 ��� ���� ��#
����	 ����� �
 �� �$������ ��� �� 9��� � � � � � ��� :
��� ���� ����9��� ���:

�����������

��������9��� ����: G � ��� �� ��� �� 9��� � � � � � ��� :
��� ����
����9��� � ��: �����������

��������9���� � ��: G �#

%� ��� ��� ���������
 ��	 ��� �����
������� 9��� � � � � � ��� : ��� ������� �� �����

�������� �� �� ��� ��� ��� ��	 ��� �����
������� 9��� � � � � � ��� : ��� ���
����� �� �����
�������� �� �� # ����	 9����9��� ���:� � � � � ����9��� ���:: ���
9����9��� � ��:� � � � � ����9��� � ��:: ��� ��������� ��������
#

&� ��� ����������
 �� ��� �	
��� ��� ���������
 �� � ��� �	 ��
���������	 ���
������� �� ����� ���������� �� ������ � ������� ������� �� ��� �����
����#
����	 ���
�������
 9��&������9������� ���:� � � � � ��&������9������� ���:: ���
9��&�� ����9��� � ������:� � � � ���&������9��� � ������:: ��� ��������� ��������
�

� ������ �����	�� ����	����

,
 ��
 ����� �� ��
	
�� ��� ���������	 ����
	�����
 ��
 	��������� �! ��������
	
��	
� �� 	����
	 �� ��� �� �! �
���	� ����� �� ������ !��� � ��� �� ��
�
���
� !���
�� ���
� �� ��
 ��� ��
� �
���
 ��
 �
����
� 	����
 	��
�

��
 �	� ���������� H�8� �
�
����
	 � -���	���	
. 	����
 	��
 �������
�
		��� ��
 ������	
 �� ��	
����� ��
 	��
��/ �� ���� �
�
��	 �� ��
 	���������
�
��� ��� �����
�
�	 � ��� Æ� ��
 	����
 	��
 	�Æ
	 �� �		��
 ��
 �������
�������

 !�� ��� ��		���
 ������	
/ �� ��� �
 �
		���	������ ����
 !�� � ���
��
��������� ������	
� ��
 	
��� ��������� �	 ���
� �����
		��
 H�8� ��	 	����

	��
 �
�
��	 �� ��
 ������	
 �� ����/ ��
 	����
��
�
��
�� �����	 �	
� ������
�����
		��
 H�8 ��
 �
������� ���
 ������
� ���� ��
 ���	���	
 �����	 �!
�
����� H�8� ��
�
!��
� H�8 �	 � ������� ��	
���
 !�� �����
		��
 H�8�

6��� ���������	 �	

�������� ��������� ��������
 ���� ����� ��
 	�������
��� ���� � * 	��������� �� �
�
 ���
���� ���	 ��� � ����
 �! ����
	 	�� �����
���� � ����������� �! �� �
�	� 7�Æ� ��
 ���
 	��������� ��
	 ������ ���� ����
� ��

�� �
�
 ���
���� �	 ���
 !�� 	���� 	����
	 ��� �����
�	 !�� ���
�	����� ����

	����
	� ���������� �� �
�
 ���
����	 �� �
 ��	����
� !�� � ���
 ����
 �!
��	���
��
�
� 	��������� !������	�

��������� � �����������
�������� ���������� '�� ���� �� �� ���������

�������� ��������� '�� ��	 �� �� �����
����
 ��� � ��� �# (���	 ��������Æ
��� �������	Æ ��� �
�������� ��������� �������� ��	 ���� ����������� �� ���
�
7� Æ	 ����� �
 �� ���� �� ��� �� � � ��� �� � � ���� �������

�������9��� ��:�Æ
 ����9��� ��:
 �������9��� ��:	Æ� 97:

��
 �	� ���������� -H�8.� �	 �
����
� �� ����
 7� �� ��
� 7� �� �	
	 � ������
	
��� �� �
�
����
 ��
 	����
	� 	����
 	��
 � ���� 	�Æ
	 �� �������

 ����
��
 	��������� �� �
�
 ���
����	 ��
 ����� �� �� �� H�� � ���
� 	��������� �
���

6

���	
 �� +,-. +��� ,�
�� -�����! /�!������"

����� ,�
��� � ��� �� �
�
���
��) �
���
� �	��
� �� �������
� �) � ��%�������
��� ��0�
�
 ����
�
�� � ��� Æ"

1" �
� � �
 ��
 �����
�� �	��
� �	� ���� �������'�� �(�Æ � �������'�� �(�Æ � � ��
�
�� ��� �� ������ � �
����" '��
�
 �
 ����
�
���
 ��
 ��	�� ���� 2�3� ����
�
��� 2��� ��� ��!	�
��3"(

4" 5��� � �
���� �� ������ ���� � ��� �� �
� ��
� �
 �� ��� ��"
6" ��� ��� '��� ��(� �
�
����
 7������ '��� ��(8

�
�
'�������'��� ��(�Æ 9 ������� '��� ��(�Æ(

���
� �� ��
 ��� �
�"
:" ��� ��� ������	�
� ��. �
� 	�

��
�
 ��
 �
�
�
��� �� ���� ��%����
 7������'��� ��()

��� ��� ������	�
� �� . �
� 	
�

��
�
 ��
 �
�
�
��� �� ���� ��%����
 7������'��� ��("

;" �
�
� ���� ��
 ������	�
� �� � �� ��%������

��

7������'��� ���() 	
�
� ���� ��
 ���

����	�
� �� � �� ��%������

��

7������'��� � ��("

<" �
���
��
�� ��� ��� ��� ������	�
� � �� � 	 �. �
�	�� ��
 �
$	
�
 ��
�
�
���
�� 	�

� ����
� �� 7������'�� �(�� � �
�� ����
�"

���� � ��
 ���
	������� �� �
�
 ���
���� �	 ��	
��
� ���� ��
 ���������� 9I��
���
�
�������� ���� -�. ������
	 -!�� ��� ���� �! ��������
	.�: 6� �����	�� ��

�����
		��
 H�8 ��������� �
	���
� �� ����
 # 	����	 �� ���� ����
	 �! �
���	
!��� ��
 ������	
	 ��� ��
� ������
	 �� �
�
 ���
����	 ��
�� 	�
� ���� �
�
�
�� �� ��
 	����
 ���
		
� 	� !��� ��
 �����
		��
 ��������� �� �
������

����
� ���� ��
 	����
����
�
��
�� ����� ����� ���
 	���
	�
�� �
�
����� ��
�����
��	��	 �! ��
 ������	
�

@�� ���� �
	��� �	 ���� ����� ��
 H�8 ��� �����
		��
 H�8 ��������� 	���

��
 �����&����
�� ������� ������� �����
��

 ������ �� '�� �������9�� �:	Æ ��� �������9�� �:�Æ �� ���������
�������� �����
����� �����
 ����
���
��)�������� &� (��� ����	 ��� *+, !(���� �" ��� ����
���

��� *+, �������� !(���� %" ���	 ��� ��� ���� ��
����
 � ��� � ��� ���
����� ��������
 ; � Æ
 7	 ; � �	 ��� �	 �� ������������ ������ �������
�
 �������� ��)�������� %�

��
 ����! �! ��
��
� 7 �	 ���
� �� *��
���& * �! "J$�)���
	 �! ��
 ����
�
�
������� �� �
 ������
� !�� �
	
��� �����	
	 !��� ��
 ������	�

� ����	���� �	�	��	�� ����	��

,
 ���� ��� ���
K� 	�
�� ���

&
������ 	��������� �
�	��
	 !�� ��������
	/ �

�
!
� ��
 �
��
� �� ��
 ���
	������� �
����� �
���� "J$!�� ��
 !��� ��
���
���
L�����	 	��������� �
�	��
	 �
����
 �
�	����� ��
 	��������� �! ��� �����������
��	���������	� H�� ���	 �����	
 �
 ���� �	
 � �
�	��
 � ��	
� �� =����
��
��	���
� �
� � F 9��� � � � � ��: ��� � F 9��� � � � � ��: �
 ����������� ��	���������	�
� �	 �
 �
� �	 �9���: F # �

��

���9�� � ��:
�� ,
 	������ ��
 	�� �! 	����
	

!��� # �� ���
� �� �������

 ���� � ��	 ���� ����
	 !�� 	������ ��	���������	�
����
 �
������� ����
�����
�

7

���	
 �� ���!�
����
 +,- /�!������"

����� ,�
��� � ��� �� �
�
���
��) �
���
� �	��
� �� �������
� �) � ��%�������
��� ��0�
�
 ����
�
�� � ��� Æ"

�
� �� 8 �� 8
" �
� ��
 ���� ���
 ����
�
� �
 1=�===� �� �
��	��" �
� 8 1"

�
� � �
 ��
 �����
�� �	��
� �	� ���� �������'�� �(� Æ
�

� �������'�� �(� Æ
�

� � ��
� ��

��� �� ������ � �
����" �
� � 8 ������ ���
"

��� 8 1 � � � � �
�
���

1" �
� Æ	 8
Æ

�	�	���
"

4" 5��� ����
� �� �
���� ���� � ��� �� ��� ��
� �� �� ��� ��� �
�
���
��"
6" ��� ��� '��� ��(� ��	���
 �������'��� ��(�Æ� � �������'��� ��(�Æ� � ��� 7������'��� ��(8

�
�
'�������'��� ��(�Æ� 9 �������'��� ��(�Æ�(" '�������'��� ��(�Æ 9 �������'��� ��(�Æ("

:" �� ��� ���� '��� ��(������� ���� �������'��� ��(�Æ���������'��� ��(�Æ� � � ��
 ��
���

��� ��� ������	�
� ��. �
� 	�

��
�
 ��
 �
�
�
��� �� ���� ��%����
 7������'��� ��() ���

��� ������	�
� �� . �
� 	
�

��
�
 ��
 �
�
�
��� �� ���� ��%����
 7������'��� ��("

�
�
� ���� ��
 ������	�
� �� � �� ��%��
�
���

��

7������'��� �
�

� () 	
�

� ���� ��
 ������	�
�

�� � �� ��%��
�
���

��

7������'��� � ��("

�
���
��
�� ��� ��� ��� ������	�
� � �� � 	 �. �
�	�� ��
 �
$	
�
 ��
�
�
��� ��
	�

� ����
� �� 7������'�� �(�� � �
�� ����
�"

!"������� ��#������ B��
� ��� ��������
	 � ��� � ���� ��
����� ������	� �
������� �
�	��
 �! ��
�� 	��������� �	 ���
� �� �����9�� �: F �9�� � �	:� ��
�

�� ��� �	 ��
 ����������� ��	���������	 �! � ��� � �
	�
���
��� ��
 ���
�
��� ���
� �����	 ��
 ��
�

��������9�� �:�Æ F
�
#�

���
���

�
9�����	 Æ

�
:� G 9��	��	 Æ

�
:� � #������ Æ

�
��	��� Æ

�

��
�

��������9�� �:	Æ F
�
#�

���
���

�
9������ Æ

�
:� G 9��	��� Æ

�
:� � #�����	 Æ

�
��	��	 Æ

�

��
�

$���"��� !"������� ��#������ ,�
� �������� ��� ��
������ ��������
	�
�� �	 ��� �
�� ���� ����
	 ���
	���� ��
�� ���
�� ��
�
!��
� ��� ��		���

�
���������	 �! ����
	 �� ��
 ������	 �! ��������
	 ���
 �� �
 ��	��
�
��
��
 	��������� �
�	��
 �	 ��� �
 �
� �	

������9�� �: F ��&
�����

� 9��� ��	: � 9#:

��
�
 �9�: �	 ��
 	
� �! ��� �
���������	 �! �7� � � � � �� ��
 !�������� 	����
������ �� �
�
 ���
����	 	���	!� ?
 ������ 1�

���������9�� �:�Æ F ��&
��

��������9�� ��:�Æ / ���������9�� �:	Æ F ��&
��

��������9�� ��:	Æ �

%�����#� ���	 �
�	��
 �	 ��	
� �� ��
 ��	��������� �! ������	 9����	 ��� ����
��
� 	��	
��
�
	: �� ��������
 ����
	� ,
 ��	� ��� ��		���
 ������	 ���� �

8

���
�	/ ��
 �
	������ �����	 ��

����
�����9�� �:�Æ F #�

����
���

�
9������	 Æ

�
:� G 9��	���	 Æ

�
:� � #������� Æ

�
��	���� Æ

�

�
�

����
�����9�� �:	Æ F #�

����
���

�
9������� Æ

�
:� G 9��	���� Æ

�
:� � #������	 Æ

�
��	���	 Æ

�

�
�

�������� $���������#� ���	 �
�	��
 �����
	 ��
 ����������	 �! �����
�
�	 ���� !��� ���� ��
�
 �
� 	��	
�	� ,
 �	
 !��� 	��	
�	0 ���
��	
 �
��
�	�
���
��	
 �
��
�	� �����	� ��� �� ���������� 	
� !�� ��� �
������� ��������

�����
�	� L
��� � � F 9� �

� � �
�
� � �

�
� � �

�
� : ������	 ��
 ��
���
� ����������	

�! �
���	 �
������� ��� ��
	
 ��		
	� ��
 	��������� �
�	��
 �� ��� �

�
 �
� �	 �����9�� �: F �9� �� � 	:� 6����	 !�� ����� ��
 �
 �
� ��������	��
�� ��
 ����
 �	
�

&������� �"�� * �
����
� 	�� �! ��� 	��������� �
�	��
	 !���	 ��
 ��	�
�
�
��� �	
� *�� �
����
� 	��	
� �! �
�	��
	 �� �
 ������
� �� 	
�����
�
����	 ��
���
� �
�� �� �
	��
� ����
�� ����
	�

����'�� �(8
�
��

�
���'�� �(9 ���

�
���'�� �(9 ���

�
���'�� �(

�
� 9 �� 9 ��
'6(

��
 �
	������ ����� !�� ��
 �
����
� 	�� �	 	����� ��
 �
����
� 	�� �!
��
 ���
	������� �����	�

��'����� ������	 ��� ��#�����	(����� ,�
� 	�
����
�
� ��!��������
�	 ��������
 < !�� ��	���
 �� ��
 !��� �! ��������
 ���
	 �� �
	�������	 <
�� �	 ����	���
 �� ������
 ���	 ��!��������� ��
 	��������� !������ �� ���
���
 	�
��� ��� ��	���
��
�
� �����
��	0 ����9�� �: F ���

������9�� �: G
���

��	�����
��� 9�� �:� H�� ��	���
� ������� �� ������!� ��
 	��������� �! ���

������
	' ���
	 ��� �
	�������	� ���
 ������� �	 ���
�
��
�� �! ��

������	
� �� !�����	 ���
����
�� ���� ��
 �����	 ��

�������9�� �:� F ���
������ G ����

��	�����
����� 9�� �:�� ���

�������9�� �:	 F ���
������ G ����

��	�����
����� 9�� �:	�

 !����	�����

�� ���
&�
���
��	 �
 ���� �� ���
	�����
 9�: ��
��
� ��
 H�8 ��� �����
		��

H�8 ���������	 ��
 ��������� ��������
 !�� ����
 ������	
	/ �
 ���� �� 9�:
�����
 ��
 �
�!�����
	 �! H�8 9�	��� M�
�����'	 ��� C����� �����	:� ����
��
		��
 H�8 9�	��� C����� �����	:� ��� � ��	
���
 ��	���
���	
� ����
��
��
 ��	
���
 ����
� �	
	 ��
 	��
 	��������� !������ ��� ���
		
	 ��

��
���
 ������	
� ���	 �����	 �
���
���� ��
 ����
	 ���� ��&����
 ��
 	���������
�� ��
 ������	
� ��
��
� 7 ���������
 ���� H�8 ��� �����
		��
 H�8 �
����
�����&����
�� ������� ����
	/ �
�
���
�
		� �
 ���� 9:
��������� 	���� ��

���
 �! ��
 ���������	 ����� ��
 ���
� ����
	 !�� ��������
	�

9

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sa
m

pl
e

si
ze

ε

sample size for census with respect to ε

FSM
FSM, normal

progressive FSM

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sa
m

pl
e

si
ze

ε

sample size for kddcup98 with respect to ε

FSM
FSM, normal

progressive FSM

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sa
m

pl
e

si
ze

ε

sample size for KDDcup99 with respect to ε

FSM
FSM, normal

progressive FSM

���� �� ,�� �
 ���
 �!����� � ��� ��
�� ������! ��!�������"

 0

 50

 100

 150

 200

 250

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

in
 s

ec

ε

execution time for census with respect to ε

FSM
progressive FSM

baseline

 0

 100

 200

 300

 400

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

in
 s

ec

ε

execution time for kddcup98 with respect to ε

FSM
progressive FSM

baseline

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

in
 s

ec

ε

execution time for kddcup99 with respect to ε

���� �� >%
	���� ���
 �!����� � ��� ��
�� ������! ��!�������"

��
 	��������� !������ �	
� !�� ���
&�
���
��	 �	 ��
 �
����
� ��
���
 �!
��� 	��������� !������	 	����
� �� �
���� 3� ���� ��� �
����	 &
� �� 7� ,

�	
 ���

 ������� ��������
 ������	
	0 ��
 +??)�� 7AAJ �	���
� �
������	���
�����
�
�� ������	
 � ������	 ���� 2J7 ��������
	 ��� ��
� 7A;�;;; �
���	/
��
 +??)�� 7AAA ������	
 � ���� �
���� 3 ������� �
���	 ��� 2# ��������
	�
75 �! ���� ��
 ����	� �����	 �
��/ ��� ��

�	�	 ������	
 � ���� 2# ��������
	
9��
 ��E����� �! ��
� ������ �
&�: ��� ��	
 �� 1;;�;;; �
���	�

�� ���
� �� ����� �������
�
&�
���
��	� �
 �������� 	����
�� �! ��

������	
	 ���� ��� ����	 ��������� ���! �! ��
 �
���	� ,
 ��
� �	
 ��
 	�
��
������� ���������	 �� ���� ��
 ��� ����
	 �! ��
 ������	
	� ,�
� ��
 �����
����� ����
	 �� ��������
 ���� ��	
�!� ���	 �	 ����
� �	 � ���
 ��	����
� 6�	
�
�� ��
 ����
� �! ��������
	 ���� ��
 ����
� ���� ��	
�!� �
 �
�
����
 ��
�	����
�
���� ��� H��
�	��
�

H����
 7 	���	 ��
 ����
� �! ������	
 �
���	 ���� H�8 ��� �����
		��

H�8 ���� !��� ��
 ������	
 ��� ���
		 �
!��
 ����� �� �����&����
�� ���
����� ����� H�� ��

�	�	 ��� +??)�� 7AAJ ����� ��

���� 	������� ���
�
���� 9��
� 2: �! �����
		��
 H�8 ��	������� ���	 ��� �
����� ��
 ����
� �!
	����
	 �� ��
���
 �����
� �� H�8� H�� ��
 +??)�� 7AAA ������	
�
����
	������� �� ��
� 2 �	 �
�
�
&
��	
�� ��
 �
�	�� �	 ���� ��
 �� ��
 	���	
�
		 �!
��
 ���� ��
 ������� �����
� �	 �
�� ����� H�� ��� ������	
	� �
 ��	
��
 ����
��
 C����� �����	 �
��
 ��
 �
����
� 	����
 	��
 ��
� ��
 M�
����� �����	
�	
� �� ��
 H�8 ����������

H����
 # �����
	 ��

&
����� ���
 �! H�8� �����
		��
 H�8� ��� ��

��	
���
 ��������� ����
&
��
	 � ��		 ��
� ��

����
 ������	
 !�� ������� ����
�
	 �! � 9���� Æ F ;�7:� *����� �
 ��	
��
 ���� �����
		��
 H�8 �	 ��
 !�	�
	�

� ��� .??#��"��"	�"
�	?�������
�?#��	 @A?#��	 @A"����
� ��� .??#��"��"	�"
�	?�������
�?#��	 @@?#��	 @@"����
� ��� .??#��"��"	�"
�	?�������
�?
��	������
?
��	������
"����

10

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fm
ea

su
re

ε

fmeasure for census with respect to ε

FSM
progressive FSM

baseline

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fm
ea

su
re

ε

fmeasure for kdd98cup with respect to ε

FSM
progressive FSM

baseline

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fm
ea

su
re

ε

fmeasure for kddcup99 with respect to ε

FSM
progressive FSM

���� �� +��
��	�
 �!����� � ��� ��
�� ������! ��!�������"

�
����� !�����
� �� H�8� H�� ��
 +??)�� 7AAA ������	
� ��
 ��	
���
 �����
�����
&

�	 ��� ����
�
�

H������� H����
 1 �����
	 ��
 H��
�	��
 �! H�8� �����
		��
 H�8 ��� ��

��	
���
 ��������� ���� ���
		
	 ��

����
 ������	
� H�� ��

�	�	 ��� +??
)�� 7AAJ ������	
	� ��
 H��
�	��
	 ��
 ����
 ;�A ��� ;�J� �
	�
���
���
�
�
!�� � F 7N H�� �
�
�	��� ����
	 �! �� ��
 H��
�	��
 ����	 !����
�� ��
 +??
)�� 7AAA ������	
� �� �����	�� �	 �
�� ��Æ���� ���
 ���� ��������
	 ����	�
�����	 �		��
 � ����
 �! �
��� ��	� 	��������� ����
	 ��
 �
�� ��	
 ��� �� �	
��Æ��� �� ��
���!� ��
 �
	� ����/ ��
 H��
�	��
 �	 ���
�� ����������

C��
 ���� ��
 ��� H��
�	��
 !�� ��
 +??)�� 7AAA ������	
 �	 ��� �� ���
��������� �� ��
 �������

 ������
� �� H�80 ��
 H��
�	��
 ������
	 ��� !�
�
��
���� ��������
	 ��
 ����
� �� ��
�� ������� 	
���������
������
�� �����
�
9�� ���
&�
���
���� 	
������ �� ��
�	
��
	:� 6� �����	�� ��
��
� 7 �������

	
���� ��
 �
���
�
� ���� !��
�� ��������
 �	 -�
���� �	 ���� �	 ��
 �������
����.� ��
 ��	
���
 ��������� ���
		
	 ��

����
 ������	
 �� ��
 �	� ���

��� ��
�
!��
 ������	 � ��	������ ���� H� �
�	��
 !�� ��

�	�	 ��� +??
)�� 7AAJ ������	
	� H�� ��
 +??)�� 7AAA �����
�� ��
 ��	
���
 ���������

&

�	 ��� ����
�
� �� �
	��� �� �
 ������
�� H�� ��
 H�8 ��� �����
		��

H�8 ���������	�
&
����� ���
 ��� 	����
 	��
 �	 �
�� �	 ��
 ������� �! ��

	������� �
�
�� �� ��
 �����
�
�	 � ��� Æ�

" #�����	��

@�� !���������� �! ��
 �����&����
�� ������� 	�
�� ������� �����
� �	
��	
�� ��
� �� ������� ����������	 ��� �� ��
 	��
 ���
 ����
�������� ����
����	� ��
 H�8 ��� �����
		��
 H�8 ���������	 �������� 	���
 ���	 �����
�/
���� �	� !��
�� ��������
 �!
���
� 	�
��� ��
� �� ��
 � �����&����
�� �
	�
������� �����
�	� ��� �����&����
�� ���
� ��
� ������� �� ��
�� 	����������
H������� ��
 ��������
	 ��
���
� 	�
�� ��
 �����&����
�� 	���
� ������� ��
��
�� ���
������ �! ������ � �����
� �� ��
 ���
� 	�
���

��
 �
����
� 	����
 	��
 �! ��
 ���������	 �
�
��	 �� �����
�
�	 � ��� Æ�
��� �	 ���
�
��
�� �! ��
 ������	
 	��
� ��
 ������	
 ��
�
� �
 �� �� ���

	��
��� H�� ��
 �����
		��
 H�8 ���������� 	����
 	��
 �
�
��	 �� ��
 �����
������	
	� �! ��
�
 ��
 	��
 	������ ��� ���� ��		������ ���
����� ����
	� ��
�
�����
		��
 H�8 �� ��
���!� ��
 	������ ����
	 !�	�
� ��� �
������

�����

@��
&�
���
��	 �
�� �� � ����
� �! ����	���	� 9�: H�8 ��� �����
		��

H�8 ��
 !
�	���
 ��� ��������� ��������
 !�� 	��
��	 ��� �
�� ����
 ������	
	�

11

��
� �� �
 �����
� �� � ����
 �! 	��������� �
���	/ �
 	�
�
� �����	 !�� �
	
�
���� �! �
�	��
	 ���� ��
�	��� �

&�
��
�� 9�: H�8 ���� C����� �����	
��� �����
		��
 H�8 ��

������ !�	� !�� ��Æ��� ������� �����
�	 ���� ����
�
�� 	������ ��������
	� I����
		��
 H�8 �	 !�	�
� ���� H�8 ���
���	
� ��

C����� �����	 ����
�!��� ��
 M�
����� �����	� 9: ,���
 ��
 ��
��
���� �
�
	���	 �������

 �� �����&����
�� ������� ����� �
 ��	
��

��������� ����
��������
	 ��
 �!�
� ������� ����
� �� 	
���������
������
�� ��������
	�

��$�������

1" 5" /	�	
��
�� �" 5�� ," -�������� ��� >" B���" ,�
�� ��� ������!� ������!
���� CD-/99" �� ����������	 �
 ��� �� ������ ���
������� 4==;"

4" �" �
����
�� ��� >" B���" 5��� ���
��	�
 �
������ ��� ���
� ����!
�
��" ��
����������	 �
 ��� ������������� ���
������ �� ������ ��������	��� ��������� 4==="

6" B" 5�����#��� E" F

� /" 5���� /" ���
��� ��� �" 5����!��" ��� . 5����
���!
�� �
% �
����� ����
� �
��

� �������
 ��
���" �� ����������	 �
 ��� ��
������ ���
������� 4==:"

:" �"��" 5� ��� >" B���" C��� � � ����
� ��� G
%���
 ���������� �� ��
��
������! � ����
�" �� ����������	 �
 ��� ������������� ���
������ �� ����

����� ������	�	� 4==4"
;" /" 5���� �" 5����!��� ��� /" ���
��" B
������! ��
��� �� ��� ����
 ����

��	�
�. � �����
��
�����! � ����" �� ����������	 �
 ��� �� ������ ����

������� 4==1"
<" /" 5���� �" 5����!��� ��� /" F
��" F
�����! ��	�
 �
��� ����� ��� ���� ���
�

!������" �� ����������	 �
 �� ���� ���!	���� 4==="
H" C" 5����!�� B" �������� ��� D���	 �������
" /�� ���
 ��� ���! �
����� ���

�����! 	 #����
�!
 �����
�� ��!�������" ���� ������ ��� "��#����� ��	��$����
<'4(.161I1;4� 4==4"

A" ," J�����
���� F" ������������� ��� �" ,�
K
�" /	���
 ��
�� ������! ��
���
���" �
����� �
 ���� �	�����������
������� �	 �
����� 4==<"

@" ," J�����
��� ��� �" ,�
K
�" +��� �����
�� �� 	�
%
�
� ���
��� �� �����
�
�����
 �� � ���
���� �
����#" �� ����������	 �
 ��� �� ���"�� ���
�������
4==;"

1=" �" F� ��� C" C������" ,
����� ���
!������ �� �
�
��!
�
�	� �������
� 	���! �
	���
�
����#�" �� ����������	 �
 ��� ������������� ���
������ �� ���� ����� ������	�	�
1@@:"

11" �" F� ��� C" C������" ,
����. � ���� ��� ��
�������! ������	�
 ���
� ���
�
� ��
�
�
��!
�
�	� �������
� 	���! �
	��� �
����#" ���� ��� "��#����� ������������
66'1(.:@IA:� 4==="

14" J" -�������� �" �
����
��� ��� >" B���" �
�
�� ��
�� ������! ���� C	 ��"
�� ����������	 �
 ��� ������������� ���
������ �� ���� ����� ������	�	� 4==1"

16" >" B��� ��� �" �
����
��" / �	��
� �� � ����
� �� �	������ ��
�� �� ��!"
��� %�&����� 1=.66:I6;=� 4==1"

1:" -" ,��������� E" F

� /" 5���� ��� /���� B��
�����" �	���! ��
�� ������!
�������
 	���! �����
�� �
������" �� ����������	 �
 ��� ��� ���
������� 4==;"

1;" �" ,�
K
� ��� ," ����
�" +�����! ��
 ���� ���
�
����! ���
��� �� � �������

$	�#�� �� 	���! �
$	
����� ��� ���!" %�&���� �
 ������� �������� ��	������
6.A66IA<4� 4==4"

1<" F" E��� B" -���
�� F" ����� ��� B" +�!��" 5��� ����
� 	��
��������! ��� �
0�
�
��
�� ��
�� �� ��!�" �� ����������	 �
 ��� �� ������ ���
������� 4==1"

12

High-Order Substate Chain Prediction
Based on Massive Sensor Outputs

Nguyen Viet Phuong and Takashi Washio

I.S.I.R., Osaka University, 8-1, Mihogaoka, Ibaraki City, Osaka, 567-0047, Japan
{vphuong, washio}@ar.sanken.osaka-u.ac.jp

Abstract. Along the development of ubiquitous sensing technologies,
the opportunity to have transaction time series data is increasing. We
propose a novel framework named HISC modeling to predict the dynamic
system behaviors based on the transaction time series which contains
explosive states due to the combinatorics of massive sensors and their
output values with noise. Its significant performance has been confirmed
through the comparisons with high-order Markov chain models and the
application to practical data analysis.

1 Introduction

Along the development of ubiquitous sensing technologies, the numbers of sen-
sors installed in various systems such as automobiles [1] and home automation [2]
are rapidly increasing in recent years. In such a system, the majority of sensors
produce their signals in event driven manners to save their communication cost.
Accordingly, the system output is a transaction time series which has the back-
ground of extremely high dimensional sensing variables. On the other hand, the
dynamics of the subsystems in many large scale systems are not tightly coupled
with the others as in the case of the small world phenomena [3]. Accordingly,
the identification of each substate of the subsystems and the dynamic transi-
tions among the substates is expected to be an efficient remedy for the dynamic
system behavior prediction under massive transaction time series.

Over the last decade, sequence mining techniques have been studied to search
frequent sequential patterns embedded in massive sequence data. AprioriSome/
AprioriAll [4] and WINEPI/MINEPI [5] derive all frequent subsequence pat-
terns from transaction sequences and an event symbol sequence respectively.
However, these studies remain to provide fragmentary patterns but not any syn-
thetic model for the state prediction. In statistics, Hidden Markov Modeling
(HMM) and HIgh-order Markov Chain (HIMC) modeling have been extensively
studied [6]. Especially, the HIMC modeling has the modeling ability nearly equiv-
alent to that of HMM while maintaining efficient and stable model estimation.

Though various HIMC modeling approaches such as AR and ARMA model-
ing have been studied for a continuous number field [6], only a limited number
of studies have been reported for the symbolic time series data. This is due
to the combinatorics over the past and the present discrete states. To allevi-
ate this difficulty, Mixture Transition Distribution (MTD) modeling introduced

13

an approximation to take a linear combination of the 1st order Markov chain
probabilities over the past states within the model order [7]. This approximation
suppresses the modeling complexity to linear dependency on the model order
while reducing the modeling accuracy. The Maximum Log-Likelihood method
is used to estimate the MTD model. Variable Length Markov Chain modeling
(VLMC) uses more flexible approximation by adapting the model order to each
key subsequence of the states represented in a probabilistic suffix tree (PST) [8].
A key subsequence is the subsequence appearing in the time series more fre-
quently than a given minimum support and having a significant confidence to
predict its next state. This provides a compactly well-approximated model. How-
ever, to our best knowledge, almost all modeling approaches for the time series
data at present assume each sample represented by a limited dimensional state
vector or a limited state symbol but not the aforementioned state transaction.
The practical limit of states and variables which can be introduced into the
models is usually less than a few tens.

Upon these considerations, we propose a novel framework named “HIgh-order
Substate Chain (HISC) modeling” to predict dynamic system behaviors from a
time series of transactions containing massive sensing states. HISC represents
a probabilistic and dynamic relation between a finite number of past major
substates and present major substates. In the current research, the value of each
sensor output is assumed to be categorical without loss of generality as well as the
ordinary Markov modeling. Appropriate signal discretization can be combined
with our framework. Furthermore, these modeling and prediction functions are
implemented into a tool named “HISCMiner”. Significant performance of our
proposing framework has been confirmed though the comparisons with MTD
and VLMC approaches and the application to practical data analysis.

2 Proposing Framework

2.1 HIgh-order Substate Chain (HISC) model

We consider the following time series data D of transactions containing items.

D = X1...Xn

where Xt = {itemt
1, ..., item

t
mt
}. Under the setting of a large scale system having

massive sensors, each item corresponds to a pair of a senor name and its sensing
output value. As many sensors output their values in event-driven manners, each
transaction usually contains only a subset of all sensor outputs. First, we consider
to apply the standard HIgh-order Markov Chain (HIMC) model to D. Let M
be a finite set of state symbols. The HIMC model is given by the following state
transition probability.

p{s1,...,s`},s0(t) = P (Xt = s0|Xt−1 = s1, ..., Xt−` = s`)

where ` is the model order and s0, ..., s` ∈ M . A natural application of this
HIMC model to D is done by labeling each state si by a transaction. However,

14

as mentioned earlier, the number of the states, M , labeled by the transactions
is explosively large due to the combinatorics of the sensors, the variety of their
output values and their noise. The transitions among some major states grabbing
the system dynamics may be hardly identified under this modeling condition.

To overcome this difficulty, we propose a novel framework for the HISC mod-
eling, where each transition rule is limited to a frequent combination of substates
and a transition among them. Let S = S1...S` be a subsequence consisting of
itemsets {S1, ..., S`}. Then a counter of S is defined as

χt
S =

{
1 if S1 ⊆ Xt, ..., S` ⊆ Xt−`+1

0 otherwise .

Note that Si ⊆ Xt−i+1 always holds if Si = φ. From the total number of occur-
rence of S in D: χS =

∑
t χt

S and the total number of transaction subsequences
of length ` in D: L` = n− (`− 1), the support of S in D and the confidence of
an itemset S0 to appear right after S are defined as

sup(S) =
χS

L`
, conf(S0|S) =

χS0S

χS
.

Given a minimum support minsup, the HISC model is given by the following
transition probability under the assumption that the probability is time invari-
ant.

conf(S0|S) '
P (S0 ⊆ Xt|S1 ⊆ Xt−1, ..., S` ⊆ Xt−`) s.t. sup(S0S) ≥ minsup.

(1)

Because the sequence S0S1...S` is frequent, its subsequence S′0...S
′
`′ (⊆ S0S1...S`)

is also frequent. Here, S′0...S
′
`′ ⊆ S0...S` stands for the relation S′0 ⊆ Si∧...∧S′`′ ⊆

Si+`′ (`′ = 0, ..., `; i = 0, ..., ` − `′). Thus the transition probability P (S′0 ⊆
Xt|S′1 ⊆ Xt−1, ..., S

′
`′ ⊆ Xt−`′) is included in the HISC model. This fact indicates

that a HISC model contains many transition rules and their probabilities which
are mutually dependent. Accordingly, the HISC model is not a Markov model,
and consists of the transitions among many dependent substates.

2.2 HISC modeling approach

According to Eq. (1), the HISC modeling requires to derive a complete set of the
frequent subsequences of a length ` + 1, i.e., FS` = {S0S|S0S ⊆ D, sup(S0S) ≥
minsup}, together with their confidence values conf(S0|S). To obtain this in-
formation, two step processes are applied. The first step is data preprocessing to
cut out all subsequences from D by using a moving window of the width ` + 1
for the model order `. This transforms D to the following set of transactions
concatenated over the moving window.

D` = {Y `
t |t = ` + 1, ..., n},

where

Y `
t = Xt ∪ ... ∪Xt−` = {itemt

1, ..., item
t
mt

, ..., itemt−`
1 , ..., itemt−`

mt−`
}.

15

root

0:a

2:b

2:a

1:b

0:b

1:a

0:a

0:a

0:a

0:b

0:b

1:a0:b

0:a

0:a

conf(0:a,0:b|1:a)=0.25

conf(0:a,0:b|φ)=0.03

conf(0:a|1:a)=0.35

conf(0:a|2:b)=0.20

conf(0:a|φ)=0.08

conf(0:b|2:b)=0.16

conf(0:b|1:a)=0.35

conf(0:b|φ)=0.09

Fig. 1. HISC model represented by a trie.

Moreover, each itemt−i in a transaction is prefixed by its time lag i as i : itemt−i,
and the items in every transaction are sorted in descending order, i.e., every Y `

t

is reversed in order. Then each transaction is further transformed in D` as

Y `
t = {` : itemt−`

mt−`
, ..., ` : itemt−`

1 , ..., 0 : itemt
mt

, ..., 0 : itemt
1}.

The second step is to apply an altered basket analysis to D` to derive FS` =
{S0S|S0S ⊆ D, sup(S0S) ≥ minsup} [9]. In our implementation, the Apriori-
based levelwise search of the frequent itemsets is applied by using a trie data
structure as depicted in Fig. 1 which is an example of the 2nd order model. In the
trie, each node is labeled by an item and sorted in descending order from the left
(from the top in Fig. 1). The node corresponds to a candidate frequent itemset
containing the labeling items from the root to the node. The nodes of solid
lines are frequent, and these of the dashed lines are not frequent. For instance,
the solid node(0:a) at the left most in Fig. 1 represents a frequent subsequence
{0:a,0:b,1:a}. Because the objective frequent itemsets are limited in the form
“S0S,” the nodes which are not in the level of the time lag 0 and does not have
any further children are pruned for the efficient memory usage. node(1:a) at the
top line in Fig. 1 is pruned since it does not have any frequent child of the time
lag 0. Every node labeled by an item of the time lag 0 in the trie stands for a
transition rule from S to S0, and its confidence conf(S0|S) is stored at the node
as shown in the figure. The trie obtained by the Apriori algorithm adapted to
our HISC modeling includes all relations of Eq. (1), i.e., the substate transition
rules having their support more than minsup and their transition probabilities.
Hence, this pruned trie is a compact representation of the HISC model.

2.3 Prediction method

As mentioned earlier, the HISC model consists of the transitions rules and their
probabilities among many dependent substates. Accordingly, multiple transi-
tion rules which are mutually dependent are applicable to compute the next
substates and their probabilities under a given transaction subsequence. For
example, if we apply the HISC model in Fig. 1 to a transaction subsequence
{1:a,1:b,1:c}{2:a,2:c}, the following four transition rules are applicable.

16

conf({0:a}{0:b}|{1:a}) = P ({0:a}{0:b} ⊆ Xt|{1:a} ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.25
conf({0:b}|{1:a}) = P ({0:b} ⊆ Xt|{1:a} ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.35
conf({0:a}|{1:a}) = P ({0:a} ⊆ Xt|{1:a} ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.35
conf({0:a}{0:b}|φ) = P ({0:a}{0:b} ⊆ Xt|φ ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.03
conf({0:b}|φ) = P ({0:b} ⊆ Xt|φ ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.09
conf({0:a}|φ) = P ({0:a} ⊆ Xt|φ ⊆ {1:a,1:b,1:c}, φ ⊆ {2:a,2:c}) = 0.08

To compute the next substates, we have to synthesize the consequences of the
multiple rules under some criteria. The criteria and the way of the synthesis may
be up to the objective of the model use. In this paper, we investigate the criteria
and the computational procedure for the prediction of the system substate. The
following two criteria are considered to be obviously important.

(A) The system substate must be specifically computed as much as it can.
(B) The most probable substate must be computed.

To predict the next substate of a given transaction subsequence Ds(⊆ D), can-
didate transition rules having the maximal itemset predictions S0 from S, where
S matches to Ds from the beginning, are selected according to the criterion (A).
More formally, a set of the candidate transition rules to predict the next substate
of Ds is as follows.

CTR(Ds) = {S0S |
S0S ∈ FS` ∧ S ⊆ini Ds and ∃/S∗0S∗, S0 ⊂ S∗0 s.t. S∗0S∗ ∈ FS` ∧ S∗ ⊆ini Ds}

Here, S′ ⊆ini S stands for the relation S′1 ⊆ S1 ∧ ... ∧ S′`′ ⊆ S`′ (`′ ≤ `). Then
the transition rule having the maximum confidence among the candidates in
CTR(Ds) as

S0S = argmaxS0S∈CTR(Ds)conf(S0|S)

is used for the prediction according to the criterion (B). Hence, the next substate
of Ds is predicted as unique S0 satisfying these conditions. In the above exam-
ple, given Ds ={1:a,1:b,1:c}{2:a,2:c}, CTR(Ds) = {{0:a,0:b}{1:a}, {0:a,0:b}} is
derived since {0:a,0:b} is the maximal frequent itemset under Ds. Then, the rule
having the highest confidence {0:a,0:b}{1:a} is chosen, and {0:a,0:b} is predicted
for the next substate.

3 Performance Evaluation

The aforementioned functions of HISC modeling and prediction are implemented
into a tool named HISCMiner by using C++ language. In this section, the perfor-
mance of HISCMiner is assessed in experimental comparisons with some conven-
tional HIMC approaches by using synthetic data. Furthermore, its practicality
is demonstrated through an experimental application to a real world data. All
experiments have been conducted by using a personal computer with 3.0GHz
Pentium 4 CPU and 2GB RAM.

17

3.1 Experimental setting using synthetic data

We constructed a synthetic data generation program. Let I be a set of all items
which appear in the synthetic data. Then the program generates major substates
S by randomly choosing |S| items from I where |S| is determined by a Gaussian
random value having the average |S| and the unit variance. Let SS be a set of
generated S. Let ` be a model order, R a state transition rule and RS the set
of R. R is randomly generated by following the form bellow where each Si is a
substate in SS and c a number of the candidate next substates.

R = {S1
0 , ..., Sc

0}S1...S`. (2)

Starting from an initial transaction sequence X1...X`, R whose conditional part
satisfies S1...S` ⊆ini X1...X` is used to derive a next substate S0. The next
substate is chosen under probability PR(Si

0) of R where
∑c

i=1 PR(Si
0) = 1. Then

X`+1 which is obtained by X`+1 = S0 ∪N where N is a noise itemset randomly
chosen from I. |N | is determined by a Gaussian random value having the average
|N | and the unit variance. This process is repeated by incrementing all time
indices to generate a transaction time series D = {Xt|t = 1, ..., n}. By default,
the parameter values of |I| = 5000, |SS|=1000, |S| = 3, |RS| = 10, ` = 3, c = 3,
|N | = 7 and n = 10000 are used. Thus, this is a Markov chain process embedded
in very noisy transaction time series having a large number of background items
and substates.

Because our HISCMiner estimates the substates but not the total states,
the ordinary definition of estimation error is not applicable to the performance
evaluation. Given a true substate St generated in the data synthesis and the
substate Se estimated by the HISCMiner, they may not perfectly match as St 6=
Se but overlap as St ∩ Se 6= φ. A simple way to evaluate the error between
these two substates is to measure the ratio of their different part over their join
as |St ∪ Se − St ∩ Se|/|St ∪ Se|. However, if St and/or Se do not appear very
frequently, their error does not strongly affect the performance of the HISCMiner.
Accordingly, a better way to evaluate their error is to take into account the
frequency of their appearance in D. This can be achieved by using the following
information of each item in a substate, Info(item), instead of the cardinality of
the substate.

Info(item) = − log2(p(item)),
where p(item) is the empirical probability of the item in D. Then the substate
error between St and Se is formulated as

ES(St, Se) =

∑
item∈St∪Se

Info(item)−
∑

item∈St∩Se

Info(item)

∑
item∈St∪Se

Info(item)
.

When a time series of St having a length n and the time series of their estima-
tions Se are given, their average substate error is defined as

ES(St, Se) =

n∑
i=1

ES(St, Se)(i)

n
. (3)

18

Table 1. Comparison with MTD and VLMC

Data set HISC MTD VLMC

#3-3-0-5000 0.321 0.383 0.341

#3-3-2-5000 0.279 1.000 0.858

#3-3-4-5000 0.309 1.000 0.886

#3-3-2-5000 0.279 1.000 0.858

#3-3-2-100 0.350 1.000 0.837

#3-3-2-50 0.397 1.000 0.817

#3-3-2-10 0.653 0.933 0.598

Table 2. Parameters for Pioneer-1

Setting Move Data Turn Data

minsup ; disc minsup ; disc

#1 0.0400 ; 5 0.0250 ; 5

#2 0.0180 ; 10 0.0210 ; 10

#3 0.0075 ; 30 0.0150 ; 30

#4 0.0075 ; 50 0.0150 ; 50

#5 0.0075 ; 100 0.0150 ; 100

#6 0.0075 ; 300 0.0150 ; 300

#7 0.0085 ; 30 0.0300 ; 30

#8 0.0095 ; 30 0.0450 ; 30

#9 0.0110 ; 30 0.0600 ; 30

3.2 Comparison with conventional methods

HIMCMiner was compared with MTD [7] and VLMC [8] in terms of the model
based prediction accuracy by using some synthetic datasets. We obtained the
MATLAB code of MTD modeling from a download site [11] and the binary code
of VLMC from its authors [8]. The transaction time series of the synthetic data
is divided into two parts by 1:1. The former is used for the training and the rest
for the testing. Because MTS and VLMC accept only symbolic sequences but
not transaction sequences, each transaction state containing a substate and a
noise itemset is mapped to a unique character in the preprocessing for VLMC
and MTD. 6 datasets having different simulation parameters of the model order
`, the average major substate size |S|, the average noise itemset size |N | and
the item space size |I| are generated. They are labeled as # `-|S|-|N |-|I|. In the
transition probability distribution PR(Si

0) (i = 1, ..., c) of the rule Eq. (2), one
candidate next substate is set to be 80%, and the others are set to share the rest
20%. In the application of these three modeling methods, their model order is
set to be ` used in the data synthesis. minsup for HISCMiner and VLMC was
set at sufficiently low 3% to search all major substates in the datasets.

Table 1 shows the result of ES(St, Se) for the three methods. In the case of
#3-3-0-5000 where no noise is contained, the errors of the three methods are
nearly same. However, under the larger noise such as #3-3-2-5000 and #3-3-4-
5000, MTD and VLMC almost fail to predict the substates while HISCMiner
is highly robust against the noise. In case of the noisy dataset, the test data
for MTD and VLMC contains many states which do not appear in the training
data due to the nature of the data preprocessing. This affects the accuracy of
MTD and VLMC significantly. On the other hand, when the item space I is
small as #3-3-2-10, the errors of MTD and VLMC decrease since the number of
states in both test and training data decreases. However, the error of HISCMiner
increases under this condition, because the noise items generated from the small
item space accidentally form spurious substates, and these substates disturb
the prediction of HISCMiner. In this regard, HISCMiner is suitable to the data
having the background of the large item space.

19

The computation time required by HISCMiner to model the data under #3-
3-7-5000 setting was 9min20sec. When the model order ` is increased to 4, it
becomes to 18min21sec. When the size of the substate |S| is 4, it is 28min29sec.
It remains at 13min45sec under the size of the noise item |N | = 14. In theory,
the computation time exponentially increases along these parameters. However,
the sensitivity to |N | is relatively low, because the random noise does not sig-
nificantly generate any major substates. For the size of the data |D|, the com-
putational complexity is O(|D|) since the Apriori is the main algorithm in this
framework. In comparison with the other methods, the computation times under
#3-3-0-5000 setting were 6sec, 0.1sec and 245min17sec by HISCMiner, VLMC
and MTD respectively. Thus, the HISCMiner is practically sufficient comparing
with the other methods.

3.3 Experiment on real world data

The practical performance of our HISCMiner has been assessed through the
application to the Move and the Turn datasets of the Pioneer-1 Mobile Robot
monitored by 36 sensors and provided at UCI KDD archive [12]. The Move
dataset contains an experimental time series data of 6130 time steps where the
Pioneer-1 moved on a straight line. The Turn dataset contains a time series
data of 2325 time steps where the Pioneer-1 turned in a place. Each row of
these data represents many sensor outputs at a time step where some outputs
are missing due to their data driven operations. Hence these are transaction
time series. Because many sensor outputs are numeric values, the [smin, smax]
output range of each numeric sensor s in the data is discretized into disc levels
as [lsi , u

s
i] (i = 1, ..., disc, ls1 = smin, us

disc = smax) in equi-depth manner, and it
is represented as an item < s : [lsi , u

s
i] >. The first 3/4 time series is used for the

training and the rest for the testing.
Similarly to the evaluation on the synthetic data, the ordinary error in-

dex is not applicable to measure the performance of HISCMiner. Thus, we
use Precision and Recall under our own error definition. Given a discretized
transaction time series D = X1...Xn and its substate time series S = S1...Sn

predicted by HISCMiner. For two sensor outputs < s : vt >∈ Xt ∈ D and
< s′ : v′t >∈ St ∈ S where v is a (discretized) sensor output value, their error
e(< s : vt >, < s′ : v′t >) is defined as follows. When they are numeric and
s = s′,

e(< s : vt >, < s
′
: v
′
t >) =

(
xt − (us

i + lsi)/2

ss
max − ss

min

)2

,

where xt is the original numeric output of s and < s′ : v′t >=< s : [lsi , u
s
i]t >∈ St.

When they are categorical, s = s′ and vt = v′t, e(< s : vt >,< s′ : v′t >) = 0.
When they are categorical, s = s′ but vt 6= v′t, e(< s : vt >,< s′ : v′t >) = 1.
Otherwise, e(< s : vt >,< s′ : v′t >) = 0. Then, the Precision and the Recall to
take into account the quantitative prediction errors at a time step t is given by

Precision(Xt, St) = 1−

√√√√
∑

<s:vt>∈Xt,<s′:v′
t
>∈St

e(< s : vt >, < s′ : v′t >)

|St|
,

20

#1
#2

#3

#4
#5

#6
#7

#8 #9

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.54 0.56 0.58 0.6 0.62 0.64 0.66

Precision

R
ec

al
l

Move data #1

#2

#3
#4

#5#6

#7
#8

#9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.54 0.56 0.58 0.6 0.62 0.64 0.66

Precision

R
ec

al
l

Turn data

Fig. 2. Precision and Recall for Move and Turn data.

Recall(Xt, St) = 1−

√√√√
∑

<s:vt>∈Xt,<s′:v′
t
>∈St

e(< s : vt >, < s′ : v′t >)

|Xt|
.

These are averaged over t = 1, ..., n as Precision(Xt, St) and Recall(Xt, St).
For each combination of minsup and disc shown in Table 2, we conducted the

experiments of modeling and prediction. When the small disc is used, the number
of the frequent substate subsequences is large since many substate transitions are
summed up into the small number of the transitions. To save the memory usage of
the trie during the search of HISCMiner under the condition, the relatively high
minsup values were used. Fig. 2 shows the averaged Precision-Recall plot for the
two datasets. The points distant from the origin show better performance. Since
each real transaction Xt contains many noise items, the Recall is quite small
comparing with the Precision. In addition, since the Move and Turn datasets
are sampled from very nonstationary operations of the Pioneer-1 Robot, the
characteristics of the former 3/4 training data and these of the rest data have
some discrepancy. This effect is considered to reduce the prediction precision to
some extent. Roughly speaking, the low granularity of the discretization such as
the case #1 provides high recall, since the items in St easily match to the items
in Xt under the less item space I. On the other hand, the moderate granularity
of the discretization such as #4 and #7 derives higher precision. disc = 30 ∼ 50
seems to efficiently capture the substate change of the robot.

4 Discussion

Based on the consequences obtained in the former section, HISCMiner is con-
sidered to have a superior ability to model the system dynamics observed by
the transaction time series. However, the interpretability of the model is another
very important issue. Because the performance of the model interpretability is
a quite subjective matter, we limit our discussion to just demonstrate an ex-
ample on the model interpretation. In the aforementioned example of Pioneer-1
Mobile Robot, most of the substate transition rules contained in the trie of the
HISC model trivially represent the static situations where the robot keeps its
stable states. However, some substate transition rules clearly indicates the sig-
nificant behaviors of the robot. For example, the following substate transition
rule captured from the Move data shows the specific action of the robot.

{0 :< S : [193, 251] >, 0 :< RV : [−88.7, 25.3] >, 0 :< LV : [−86.1, 25.3] >, 0 :< TV : [−87 : 4, 21.5] >}
{1 :< S : [193, 251] >}{2 :< S : [193, 251] >},

where S, RV , LV and TV is abbreviation of SONAR-3, R-WHEEL-VEL, L-
WHEEL-VEL, and TRANS-VEL, respectively. SONAR-3 is the forward depth

21

sensed by a sonar. R-WHEEL-VEL and L-WHEEL-VEL are the velocities of
right and left wheels. TRANS-VEL is the translational velocity of the robot.
This rule indicates that, if SONAR-3 sensed some obstacle within a [193-251]mm
distance in the previous two time steps, the velocity of right wheel, left wheel and
the translational velocity become within [-88.7,25.3]mm/sec, [-86.1,25.3]mm/sec
and [-87:4,21.5]mm/sec. As the maximum moving back velocity of this robot
is -300mm/sec, this rule shows that the robot almost stops and/or moves back
slowly when it is close to an object in the front.

5 Conclusions

In this paper, we proposed a novel framework called HIgh-order Substate Chain
(HISC) modeling and its tool named HISCMiner for the modeling and predic-
tion. The main advantage of our HISCMiner is to derive dynamics of a large
size system or a large size sensing information in tractable manner. This issue
has not been addressed in the past study of data mining and machine learning.
Another advantage of our framework is to obtain interpretable rules on the sys-
tem dynamics which helps to obtain the knowledge on the objective system. An
important issue remained in the HISC modeling is the online modeling and its
updating for data streams. This issue can be explored by using some frequent
pattern mining technique for data streams [10]. The importance of the proposed
framework is expected to increase along the development of the ubiquitous sens-
ing technologies.

References

1. Sun, Z., Miller, R., Bebis, G., DiMeo, D.: A real-time precrash vehicle detection
system. Proc. of the IEEE Workshop on Applications of Computer Vision. (2002)

2. Beaudin, J., Intille, S., Tapia, E.M.: Lessons learned using ubiquitous sensors for
data collection in real homes. Extended Abstracts of the 6th Conf. on Human
Factors in Computing Systems. (2004)

3. Albert, R.Z., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews
of Modern Physics, 74(1). (2002)

4. Agrawal, R., Srikant, R.: Mining sequential patterns. Proc. of the 11th Int. Conf.
on Data Engineering. (1995)

5. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3). (1997)

6. MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-
valued Time series. Chapman & Hall/CRC, New York. (1997)

7. Berchtold, A., Raftery, A.E.: The mixture transition distribution model for high-
order markov chains and non-gaussian time series. Statistical Science, 17(3). (2002)

8. Bejerano, G., Yona, G.: Variations on probabilistic suffix trees - a new tool for
statistical modeling and prediction of protein families. Bioinformatics, 17(1). (2001)

9. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. Proc. of
20th Int. Conf. on Very Large Data Bases. (1994)

10. Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P.S.: Mining Frequent Patterns
in Data Streams at Multiple Time Granularities. Next Generation Data Mining,
MIT Press. (2003)

11. CMU: (http://lib.stat.cmu.edu/general)
12. UCI-KDD-Data-Repository: (http://kdd.ics.uci.edu/databases/pioneer/)

22

Online Prediction of Clustered Streams

Pedro Pereira Rodrigues and João Gama
{prodrigues,jgama}@liacc.up.pt

LIACC-NIAAD - University of Porto
Rua de Ceuta, 118 - 6 andar

4050-190 Porto, Portugal

Abstract. This paper presents a real-time system for online prediction
in large sensor networks, with two components. The goal of our sys-
tem is to predict the value of each sensor with a given horizon. Due
to the large number of sensors, we first cluster them using an online
clustering system able to aggregate streaming sensor variables with high
correlation. Afterwards, associated with each cluster, we train a neural-
network-based predictive model. The clustering system uses a top-down
divisive strategy, with the leaves being the resulting clusters, which may
be aggregated if the system detects changes in the actual correlation
structure. The neural networks are continuously trained with data from
the corresponding streams. The system operates online, with incremental
monitoring of clusters’ diameters and incremental neural network train-
ing. Whenever a cluster is split the offspring clusters inherit the parent
neural network, starting to fit a different copy. Experiments in the con-
text of online prediction of large electrical sensor networks support our
approach, presenting capacity to learn predictive models from clusters’
centroids and improving the quality with online training.

1 Introduction

In recent real-world applications, data flows continuously from a data stream at
high speed, producing examples over time, usually one at a time. Traditional
models cannot adapt to the high speed arrival of new examples [3]. This way,
algorithms have been developed that aim to process data in real-time. These
algorithms should be capable of, at each given moment, supply a compact data
description and process each example in constant time and memory [1]. Most
of the work in incremental clustering of data streams has been concentrated on
example clustering rather than variable clustering. Moreover, variable cluster-
ing is usually considered a batch offline procedure. Thus, incremental variable
clustering isn’t too surveyed yet, so we may find a lot of possibilities for con-
tributions in this area of research. Online learning is one of the most powerful
and commonly used techniques for training large layered networks and has been
used successfully in many real-world applications [13].
The main objective of this work is to present a real-time system for online pre-
diction in large sensor networks, where each variable is a time series and each
new example that is fed to the system is the value of an observation of all time

23

series in a particular time step. There are two components in our system. The
first one is an online clustering algorithm able to aggregate variables that exhibit
high correlation in the previous recent period. The second component is a set of
neural networks, each one being associated with one cluster.
In the next section, a review over incremental clustering analysis for data streams
and online learning with neural networks is performed. Section 3 presents the
complete system, extending the clustering system with predictive models at the
leaves. Experimental evaluation on artificial and real data is presented on sec-
tion 4, supporting the quality of the system. We finalize the exposition with
section 5, where concluding remarks and future work are presented.

2 Related Work

Incremental clustering methods have been developed, which can cope with data
stream analysis. An overview of clustering analysis can be found in [10]. Apart
from other good examples, COBWEB [4], BIRCH [15], and CURE [6] are well-
known incremental methods. Unfortunately, incremental methods to perform
clustering on variables are hard to find. A recent development is ODAC [12],
which we will use on our system, and is detailedly described in section 3.
The objective application of our system is to build predictive models for a large
number of load demand sensors, in order to perform online load forecasting.
Load forecasting has become in recent years one of the major areas of research
in electrical engineering, and several data mining techniques have been applied
to fulfill this quest, from simpler time series analysis, like ARIMA models [2], to
more complex approaches such as neural networks. Moreover, neural networks
have been widely used in the scope of time series forecasting. In [7] the authors
present a review of systems and applications of neural networks to load forecast-
ing, both hourly load and profile prediction.
Concerning short-term forecasting, most neural network approaches consider
previously observed values in recent time (hours, days, weeks) very important
to the forecasting procedure [7,11], acknowledging the cyclic behavior of load
demand, detecting daily, weekly and even yearly periods. This has in fact been
the basic structure to the input vectors of neural networks in load forecasting. In
some approaches, the temperature values are also considered as relevant features
for the prediction [14], as they are highly correlated to power consumption.
Unfortunately, load forecast has always been based in batch procedures, with
offline training and adaptation of neural networks. Nowadays, the burst of data
sensors in electrical networks turned it nearly impossible to consistently adapt
the network with all the data available. Thus, online methods that treat electri-
cal data as streams of time series have become even more relevant to the field.
Another reason to consider online learning is that, with the advent of data
streams, the assumption that examples are generated at random according to
some stationary probability distribution is being disregarded. This way, new
methods are being proposed to deal with changes on the concept of the distri-
bution producing the examples, that is, concept drift [5].

24

3 System Description

The goal of the system is to gather a predictive model for all the variables in
the system with a horizon forecasting. Data from sensors arrives in real time.
Suppose that at time stamp ti we receive an example. The goal of the system is
to predict the value of each variable in time stamp ti+k.
Given the expected high dimensionality of the problem, a design which would
gather one model per variable is not possible. Thus, the system fits one predic-
tive model per cluster, leaves of the clustering structure gathered online with a
hierarchical clustering algorithm, considering that clustered variables should be-
have with high correlation. The system predicts all the variables independently.
The ODAC (Online Divisive-Agglomerative Clustering) system is a variable clus-
tering algorithm that constructs a hierarchical tree-shaped structure of clusters
using a top-down strategy. The leaves are the resulting clusters, with a set of
variables at each leaf. The union of the leaves is the complete set of variables.
The intersection of leaves is the empty set. The system encloses an incremental
distance measure and executes procedures for expansion and aggregation of the
tree-based structure, based on the diameters of the clusters. The main setting
of our system is the monitoring of existing clusters’ diameters. In a divisive hi-
erarchical structure of clusters, considering stationary data streams, the overall
intra-cluster dissimilarity should decrease with each split. For each existing clus-
ter, the system finds the two variables defining the diameter of that cluster. If
a given heuristic condition is met on this diameter, the system splits the cluster
and assigns each of the chosen variables to one of the new clusters, becoming this
the pivot variable for that cluster. Afterwards, all remaining variables on the old
cluster are assigned to the new cluster which has the closest pivot. New leaves
start new statistics, assuming that only forthcoming information will be useful
to decide whether or not this cluster should be split. This feature increases the
system’s ability to cope with changing concepts as, later on, a test is performed
such that if the diameters of the children leaves approach the parent’s diameter,
then the previously taken decision may no longer reflect the structure of data,
so the system re-aggregates the leaves on the parent node, restarting statistics.
Along with the clustering structure definition, a set of predictive models is kept
at the leaves, one per leaf, to allow online learning and real time predictions of
all the variables. Overall, the system produces real-time predictions of all vari-
ables, with online training of the neural networks and online monitoring of the
clustering structure.

3.1 Growing the Hierarchy

The main procedure of the ODAC system is to grow a tree-shaped structure that
represents the hierarchy of the clusters present in the data. It uses Pearson’s
correlation coefficient between time series as similarity measure. The sufficient
statistics needed to compute the correlation are easily updated at each time step.
In ODAC, the dissimilarity between variables a and b is given by an appropriate

25

metric, the Rooted Normalized One-Minus-Correlation given by

rnomc(a, b) =

√

1 − corr(a, b)

2
(1)

with range [0, 1]. We consider the cluster’s diameter to be the highest dissim-
ilarity between two time series belonging to the same cluster, or the variable
variance in the case of clusters with single variables.
In the ODAC system, each example is processed only once. The system incre-
mentally updates, at each new example arrival, the sufficient statistics needed to
compute the dissimilarity matrix, enabling its application to clustering of data
streams. One problem that usually arises with this sort of models is the defini-
tion of a minimum number of observations necessary to assure convergence. The
chosen approach is to apply techniques based on the Hoeffding bound to solve
this problem. The Hoeffding bound has the advantage of being independent of
the probability distribution generating the observations [8], stating that after n
independent observations of a real-valued random variable r with range R, and
with confidence 1−δ, the true mean of r is at least r− ǫ, where r is the observed
mean of the samples and

ǫ =

√

R2ln(1/δ)

2n
(2)

As each leaf is fed with a different number of examples, each leaf Ck will possess
a different value for ǫ, designated ǫk. Let d(a, b) be the heuristic measure used
to choose the pair of time series representing the diameter (real value of the
distance measure), and Dk = {(xi, xj) | xi, xj ∈ Ck, i < j} be the set of pairs
of variables included in a specific leaf Ck. After seeing n samples at the leaf, let
(x1, y1) ∈ {(x, y) ∈ Dk | d(x, y) ≥ d(a, b), ∀(a, b) ∈ Dk} be the pair of variables
with maximum dissimilarity within the cluster Ck, D′

k = Dk\{(x1, y1)} and
(x2, y2) ∈ {(x, y) ∈ D′

k | d(x, y) ≥ d(a, b), ∀(a, b) ∈ D′

k}, d1 = d(x1, y1) and d2 =
d(x2, y2). Let ∆d = d1 − d2 be a new random variable, the difference between
the observed values. Applying the Hoeffding bound to ∆d, if ∆d > ǫk, we can
confidently say that, with probability 1 − δ, the difference between d1 and d2

is larger than zero, and select (x1, y1) as the pair of variables representing the
diameter of the cluster. That is,

d1 − d2 > ǫk ⇒ diam(Ck) = d1 (3)

With this rule, the ODAC system will only split a cluster when the true diameter
of the cluster is known with statistical confidence given by the Hoeffding bound.
This rule triggers the moment when the leaf has been fed with enough examples
to support the decision.
A time series is obviously not a random variable, so we have decided to model
the time series first-order differences in order to reduce the negative effect of
autocorrelation on the Hoeffding bound, preventing larger errors. Moreover, the
missing values can be easily treated with a zero value, considering that, when
unknown, the time series is constant.

26

To distinguish between the cases where the cluster has many variables nearly
equidistant and the cases where there are two or more highly dissimilar variables,
we introduce a parameter to the system, τ . At any time, if τ > ǫk the system
applies the tests, assuming the leaf has been fed with enough examples, hence
it should consider the highest distance to be the real diameter.To prevent the
hierarchy from growing unnecessarily, we define a third criterion that has to be
met to perform the splitting. The splitting criterion should reflect some relation
among the distances between variables of the cluster. Given this fact, we can
impose a cluster to be split if it includes a high difference between (d1 − d) and
(d−d0), where d0 stands for the minimum distance between variables belonging
to the cluster and d is the average of all distances in the cluster. In our approach,
we relate the expression with the global difference d1 − d0. Our heuristic is the
following: for a given cluster Ck, we choose to split this leaf if:

(d1 − d0)
∣

∣d1 + d0 − 2d
∣

∣ > ǫk (4)

When a split point is reported, the pivots are variables x1 and x2 where d1 =
d(x1, x2), and the system assigns each of the remaining variables of the old
cluster to the cluster which has the closest pivot.

3.2 Adaptation of the Clustering Structure to New Concepts

Considering stationary data streams, the clusters’ diameters should decrease
with each split. If diameters increase, then probably the structure hass changed,
and a new concept is arising. The heuristic that is adopted in this work is the
analysis of diameters. This way, no computation is needed between the variables
of the two siblings. For each given leaf Ck, we shall test the diameters of Ck,
Ck’s sibling (Cs) and Ck’s parent (Cj), assuming that the sum of the children
diameters should not be as large as two times the diameter of the parent. We
define a new random variable ∆a = 2 · diam(Cj) − (diam(Ck) + diam(Cs)).
Applying the Hoeffding bound to this random variable, if ∆a > ǫj then the
condition is met, so the splitting decision is still a good approach. Given this,
we choose to aggregate on Cj if

2 · diam(Cj) − (diam(Ck) + diam(Cs)) < ǫj (5)

supported by the confidence given by the parent’s consumed data. The resulting
leaf starts new computations and a concept drift is detected.

3.3 Online Predictions

At each time stamp ti there are two actions: one is to make a prediction for
time stamp ti+k; the other is to back-propagate the error between the prediction
done at time stamp ti−k and the value observed at current time stamp. The
prediction is made with only the available data at the current time. Nevertheless,
we decided to first back-propagate the error, in order to improve predictions

27

as soon as possible. At time stamp ti−k we did a prediction for the current
time ti. To back-propagate the error, we first compute the difference between
the observed values in time ti and ti−1 and propagate the error only one time
through the network, achieving an online training of the predictive model. To
make a prediction at time ti+k, the system uses previous real data as input to the
predictive model. The clustering structure is used here as missing data handler.
All the variables in the same cluster are highly correlated, so, they have similar
gradient. Since we model the first-order differences for the clustering procedure,
when a given time series expresses missing data, this data is replaced by applying
to its last known value the average variation of similar time series.
From the user’s point of view, there is no need to predict time series that do not
behave accordingly to what is expected. Given this, our system only starts fitting
a predictive model if and when a cluster expresses good intra-cluster correlation.
If it does not, the previously seen value is used as prediction to that particular
time series. Let µk be the mean intra-cluster correlation of cluster k and σk

the standard deviation of those correlations. The heuristic used to detect good
clusters is to fit a predictive model if

µk − σk > ǫk (6)

with ǫk given by the Hoeffding bound for that leaf. This heuristic supports the
notion that most of the variables in the cluster express positive correlation with
each other. In case of clusters with single variables, the variance of the time se-
ries is used to compare with the Hoeffding bound, hence, not building predictive
models for irrelevant time series.
The predictive models are feed-forward neural networks, with ten inputs, four
hidden neurons with tahn activation function and one linear output, with the
input vector to the neural network of time series t at time stamp k being the pre-
viously values of t at time stamp k minus {1, 2, 3, 4} hours and k minus {7, 14}
days. We use the iRprop training algorithm [9] to learn the neural networks,
reducing the parameter sensitivity of our system. The modularity of our de-
sign allows the predictive models to be, not only dynamic and easily changed,
but also heterogeneous along different clusters. However, for simplicity and first
evaluation of the system, we will only consider homogeneous models for the next
hour load forecasting.
To enable ODAC with predictive capacity, it was mandatory to consider buffer-
ing the input, so the networks could ask for past values of respective variables
and the system could store future predictions until real values appear in the data
stream. Figure 1 sketches the overview of the buffering procedure executed every
time a single example arrives at the system. The size of the buffer is directly
proportional to the granularity of the incoming data, since it must include data
from ti minus two weeks till ti plus one hour. As often considered [11,14,7], four
cyclic variables were also included, for hourly and weekly periods (sin and cos).
Every time a cluster is split, the offspring clusters inherit the parent’s network,
starting to model a different network separately. This way, a specification of the
model is considered along the specification of the clustering structure. When an

28

Fig. 1. Buffered Online Predictions: 1. new real data arrives (r) at time stamp i,
substituting previously made prediction (o); 2. define the input vector to predict time
stamp i; 3. execute prediction (t) for time stamp i; 4. compute error using predicted (t)
and real (r) values; 5. back-propagate the error one single time; 6. define input vector
to predict time stamp i plus one hour; 7. execute prediction of next hour (p); 8. discard
oldest real data (d).

aggregation of clusters occurs, due to clustering concept drift, the new cluster
starts a new neural network defined as a weighted merge of the descendants net-
works. Another possibility is to reset the internal weights to a previously learned
set of weights, which may have been proved to be robust and general enough to
start the training of one particular set of variables.

4 Experimental Evaluation

Experimental evaluation of the system is two-folded. First, the clustering strat-
egy applied in the system must be validated. This was already performed in [12],
using real data from medical sensors and electrical network power demand data.
Afterwords, preliminary evaluation of the predictive strategy is performed and
results are presented. Using electrical demand sensor data, the clustering the
system resulted in a large tree, supporting the data streams requirements of
speed and memory, identifying quality clusters with good intra-cluster correla-
tion. Figure 2 plots the structure gathered in this experiment. Overall, exper-
imental results show that the system possesses competitive performance when
compared with batch clustering analysis, evolving and adapting in the presence
of concept drift.

4.1 Predictive Task

There are two major concepts our system is supposed to address. On one hand,
considering the expected high correlation between time series of the same clus-
ter, the system should be able to fit a predictive model that represents the whole

29

Fig. 2. ODAC Clustering Structure

cluster, training with the cluster’s centroid. On the other hand, it is expectable
that online learning should produce better adaptation to new examples, com-
paring to predictive models trained with past examples and no adaptation to
current data. These are the aims of the following experiences.

Clusters as Representatives For this first experience, we try to discover if
our system can build predictive models for each cluster with a certain degree
of quality. We use 482 variables of the entire electrical demand data set and
build the clustering structure with several months of real data. For each cluster
which possess good intra-cluster correlation, the system learns a predictive model
using the centroid of the corresponding time series for the whole past data and
tests them in the following week, for each variable individually. We evaluate
predictions using the following well-known cost function:

MAPE =

n
∑

i=1

|(ŷi − yi)/yi|

n
(7)

where yi is the real value of variable y at time stamp i, and ŷi is the correspond-
ing predicted value. Preliminary results on electrical power demand current data
support some of the motivations for our work. Fitted models resulted in predic-
tions with MAPE evaluation values under 10%. Figure 3 presents an example of
predictions made by a neural network trained with the centroid of the cluster.

Online Learning In these experiences, we are interested on inspecting the
advantages of online learning, comparing online training results with the pre-
dictions made by batch models. In Figures 3 and 4, plots of the resulting pre-
dictions and the evolution of the MAPE error are shown, for two example time
series from different clusters. In Figure 3, the incremental neural network starts
giving poorer predictions compared with the static network, as this still main-
tains the underlying dynamics of the time series. However, after some time, the
incremental learning combines its efficiency with accuracy, diminishing the error
below the static model. This behavior becomes even clearer in Figure 4, where
the incremental system maintains an error descent through time, outperforming
the static predictions. After the first week, for all non-null variables, the average
improvement achieved by online training is about 5%.

30

Fig. 3. Real values (line) and system’s predictions (squares) using a static (top) and
online trained (bottom) neural network. On the right side we can stress the quality of
online training, comparing the MAPE evolution of both networks on the same series.

Fig. 4. Plot of another example time series. The MAPE evolution On the right side
clearly shows the gain in performance achieved with online training of the predictive
models, since the static network fails to adapt to changes in the future.

5 Conclusions

This paper introduces a system that gathers a predictive model for a large num-
ber of data variables with an horizon forecasting, incrementally constructing a
hierarchy of clusters and fitting a predictive model for each leaf. The main set-
ting of the clustering system is the monitoring of existing clusters’ diameters.
The main setting of the predictive strategy is the buffered online prediction of
each individual variable, based on a neural network trained with clustered vari-
ables. The examples are processed as they arrive, using a single scan over the
data. Experimental results show that the system is able to fit predictive mod-
els using the centroids of the cluster they are associated to. Moreover, applying
incremental learning, using the online strategy developed in this work, seems
to outperform predictions made with static predictive models. Future work will
focus on the definition of global evaluation strategy and the inspection of other
online learning algorithms or architectures such as recurrent neural networks.
We believe further work on the learning task will improve the quality of neural
network basic accuracy.

31

Acknowledgments

The authors wish to thank the Plurianual support attributed to LIACC, and
the participation of projects RETINAE (PRIME/IDEIA/70/00078) and ALES
II (POSI/EIA/55340/2004).

References

1. Daniel Barbará. Requirements for Clustering Data Streams. SIGKDD Explo-

rations, 3(2):23–27, 2002.
2. George Box and Gwilym Jenkins. Time Series Analysis: Forecasting and Control.

Holden-Day, 1976.
3. Pedro Domingos and Geoff Hulten. Mining High-speed Data Streams. In Proceed-

ings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 71–80. ACM Press, 2000.
4. Douglas H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clustering.

Machine Learning, 2(2):139–172, 1987.
5. Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with

Drift Detection. In Advances in Artificial Intelligence - SBIA 2004, (LNCS 3171),
pages 286–295. Springer Verlag, 2004.

6. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient Cluster-
ing Algorithm for Large Databases. In Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, pages 73–84. ACM Press, 1998.
7. H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural Networks for Short-

Term Load Forecasting: A Review and Evaluation. IEEE Transactions on Power

Systems, 16(1):44–55, 2001.
8. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.

Journal of the American Statistical Association, 58:13–30, 1963.
9. Christian Igel and Michael Hüsken. Improving the Rprop Learning Algorithm. In

Proceedings of the Second International ICSC Symposium on Neural Computation,
pages 115–121, Berlin, 2000. ICSC Academic Press.

10. A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM

Computing Surveys, 31(3):264–323, 1999.
11. Pedro Rodrigues and João Gama. Forecast adaptation to charge transfers. WSEAS

Transactions on Circuits and Systems, 3(8):1693–1699, 2004.
12. Pedro Pereira Rodrigues, João Gama, and João Pedro Pedroso. ODAC: Hierar-

chical Clustering of Time Series Data Streams. In Proceedings of the Sixth SIAM

International Conference on Data Mining, pages 499–503, Bethesda, Maryland,
2006. SIAM.

13. David Saad, editor. On-line Learning in Neural Networks. Cambridge University
Press, 1998.

14. P. J. Santos, A. G. Martins, and A. J. Pires. Designing the input vector to ann-
based models for short-term load forecast in electricity distribution systems. Tech-
nical Report 4, INESC Coimbra, 2005.

15. Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An Efficient Data
Clustering Method for Very Large Databases. In Proceedings of the 1996 ACM

SIGMOD International Conference on Management of Data, pages 103–114. ACM
Press, 1996.

32

Model Averaging via Penalized Regression for
Tracking Concept Drift

Kyupil Yeon1, Moon Sup Song1, Yongdai Kim1 and Cheolwoo Park2

1 Department of Statistics, Seoul University, Seoul, 151-742, South Korea
2 Department of Statistics, University of Georgia, Athens, GA 30602-1952, USA

Abstract. We propose a new model averaging algorithm for tracking
concept drift in data streams. The final predictive ensemble model takes
the form of a weighted average of base models. The combining weights
are determined by a ridge regression with the constraints such that the
weights are nonnegative and sum to one. The proposed algorithm is
motivated from a new measure of concept drift, which is defined as the
angle between the estimated and the optimal weight vector obtained
under no concept drift. It is shown that the ridge tuning parameter plays
a crucial role of forcing the proposed algorithm to adapt to concept drift.
Main findings are (i) the algorithm can achieve the optimal weights in
the case of no concept drift if the tuning parameter is sufficiently large,
and (ii) the angle is monotonically increasing as the tuning parameter
decreases. These imply that if the tuning parameter is well-controlled, the
algorithm can produce weights which reflect the degree of concept drift
measured by the angle. Under various simulation settings, it is shown
that the proposed algorithm can track the concept drift better than
other existing ensemble methods.

1 Introduction

In this paper, we are interested in supervised learning problems under concept
drift in a stream of data batches. Let {Dj , j = 1, 2, · · · } be a sequence of data
batches, each consisting of input-output pairs. Suppose that observations in Dj

are random samples from unknown distribution Fj(x, y), where x ∈ X ⊂ IRp is
an input vector and y ∈ Y is a response. The objective of learning is to construct
a predictive model for future instances based on the data sets D1, . . . , Dm at each
time point m. One problematic issue in this setting of sequential data stream is
concept drift which states that the underlying target concept changes over time
abruptly or gradually. In a probabilistic sense, it can be characterized as the
change of underlying distributions such that Fj(x, y) 6= Fj+1(x, y).

The concept drift phenomenon, which emerges naturally in a data stream,
makes the learning process complex because the predictive model constructed on
the past data is no longer consistent with the new examples. Therefore, in order
to cope with a drifting concept, a learning algorithm should be equipped with
a mechanism to adapt to the concept drift. For example, a learning algorithm
should adapt quickly to concept drift whatever the types of changes are like,

33

discriminate a real concept drift from noises, be able to cope with recurring
concepts, be simple and fast in order to deal with continuous data streams.

We suggest an ensemble algorithm which can achieve these goals. The final
predictive model produced by the proposed algorithm is the form of weighted
average of base models which are independently constructed from each previous
data batch. The model averaging process is performed via a penalized regression
which is designed to be able to track concept drift effectively. The organization
of the paper is as follows. The next section reviews some literatures on concept
drift tracking algorithms. Section 3 describes the proposed algorithm with its
motivation and properties. In Sect. 4, we show some simulation results with
artificial data sets. Finally, we conclude in Sect. 5.

2 Learning under Concept Drift

Concept drift tracking algorithms can be roughly divided into two categories.
One is a single learner based tracker which aims to select previous examples
or data batches most relevant to learning the current concept. We refer to it
as data combining approach in this paper. The other is an ensemble approach
which is mainly related to formulating and restructuring an ensemble of several
base learners. In this approach, the most important thing is how to combine
base models to cope with various types of concept drift. Therefore, we refer to
it as model-combining approach.

2.1 Data combining approach

A conventional way of coping with concept drift problem is to use a time window
of fixed size over data streams. In other words, the most recent M data batches
are used to construct a predictive model. However, there is a dilemma in this
approach. A large size of the time window is preferable when there is no concept
drift, but cannot adapt quickly to concept drift. On the contrary, a small size
of the time window can track a new concept quickly, but is not preferable when
the concept is stable or recurrent. Hence the optimal size of the time window
cannot be set in general unless the type and degree of concept drift are known
in advance.

To adaptively determine the size of time window, Widmer and Kubat (1996)’s
FLORA systems use a WAH (Window Adjustment Heuristic) approach. Klinken-
berg and Joachims (2000) proposed an algorithm for tracking concept drift with
SVM (Support Vector Machine) in classification problem. Indicating some prob-
lems in fixed window size and heuristic adjustment approaches, they suggested
an algorithm to adjust adaptively the size of time window over data batches.
Assuming a non-recurring concept drift, which means that newer examples are
always more important than older ones, they selected the window size so that
the estimated generalization error on the most recent data batch is minimized.
It is important to note that ξα-estimates (Joachims, 2000), a special property of
SVM, is utilized to get an estimate of the generalization error efficiently, which

34

makes the algorithm not heuristic but theoretically well-founded. In a sense,
however, it restricts the algorithm to use only SVM as a learner.

A time window can be generalized to contain inconsecutive data batches
selectively. This scheme is more relevant especially in the case of recurrent con-
cepts. Klinkenberg (2004) suggested a local batch selection scheme which is per-
formed by utilizing ξα-estimates for SVM. He also considered global/local batch
weighting schemes and compared various strategies of selection and weighting.

2.2 Model combining approach

Model-combining approach is an ensemble strategy for learning in changing en-
vironments. In a static setting, ensemble methods such as bagging (Breiman,
1996), boosting (Freund and Schapire, 1997) and stacking (Wolpert, 1992) are
generally known to produce a better ensemble prediction model than one best
model. In the wake of success in a static setting, ensemble methods have been
effectively applied to a concept drift setting. Compared with data combining
approaches, the ensemble method may be more suitable to data streams in that
it does not need to keep all the previous data sets, instead it may just retain the
base models.

Kuncheva (2004) grouped ensemble methods for tracking concept drift into
five categories and summarized each representative algorithm. Street and Kim
(2001) proposed the streaming ensemble algorithm (SEA) which applies a simple
unweighted voting like bagging to combine M base models into the final predic-
tion model. Therefore, the final ensemble model for predicting future instances
is given by

f̂E(x) =
1
M

M∑

j=1

f̂
(m)
j (x),

where {f̂ (m)
1 (·), · · · , f̂

(m)
M (·)} denote M ensemble members formulated at the cur-

rent time point m. When a new data batch Dm+1 comes in, if the ensemble size
falls short of M then the new base model f̂m+1(·) is added into a new ensemble,
otherwise, the ensemble is updated by replacing the least useful member with
f̂m+1(·) which is assumed to reflex the current concept well. The substitution
is based on a quality measure which measures the usefulness of each member
of {f̂ (m)

1 (·), · · · , f̂
(m)
M (·)} and the new base model f̂m+1(·). The quality measure

they suggested gives more score to the classifiers which correctly classify points
on which the ensemble is nearly undecided. In this way the contribution of each
base model to the ensemble’s performance is evaluated and then the least useful
base model is replaced with the new one.

Another interesting way of averaging base models is a weighted average.
Wang et al. (2003) suggested an accuracy-based weighted ensemble algorithm,
that is, the weights of base models are determined so that on the most recent data
batch the more accurate a base model is, the more weight it is endowed with.
For a fixed ensemble size M , let Em = {f̂ (m)

1 (·), · · · , f̂
(m)
M (·)} be the ensemble

35

set of base models to be combined at the current time point m, and the output
of a base model be a class probability rather than the class label. The ensemble
prediction model is given by a weighted average of the ensemble members

f̂E(x) =
M∑

j=1

wj f̂
(m)
j (x), (1)

with the constraints
∑M

j=1 wj = 1 and wj ≥ 0 for all j = 1, . . . , M. The
weights {w1, . . . , wM} are determined so that they are proportional to each cor-
responding base model’s accuracy on the most recent data batch Dm. When
the new data batch Dm+1 comes in, the ensemble update is performed so that
the new ensemble set consists of M top ranked base models in terms of their
accuracy on Dm+1 among {f̂ (m)

1 (·), · · · , f̂
(m)
M (·)} and f̂m+1(·). The expected ac-

curacy of base models is measured by their predictive accuracy such as MSE
(Mean Squared Error) on the most recent data batch. Note that the resulting
weight can be 0 if the MSE is below a certain threshold and then several obsolete
base models can be totally discarded at the same time in case of abrupt concept
drift. However, the accuracy-based weights are not optimal since the accuracy of
each base model is marginally obtained without any consideration of other base
models’ effects on the final ensemble model.

In contrast to the above two average-type model combining approaches, an
additional meta learning can be adopted as a combiner to aggregate the outputs
of base models. Typically, classical regression method can be used as a com-
biner. Chu et al. (2004) used ordinary logistic regression as a combiner with
an integrated outlier elimination procedure based on clustering of the likelihood
values evaluated at each observation. By explicitly filtering out some noise-like
observations in the most recent data batch and constructing an ensemble pre-
dictive model based on remaining examples, they developed an algorithm not
only adaptive to concept drift but also robust to label noises.

The framework of a regression based combination of base models is as follows.
Suppose that we are given a sequence of data batches D1, . . . , Dm. First, we
construct base models f̂1(x), . . . , f̂m(x) independently from each D1, . . . , Dm

respectively. As a base learner we can use any types of learning algorithm. If we
are considering a classification problem, then each f̂j(x) could be a confidence
output such as class probability or class label itself. Second, we obtain meta
learning set from the outputs of base models for examples in the most recent
data batch Dm = {(x1, y1), · · · , (xn, yn)}. That is, for each xi (i = 1, . . . , n), we
obtain the outputs of base models denoted by

f̂(xi)T = (f̂1(xi), . . . , f̂m−1(xi), f̂ (−i)
m (xi)),

where f
(−i)
m (xi) represents a leave-one-out estimate of fm(xi). This is for avoiding

over-fitting problem since observations in Dm is used for constructing both f̂m

and meta learning set. Practically it is good to use v-fold cross-validation (e.g. 5
or 10-folds CV) instead of leave-one-out. We will refer to this meta learning set

36

as a level-1 set for reference to stacked generalization (Wolpert, 1992). To sum
up, the level-1 set for training a regression combiner is given as follows.

X =

f̂1(x1) · · · f̂m−1(x1) f̂
(−1)
m (x1)

f̂1(x2) · · · f̂m−1(x2) f̂
(−2)
m (x2)

...
...

. . .
...

f̂1(xn) · · · f̂m−1(xn) f̂
(−n)
m (xn)

, y =

y1

y2

...
yn

 . (2)

Finally, this level-1 set is used for training a regression combiner, which produces
a final predictive model

f̂E(x) =
m∑

j=1

ŵj f̂j(x) . (3)

The regression based combining described above is just to regard base models
as explanatory variables and fit a regression model to a level-1 set derived using
examples in the most recent data set. This method does not need a time window
over data batches or ensemble size to be optimally set. A fixed ensemble size can
be implemented for a practical reason but it is not a crucial point in concept drift
tracking. The concept drift tracking is accomplished by a regression combiner’s
ability of allocating adaptive weights to base models. Moreover it has only to
retain base models instead of data sets themselves, which is a highly required
desideratum of an algorithm for data stream mining.

In spite of many advantages, this regression based combining method has
also some drawbacks. First, the so called multi-collinearity problem causes the
estimation unstable especially in the case of no or gradual concept drift. Second,
the resulting weights may have negative values. The negative weights do not in-
dicate the fact that the corresponding base models are negatively correlated with
the target concept because the negative signs can be occurred if another highly
correlated base models exist. Third, in this algorithm there is no mechanism for
discriminating the real concept drift and noises. When there are considerable
noises, the resulting weights of this algorithm cannot reflect the appropriateness
of each base model.

From the above discussion, the regression combiner described in this section
does not seem to produce optimal weights for tracking concept drift. We will
propose another regression based combiner in the next section and show that
the proposed method can be a good alternative.

3 Model Averaging via Penalized Regression

We propose a regression combiner which produces the final ensemble model (3)
for some weights {(ŵ1, . . . , ŵm)|∑ ŵj = 1, ŵj ≥ 0}, which are to be estimated
via a penalized regression. Due to the constraints of nonnegativity and sum-to-
one, the algorithm can be regarded as a model averaging procedure. The level-1
set for training a penalized regression is given as in (2). In Fig. 1 are presented

37

Method 1 (MC.Ridge1+)

ŵ = arg min
w

nX
i=1

�
yi −

mX
j=1

wj f̂j(xi)

�2

+ λ

mX
j=1

w2
j , (4)

subject to

mX
j=1

wj = 1, wj ≥ 0 . (5)

Method 2 (MC.Lse1+)

ŵ = arg min
w

nX
i=1

�
yi −

mX
j=1

wj f̂j(xi)

�2

, subject to

mX
j=1

wj = 1, wj ≥ 0 .

Fig. 1. Two regression combiners with constraints.

two regression combiners with the constraints that weights are nonnegative and
sum to one. The main proposed Method 1 will be referred to as “MC.Ridge1+”
indicating M odel Combining via Ridge regression with constraints of sum-to-1
and nonnegativity(+). For the purpose of identifying the effect of ridge penalty,
we also consider Method 2 in Fig.1 which is formulated without the ridge penalty
and hence referred to as “MC.Lse1+” to indicate M odel Combining via Least
Square E stimation with constraints of sum-to-1 and nonnegativity(+).

At first glance, the proposed algorithm seems to mix simply the weighted
average combiner and penalized regression combiner in an attempt to solve the
multi-collinearity problem with ridge penalty and to enhance the interpretability
with the constraints of nonnegativity and sum-to-one. However, there is another
important motivation which is more directly related to concept drift tracking.

3.1 Motivation and Properties

Let us consider the case that there is no concept drift at all. That is, the target
concept remains the same and the underlying distribution does not vary over
time. In this case, the optimal aggregation is just a simple average of base models
if each base model is unbiased. This is shown in Theorem 1.

Theorem 1. If each base model is unbiased and independent, then the optimal
ensemble weight under no concept drift is given by w∗ = {1/m, . . . , 1/m}.

Theorem 1 indicates that all base models are equally important in the case of
no concept drift. It motivates us to derive a measure of concept drift. If an ensem-
ble algorithm adapts to concept drift nicely, then its weights ŵ obtained in the
case of no concept drift would be very close to the optimal w∗ = (1/m, . . . , 1/m).
However, if a considerable concept drift occurs, the derived weights ŵ would be
far from w∗. Since we are considering the weight space confined only on the

38

hyperplane wT ·111 = 1 with w ≥ 0, the degree of departure of ŵ from w∗ can be
captured through the angle between the two m-dimensional vectors. Therefore,
we define this angle as a measure of concept drift.

Definition 1 (A measure of concept drift). For w∗ = (1/m, . . . , 1/m) and
ŵ obtained by any combiner, we define the degree of concept drift as the angle
between the two vectors given by

η(w∗, ŵ) = cos−1

(|〈w∗, ŵ〉|
||w∗|| ||ŵ||

)
, (6)

where 〈· , ·〉 denotes the inner product of two vectors in IRm and || · || is the length
of a vector defined as ||aaa|| = 〈aaa, aaa〉1/2 for any aaa ∈ IRm.

Definition 1 is useful for designing a combiner for tracking concept drift.
To be more specific, we need an algorithm which is able to produce a weight
vector almost the same as w∗ when there is no or quite gradual concept drift.
On the other hand, in the case of more considerable concept drift, a combiner
should provide a weight ŵ which makes the angle η(w∗, ŵ) large. Note that
the algorithms reviewed in Sect. 2 such as simple average, marginally weighted
average based on base models’ accuracy, and regression combiner do not satisfy
this property. But, it will be verified that the proposed algorithm MC.Ridge1+
has such property. This is the key point of the proposed method. We describe
this main property through the following two related theorems. These theorems
explain why the proposed algorithm can be a reasonable concept drift tracker
regardless of the types of changes.

Theorem 2. In the case of no concept drift, the proposed algorithm MC.Ridge1+
produces a weight which converges to the optimal weight w∗ as λ →∞.

Theorem 3. For the ŵ obtained by MC.Ridge1+, η(w∗, ŵ) in (6) is mono-
tonically decreasing as λ increases.

Theorem 2 and 3 distinguish the proposed algorithm from other previous
combining methods described in Sect. 2. As we can see in Theorem 2, the opti-
mal weight can be obtained when the ridge parameter λ in (4) is estimated to
be sufficiently large. This indicates that the proposed algorithm can produce a
good ensemble prediction model in the case of no or gradual concept drift by
estimating the ridge parameter λ in a data-adaptive way at each time. The esti-
mation of λ is usually done by cross-validation which will turn to be satisfactory
by simulation results in the next section.

The implication of Theorem 3 is more attractive. The importance of the ridge
parameter in tracking concept drift is clearly conceived. The parameter λ controls
the adaptivity of the algorithm to concept drift. A larger λ makes the algorithm
generate a weight vector ŵ for which η(w∗, ŵ) gets smaller corresponding to
no or gradual concept drift. On the other hand, a relatively smaller λ induces
the algorithm to produce ŵ such that η(w∗, ŵ) gets larger which corresponds

39

to abrupt concept drift. This means that the proposed algorithm can output a
weight vector ŵ on which the degree of concept drift is properly reflected. Of
course, this is controlled by a well-estimated λ.

3.2 Computation of the Algorithm

Kim and Kim (2004) proposed the gradient LASSO algorithm to provide an
approximated solution for the generalized LASSO models. This new computa-
tional algorithm employs the coordinatewise gradient descent (CGD) method.
They showed that their algorithm is computationally much simpler and stabler
than the QP based algorithm, and easily applicable to large dimensional data.
They also derived the convergence rate of the algorithm, which does not depend
on the dimension of inputs.

We can solve the problem described in Fig. 1 by using the CGD algorithm.
Let us denote the objective function and the constraint as follows.

C(w) =
n∑

i=1

l(yi,xT
i w) + λwT w, (7)

S = {w : wT 111 = 1, w ≥ 0}, (8)

where l(y,xT w) is a loss function which can be either L2 or cross-entropy loss.
The main idea of the CGD algorithm is to find ŵ sequentially as follows.

For a given v ∈ S and α ∈ [0, 1], let w[α,v] = w + α(v −w). Suppose that w
is the current solution. Then, the CGD algorithm searches a direction vector v
such that C(w[α,v]) decreases most rapidly and update w to w[α,v]. Note that
w[α,v] is still in S. The Taylor expansion implies

C(w[α,v]) ≈ C(w) + α〈∇C(w),v −w〉,

where ∇C(w) =
(

∂C(w)
∂w1

, · · · , ∂C(w)
∂wm

)T

. It can be easily shown that

min
v∈S

〈∇C(w),v〉 = min
{

∂C(w)
∂wj

, · · · ,
∂C(w)
∂wm

}
.

Hence, the desired direction is a j∗-th coordinate unit vector uj∗ such that

j∗ = arg min
j∈{1,...,m}

{
∂C(w)
∂wj

}

uj∗ = (0, . . . , 0, 1
↑

j∗−th

, 0, . . . , 0) .

The optimization procedure is summarized in Fig. 2. The convergence of the
algorithm is guaranteed by Theorem 1 in Kim and Kim (2004).

40

Let C(w) = (y −Xw)T (y −Xw) + λwT w.

For k = 1, 2, 3, . . . ,

¬ ∇C(wk) =
�

∂C(wk)
∂w1

, · · · , ∂C(wk)
∂wm

�T

, w1 = w∗: initial value.

 j∗ = arg min
j∈{1,··· ,m}

〈∇C(wk),uj〉, uj : j-th unit vector.

® α̂ = arg min
0≤α≤1

C
�
(1− α)wk + αuj∗

�
¯ wk+1 = (1− α̂)wk + α̂uj∗

Iterate ¬ ∼ ¯ until the solution converges.

Fig. 2. Coordinatewise gradient descent method for MC.Ridge1+

4 Simulation Results

We present some simulation results for 2-class classification problems. It has to
be mentioned that although we also obtained some good results on regression
problems, they are not presented because of limited space.

We compare four model-combining algorithms described: model-combining
via simple average (MC.Avg), model-combining via weighted average (MC.WAvg),
model-combining via least squares estimation with constraints (MC.Lse1+), and
model-combining via ridge regression with constraints (MC.Ridge1+). For ref-
erence, we add one more model, denoted as MC.1, which is constructed using
only the most recent data batch.

4.1 2-class classification : moving hyperplane data

This data is a synthetic concept-drifting streaming data in which concept drift
is simulated with a moving hyperplane. Hyperplanes have been used to simulate
time-changing concepts by many authors (Hulten et al., 2001; Wang et al., 2003;
Yang et al., 2005).

We considered 10-dimensional hyperplane such as
∑10

i=1 αiXi = α0. Exam-
ples are generated independently from Uniform [0, 1]10 and they are assigned a
class label y as follows:

y =

{
1 if

∑10
i=1 αiXi > α0,

0 otherwise.

By setting α0 = 1
2

∑10
i=1 αi, we made the hyperplane divide the unit hyper-

cube into two parts of the same volume. Thus, the number of examples in each
class is made to be balanced. We made up 30 data batches. Each data batch
has 100 examples. Concept drift between data batches is simulated by changing

41

the magnitude of coefficients of the hyperplane. We initialized ααα = (α1, . . . , α10)
with (1, . . . , 1). For each δ = 0.01, 0.02, 0.03, gradual concept drift is incorpo-
rated by randomly adding or subtracting δ from each component of the one step
previous ααα. Abrupt concept drift is also substantiated with δ = 1 at a certain
time-point. Furthermore, we observed the effect of noises by inserting 10% or
20% class label noises at each data batch.

To compare the prediction accuracy of the algorithms we also constructed
test data sets. Each test set has 1,000 examples which are generated without
noises from the same concept as the corresponding training data batch. As a
base learner we used decision trees constructed independently from each data
batch utilizing a pruning procedure with 10-folds cross-validation. Moreover, the
probabilistic outputs of base models are combined by the combiners.

Figure 3 represents the results of the simulation in the case that ensemble
size is 20 batches. In the figures, accuracy denotes the averaged value of 20
test accuracies obtained through 20 repeated simulations. We can notice that
MC.Ridge1+ performs best in most cases except the case of no concept drift.
Therefore, the proposed algorithm is verified as very effective in concept drift
tracking and also robust to the class noises.

4.2 2-class classification : SEA data

This simulated data was used in Street and Kim (2001). There are 3 predictor
variables X1, X2, X3 generated from Uniform [0,10] independently. The target
variable y is a class label determined by the first two predictor variables X1, X2

such that

y =

{
1 if X1 + X2 ≤ θ,

0 otherwise.

We can think of θ as an identifier of target concept. To simulate concept drift, we
considered 4 concepts specified by θ = 8, 9, 7, 9.5, respectively. We constructed
25 data batches from each concept. That is, D1, . . . , D25 are generated from
concept 1 (θ = 8), D26, . . . , D50 from concept 2 (θ = 9), D51, . . . , D75 from
concept 3 (θ = 7), and D76, . . . , D100 from concept 4 (θ = 9.5). Each data batch
consists of 500 examples. We inserted about 10% class noises into each data
batch. D1, . . . , D100 are regarded as a sequential data stream. Hence, concept
change occurs 3 times at t = 25, 50, and 75. At each time point t = 1, . . . , 99, we
constructed a prediction model using D1, . . . , Dt and then predicted examples
in a test set which was generated from the same concept as Dt+1 without class
noises. Each test data set has 2,500 examples. As in the previous simulation
with moving hyperplane data, all model-combining algorithms use the same
base models. That is, decision trees are constructed independently using only
each data batch and the probabilistic outputs of these trees are used by all the
combiners.

Figure 4 represents the simulation result. From this, we can confirm that
the proposed algorithm MC.Ridge1+ recovers the prediction accuracy very fast

42

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(a) No concept drift

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(b) Gradual drift (δ = 0.1)

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(c) Gradual drift (δ = 0.2)

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(d) Gradual drift (δ = 0.3)

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(e) Abrupt concept drift

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(f) Abrupt+Gradual drift

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(g) Abrupt+Gradual drift (noise 10%)

0 5 10 15 20 25 30

0.5
0.6

0.7
0.8

0.9
1.0

Data batches

Ac
cu

ra
cy

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(h) Abrupt+Gradual drift (noise 20%)

Fig. 3. Concept drift tracking in Moving-hyperplane data

43

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Data batches

A
cc

ur
ac

y

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(a) Ensemble size = 10

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Data batches

A
cc

ur
ac

y

MC.1
MC.Avg
MC.WAvg
MC.Lse1+
MC.Ridge1+

(b) Ensemble size = 25

Fig. 4. Concept drift tracking in SEA data

after a sudden dropping at the concept drift point and keeps its accuracy higher
than others. One thing worth mentioning is that MC.Ridge1+ shows fast adap-
tivity regardless of the ensemble size, but average-type combiners MC.Avg and
MC.WAvg are ineffective especially in case of large ensemble size.

5 Conclusions

In this paper, we proposed a new model-averaging method for tracking concept
drift in data streams. The motivation on the proposed algorithm stems from
a newly defined measure of concept drift. We showed that the new measure of
concept drift, defined as an angle between two weight vectors, can be a good
guidance for designing an ensemble tracker of concept drift. The proposed algo-
rithm tackles the concept drift problem by constructing an ensemble prediction
model, which is formulated as a weighted average of base models. The core of
the algorithm is the method of determining the combining weights, which is
performed by a ridge regression with the constraints such that weights are non-
negative and sum to one. It was shown under simulation settings for 2-class
classification problems that the proposed algorithm can track concept drift bet-
ter than other existing methods under both abrupt and gradual changes. Some
good advantages of the proposed algorithm is that it can select (i.e., exactly 0
weights for some base models) or weight base models automatically according
to the types of concept drift, and does not need to tune an optimal ensemble
size, and does not depend on an intuitive restructuring of the current ensemble
in order to adapt to concept drift, and has only to retain base models instead of
all the previous data sets.

44

References

Breiman, L. (1996). Bagging predictors. Machine Learning 24 (2), 123–140.
Chu, F., Y. Wang, and C. Zaniolo (2004). Mining noisy data streams via a

discriminative model. In Discovery Science, pp. 47–59.
Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of Computer and
System Science 55 (1), 119–139.

Hulten, G., L. Spencer, and P. Domingos (2001). Mining time-changing data
streams. In Proceedings of the Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Francisco, CA, pp.
97–106. ACM Press.

Joachims, T. (2000). Estimating the generalization performance of a SVM ef-
ficiently. In P. Langley (Ed.), Proceedings of ICML-00, 17th International
Conference on Machine Learning, Stanford, US, pp. 431–438. Morgan Kauf-
mann Publishers, San Francisco, US.

Kim, Y. and J. Kim (2004). Gradient lasso for feature selection. In ICML ’04:
Proceedings of the twenty-first international conference on Machine learning,
NY, USA, pp. 473–480. ACM Press.

Klinkenberg, R. (2004, May). Learning drifting concepts: Example selection vs.
example weighting. Intelligent Data Analysis (IDA), Special Issue on Incre-
mental Learning Systems Capable of Dealing with Concept Drift 8 (3).

Klinkenberg, R. and T. Joachims (2000). Detecting concept drift with support
vector machines. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML), pp. 487–494. Morgan Kaufmann.

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In
Multiple Classifier Systems, pp. 1–15.

Street, W. N. and Y. S. Kim (2001). A streaming ensemble algorithm (sea) for
large-scale classification. In 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 377–382. ACM Press.

Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining concept drifting data
streams using ensemble classifiers. In 9th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 226–235. ACM Press.

Widmer, G. and M. Kubat (1996). Learning in the presence of concept drift and
hidden contexts. Machine Learning 23 (2), 69–101.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5 (2), 241–259.
Yang, Y., X. Wu, and X. Zhu (2005). Proactive-reactive prediction for data

streams. Technical Report CS-05-03, Computer Science, University of Ver-
mont.

45

46

Incremental training of Markov mixture models

Andreas Kakoliris and Konstantinos Blekas

Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece
E-mail: {akakolir, kblekas}@cs.uoi.gr

Abstract. This paper presents an incremental approach for training a
Markov mixture model to a set of sequences of discrete states. Starting
from a single Markov model that captures the background information,
at each step a new component is added to the mixture in order to improve
the data fit. This is done by making at first an exploration of a relevant
parametric space to initialize the new component, based on an extension
of the k-means algorithm. Then, by performing a two-stage scheme of
the EM algorithm, the new component is optimally incorporated to the
body of the current mixture. To assess the effectiveness of the proposed
method, we have conducted experiments with several data sets and we
make a performance comparison with the classical mixture model.

1 Introduction

Sequential data analysis is an important research area with a wide range of ap-
plications, such as web log mining, bioinformatics, speech recognition, robotics,
natural language processing and many others. Since clustering can be seen as a
fundamental tool in understanding and exploring a data set, several attempts
have been made on the task of clustering sequential data of discrete states [1–
4]. In model-based clustering approaches a flexible and powerful scheme used is
through mixture models [5]. It is assumed that each cluster is described by a
generative model and the aim of clustering is to find an optimal set of such mod-
els in order to best fit the data. Markov models [6] provide an efficient method
for modeling sequential data. In most of the these approaches, the EM algorithm
[7] is used for estimating the parameters of the Markov mixture models. Since
the EM algorithm has the drawback to be dependent on the initial values of
the mixture parameters, several methods have been introduced to reduce this
effect. In [3] for example, a noisy-marginal scheme is proposed by perturbing the
parameters of a single model to obtain K copies of it. An alternative approach is
presented in [1], where an agglomerative clustering technique is applied together
with a suitable distance function for sequences, in order to initialize the K para-
metric models of the mixture. Many efforts have been made recently to address
visualization capabilities of clustering approaches using Markov models [3, 8–10].
In this spirit, the behavior of the sequences within clusters can be displayed and
an explanatory analysis for the dynamics of data can be provided.

In this paper we propose an incremental approach for training Markov mix-
ture models. Borrowing strength from recent advances on mixture models [11,

47

12], our method performs a systematic exploration of the parameter space and
simultaneously tries to eliminate the dependence of the EM algorithm on the
initialization. The method starts with a single Markov model that fits all se-
quences, and sequentially adds new components to the mixture following three
major steps. At first we initialize the new inserted Markov model by searching
over a parametric likelihood space. The latter is specified by a set of candidate
models that have been constructed through the use of an adaptation of the clas-
sical k-means algorithm for treating sequential data. This is the initialization
step. Then, we perform a partial EM scheme allowing the adjustment of only
the new model parameters. Finally, the new component is optimally incorpo-
rated to the current mixture by normally applying the EM algorithm and thus
best fitting the new mixture model with the data. The procedure stops when
reaching a number of K components. We have tested our training method on
a suite of artificial and real benchmarks taking into account a variety of cases
with excellent results. During the experiments we have evaluated the proposed
scheme in terms of its capability to fit the data and measure its robustness.
Comparative results have been also obtained with the classical Markov mixture
model under two schemes for initialization.

In section 2 we give the basic scheme of the Markov mixture models, while
section 3 describes the proposed approach for incremental training. In section 4
we present experimental results and finally, in section 5 we give some concluded
remarks.

2 Markov mixture models

Consider a dataset X = {X1, . . . , XN}, where each data point Xi = (Xil)
Li

l=1

is a sequence of length Li observed states. We further assume that each state
takes values from a discrete alphabet of M symbols, i.e. Xil ∈ {1, . . . , M}. The
clustering problem is to find K disjoint subsets of X, called clusters, containing
sequences with common properties. In this study we consider that every cluster
corresponds to a generative model that fits well the observed data that supports.

Mixture models represent an efficient architecture that is particularly suitable
for clustering. It assumes that data have been generated from a mixture model
with K components according to the following density function

f(Xi|ΘK) =

K
∑

j=1

πjp(Xi|θ
j) , (1)

where ΘK = {πj , θ
j} denotes the set of the mixture parameters. In particular,

the parameters πj = P (j) determine the prior probabilities of the K components

satisfying that
∑K

j=1 πj = 1. Moreover, every component has a probability dis-

tribution function p(Xi|θ
j), whose parameters θj are unknown. A natural way

for modeling sequential data is through the first-order Markov model, defined
by the initial states probabilities θj

0m = P (Xi1 = m), as well as the transition
probabilities θj

nm = P (Xi,l+1 = m|Xil = n) from a state n to another state m,

48

n, m = 1, . . . , M . Thus, each model parameter θj is a stochastic matrix with
a set of M + 1 rows (multinomial distributions), holding that

∑M
m=1 θj

nm = 1,
∀n = 0, . . . , M . The density function for the jth component is then written as

p(Xi|θ
j) = θj

0,Xi1

Li−1
∏

l=1

θj
Xil,Xi,l+1

=

M
∏

m=1

(θj
0m)γi(m)

M
∏

n=1

M
∏

m=1

(θj
nm)δi(n,m), (2)

where γi(m) =

{

1 if Xi1 = m
0 otherwise

and δi(n, m) defines the number of transitions

from state n to state m in the sequence Xi. Following the Bayes rule, we can
then associate every sequence Xi to the cluster j that has the maximum posterior

probability value P (j|Xi) =
πjp(Xi|θ

j)
f(Xi|ΘK) . The clustering problem is then equiva-

lent to estimating the mixture model parameters ΘK , by maximizing the log-
likelihood function arisen from the model. Furthermore, we can introduce non-

informative Dirichlet priors of the form p(θj
n|a

j
n) =

Γ (
∑M

m=1(a
j
nm+1))

∏
M
m=1 Γ (aj

nm+1)

∏M
m=1(θ

j
nm)aj

nm ,

where the parameter aj
n is a M -vector with components aj

nm > 0. The derived
maximum a-posteriori (MAP) log-likelihood function is then given by

L(X|ΘK) =

N
∑

i=1

log f(Xi|ΘK) +

K
∑

j=1

M
∑

n=0

log p(θj
n|a

j
n) . (3)

It must be noted that the Dirichlet parameters aj
n were common to every com-

ponent j and set equal to a small proportion (e.g. 10%) of the corresponding
maximum likelihood (ML) estimated multinomial parameter values of the single
Markov model that fits the data set X (using relative frequencies of states). The
latter from now on it will be referred to as “single ML-estimated Markov model”.

The EM algorithm [7] is an efficient framework for estimating the mixture
model parameters. It requires the computation of the conditional expectation
values zij (posterior probabilities) of the hidden variables during the E-step

z
(t)
ij =

π
(t)
j

p(Xi|θ
j(t)

)
∑

K
j′=1

π
(t)

j′
p(Xi|θj′ (t)

)
, while at the M-step the maximization of the log-

likelihood function of the complete dataset is performed. This leads to the fol-
lowing updated equations for the mixture model parameters:

π
(t+1)
j =

N
∑

i=1

z
(t)
ij

N
, θj

nm

(t+1)
=

N
∑

i=1

z
(t)
ij γi(m) + aj

0m

N
∑

i=1

z
(t)
ij +

M
∑

m′=0

aj
0m′

, if n = 0

N
∑

i=1

z
(t)
ij δi(n, m) + aj

nm

N
∑

i=1

z
(t)
ij

M
∑

m′=1

δi(n, m′) +

M
∑

m′=1

aj
nm′

, if n > 0

(4)

49

The EM algorithm guarantees the convergence of the log-likelihood function to
a local maximum satisfying all the constraints of the parameters. However, the
great dependence on the initial parameter values may drastically effect its per-
formance [5]. In the next section we present an incremental approach for building
a Markov mixture models that eliminates this problem of poor initialization.

3 Incremental mixture training

The proposed method starts with a simple model with one component that comes
from the single ML-estimated Markov model of the whole dataset X. At each
step a new component is added to the mixture by performing a combined scheme
of searching for good initial estimators and for fine local tuning its parameters.
It must be noted that a same in nature strategy have been also presented in [11]
and [12] for Gaussian mixture models and for discovering patterns in biological
sequences, correspondingly.

Lets assume that we have already constructed a k-length mixture model with
Θk parameters. By inserting a new component, the resulting mixture can take
the following form

f(Xi|Θk, π∗, θ∗) = (1 − π∗)f(Xi|Θk) + π∗p(Xi|θ
∗) . (5)

where π∗ ∈ (0, 1) is the prior probability of the new component. The above
scheme can be viewed as a two-component mixture model, where the first one
captures the current mixture with density function f(Xi|Θk) and the second one
the new Markov model that has a density function p(Xi|θ

∗) with an unknown
stochastic matrix θ∗.

If we fix the parameters of the old mixture model Θk, we can then maximize
the resulting log-likelihood function Lk of the above two-components mixture
with respect only to the new model parameters {π∗, θ∗}:

Lk =
N

∑

i=1

log{(1 − π∗)f(Xi|Θk) + π∗p(Xi|θ
∗)} +

M
∑

n=0

log p(θ∗n|an) . (6)

In this light, we can apply the EM algorithm for estimating only the parameters
of the new model, namely as partial EM. This results into obtaining the following
update equations: a) at the E-step

ζ
(t)
i =

π∗(t)p(Xi|θ
∗(t))

(1 − π∗(t))f(Xi|Θk) + π∗(t)p(Xi|θ∗
(t))

, (7)

50

and b) at the M-step

π∗(t+1) =

N
∑

i=1

ζ
(t)
i

N
, θ∗nm

(t+1) =

N
∑

i=1

ζ
(t)
i γi(m) + a0m

N
∑

i=1

ζ
(t)
i +

M
∑

m′=0

a0m′

, if n = 0

N
∑

i=1

ζ
(t)
i δi(n, m) + anm

N
∑

i=1

ζ
(t)
i

M
∑

m′=1

δi(n, m′) +

M
∑

m′=1

anm′

, if n > 0

(8)

The above partial EM steps offer more flexibility to the general scheme and
simplifies the estimation problem during the insertion of a new Markov model
to the mixture.

At a second stage, the new component can be incorporated to the body of the
current mixture and construct a new mixture f(Xi|Θk+1) with k+1 components.
Again, the EM algorithm can be used to maximize the log-likelihood function
L(X|Θk+1) in the new parameter space Θk+1, following Eqs. 4. The mixture

parameters are initialized from the solution of the partial EM, i.e. π
(0)
k+1 = π∗,

π
(0)
j = (1 − π∗)πj , ∀j = 1, . . . , k, and θ

(0)
k+1 = θ∗. This iterative procedure is

repeated until the desired order K of the Markov mixture model is reached.

3.1 Initializing new model parameters

From the above analysis, a problem that arises is how to initialize properly
the new component parameters during the partial EM scheme. This can be
accomplished by establishing a parametric search space through a set of Km

candidate Markov models {φj}
Km

j=1. In particular, we perform one step of the
partial EM, after initializing the multinomial parameters of the new model with
a candidate Markov model (θ∗(0) = φj) and the prior probability π∗ with the

typical value π∗(0) = 1
k+1 . Finally, we select the solution that corresponds to

the maximum value of the log-likelihood function Lk (Eq. 6) for initializing the
parameters {π∗, θ∗}.

In our study we have used an extension of the known k-means algorithm to
create such a set of candidate models. In the general case, the k-means algorithm
aims at finding a partition of Km disjoint clusters Cj to a set of N objects, so as
the overall sum of distances between cluster centers µj and objects Xi is mini-
mized. In order to adopt this framework in the case of sequential data we need to
make some modifications. At first, a distance function between two sequences Xi

and Xk must be provided so as to encapsulate an appropriate measure of dissim-
ilarity between data. For this purpose we have used a symmetrized log-likelihood

51

distance defined as [1]

D(i, k) =
1

2
{log p(Xi|ϑk) + log p(Xk|ϑi)} , (9)

where the parameters ϑi denote the single ML-estimated Markov model spec-
ified by each sequence Xi. Furthermore, at each step t of the k-means algo-

rithm we re-estimate the new center µ
(t+1)
j of every cluster Cj by finding the

medoid sequence among the sequences that currently supports, i.e. µ
(t+1)
j =

arg min
Xi∈C

(t)
j

∑

Xk∈C
(t)
j

D(i, k) . At the end of the algorithm, we correspond

a Markov model φj to every cluster Cj , by finding the single (ML-estimated)
Markov model that best fits all sequences associated with this cluster. The above
scheme creates a pool of Km candidate models capable for initializing the pa-
rameter θ∗ during the partial EM steps. As experimental study has shown, the
proposed method is not sensitive to the value of Km. A small proportion of the
population size of sequences N (e.g. 5%) is enough for constructing a rich search
space with good initial estimators. Another advantage of the proposed k-means
algorithm is that is computationally faster than other distance-based clustering
schemes (e.g. hierarchical clustering) that can be alternatively applied using the
same distance function (Eq. 9).

3.2 The proposed algorithm

The proposed incremental approach for training a mixture of K Markov models
can be summarized in the following algorithmic form.

– Set Θ1 = {θ1, π1 = 1} using the single ML-estimated Markov model from
the data set X. Use k-means to provide Km candidate Markov models φj .

– for k = 1 : K − 1
1. ∀j = 1, . . . , Km perform one partial EM step (Eqs.7-8) by setting π∗(0) =

1
k+1 and θ∗(0) = φj . Select the solution that has the maximum log-
likelihood value Lk (Eq. 6).

2. Perform partial EM (Eqs.7-8) until convergence and estimate new model
parameters {π∗, θ∗}.

3. Set Θk+1 = Θk ∪ {πk+1, θk+1}, where πk+1
(0) = π∗, πj

(0) = (1 − π∗)πj

∀j ≤ k, θk+1(0)
= θ∗.

4. Perform general EM (Eqs.4) to maximize L(X|Θk+1).

4 Experimental results

Several experiments have been made in an attempt to evaluate the performance
of the proposed incremental training approach, namely as IMM. Comparative re-
sults have been also obtained using two methods for initializing classical Markov
mixture models: a) the RMM, that follows the initialization scheme presented in
[3] which creates K noisy copies from the single ML-estimated Markov model,

52

and b) the KMM, that first applies the k-means algorithm as described previ-
ously for discovering K clusters (Km = K), and then initializes every component
with the single ML-estimated Markov model of every cluster found. In any case,
the prior parameters are initially set as πj = 1/K. Since both last methods de-
pends on the initialization, twenty (20) runs of the EM algorithm were performed
for each data set. We kept records of the mean value and the standard deviation
of the log-likelihood. Also, the proposed IMM model was executed only once for
fitting a K-order Markov mixture model to each data set.

Table 1. Percentage of times the correct model was detected by the three methods
IMM, KMM and RMM.

symbols mixture # components (K)
(M) model 5 8 10 15

IMM 100 % 100 % 100 % 100 %
5 RMM 80.5 % 67.5 % 50 % 25.5 %

KMM 56 % 49.5 % 31.5 % 7 %

IMM 100 % 100 % 100 % 100 %
8 RMM 67 % 47.5 % 35.5 % 11.5 %

KMM 50 % 32 % 19 % 7 %

IMM 100 % 100 % 100 % 100 %
10 RMM 74.5 % 45.5 % 28.5 % 10 %

KMM 47 % 28.5 % 15.5 % 2.5 %

IMM 100 % 100 % 100 % 100 %
12 RMM 70 % 42 % 26.5 % 9.5 %

KMM 35 % 25 % 11 % 2.5 %

IMM 100 % 100 % 100 % 100 %
15 RMM 75 % 35.5 % 21 % 6 %

KMM 52 % 20.5 % 9.5 % 1 %

The first series of experiments was carried out using artificial data to eval-
uate the robustness of our method. We created sets of artificial sequences by
sampling from several K-order Markov mixture models using various values for
the alphabet size M . In particular, using five and four different values for the
parameters K and M , correspondingly, we created ten (10) different datasets for
each pair (M, K). In each dataset N = 1000 number of sequences were generated
of length between 50 and 100 states (Li ∈ [50, 100]). Since we were aware of the
true model that best fit the experimental datasets, we evaluated each method
by calculating the percentage of times that the global maximum log-likelihood
value was found. Table 1 summarizes the depicted results. The weakness of both
the RMM and KMM approaches in obtaining the global maximum value, is ob-
vious, especially in higher values of K. On the other hand, the proposed IMM
approach was able to estimate correctly the true model in all cases.

Another series of experiments with artificial sequences has been made using
sets of K randomly selected patterns of equal length 50 from an alphabet of

53

(a) Training set

0.1 0.2 0.3 0.4 0.5

−184

−182

−180

−178

−176

−174

−172

−170

−168

−166

p
n

L
(X

|Θ
K
)/

N

K=5

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5
−184

−182

−180

−178

−176

−174

−172

−170

−168

p
n

L
(X

|Θ
K
)/

N

K=8

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5
−184

−182

−180

−178

−176

−174

−172

−170

−168

p
n

L
(X

|Θ
K
)/

N

K=10

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5

−184

−182

−180

−178

−176

−174

−172

−170

−168

−166

p
n

L
(X

|Θ
K
)/

N

K=15

IMM
RMM
KMM

(b) Test set

0.1 0.2 0.3 0.4 0.5
−184

−182

−180

−178

−176

−174

−172

−170

−168

−166

p
n

L
(X

|Θ
K
)/

N

K=5

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5

−184

−182

−180

−178

−176

−174

−172

−170

−168

p
n

L
(X

|Θ
K
)/

N
K=8

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5
−186

−184

−182

−180

−178

−176

−174

−172

−170

−168

p
n

L
(X

|Θ
K
)/

N

K=10

IMM
RMM
KMM

0.1 0.2 0.3 0.4 0.5
−186

−184

−182

−180

−178

−176

−174

−172

−170

−168

p
n

L
(X

|Θ
K
)/

N

K=15

IMM
RMM
KMM

Fig. 1. The log-likelihood values found by the three comparative methods as a function
of noise parameter pn.

M symbols. The data generation mechanism was the following: A pattern is
randomly selected at first, and then a noisy copy of it is located at a random
position in the sequence. Pattern noise is governed by using a probability pn for
mutation, common to every pattern site. The rest non-pattern sites are filled
uniformly from the same alphabet. Using this scheme, two sets of N = 1000
sequences of length Li ∈ [50, 100] were created; one used for training and another
one for testing. As it is clear, this clustering problem is more difficult since the
Markov property exists only locally in the sequences and under different levels of
noise. Likewise, for each randomly selected pattern family we generated ten (10)
different datasets and we evaluated each method in terms of the log-likelihood
value found in both training and test sets. Figure 1 illustrates the results obtained
with four values of K = {5, 8, 10, 15} and five different levels of noise pn =
{0.1, 0.2, 0.3, 0.4, 0.5} in the case of M = 10 alphabet size. In each diagram, the
error bars indicate the standard deviation of the log-likelihood difference between
the true model that is known and the model under consideration. Our method
was able to achieve a high degree of noise tolerance, since always managed to
discover the correct model, even for extremely noisy datasets.

Additional experiments have been performed using the msnbc.com web navi-
gation dataset [3], which is a collection of sequences that corresponds to M = 17
page-category views (symbols) of users during twenty-four hour period. Here we
have considered only a subset of the total collection containing 4600 sequences
of length Li ∈ [40, 100]. We randomly divided it into two subsets (training /
test) of approximately equal size. Figure 2 shows the calculated log-likelihood
value per sequence (L(X|ΘK)/N) as a function of the mixture order K on both

54

sets. Our method was executed only once until reaching K = 16 components.
In the case of the RMM and KMM methods we plot the mean value and the
standard deviations (error bars) of the log-likelihood over 20 different runs (ini-
tializations) of the EM algorithm per each value of K. The proposed method
showed an improvement performance with better generalization capabilities on
the test set in comparison with the other two approaches. Note that we have
repeated this study with different divisions into training and test subsets of this
dataset and the results were similar. Finally, in Figure 3 we give an example
of the visualization capabilities of clustering sequential data that can be used
for identifying user behavior patterns in applications such as web log mining [3,
8]. Each one of the ten images corresponds to a cluster found when applying
our method for training a mixture model with K = 10 Markov components. By
associating every symbol with a unique color, sequences that belong to the same
cluster are represented as raws of colored squares.

2 4 6 8 10 12 14 16

−62

−60

−58

−56

−54
Training set

K

L
(X

|Θ
K
)/

N

IMM
RMM
KMM

2 4 6 8 10 12 14 16

−64

−63

−62

−61

−60

−59

K

L
(X

|Θ
K
)/

N
Test set

IMM
RMM
KMM

Fig. 2. Application of the three methods to the msnbc.com dataset. The log-likelihood
values are calculated for several values of K in the training and the test set.

5 Conclusions

In this paper we have presented an incremental strategy for training Markov
mixture models by maximum likelihood on a set of sequences of discrete states.
The approach sequentially adds components to a mixture model by performing
a combined scheme of the EM algorithm. In order to initialize properly each new
component, an efficient parameter search space of Markov models has been con-
structed. Experiments on a variety of benchmarks have shown the ability of our
method to improve the data fit and also demonstrated its generalization capabil-
ity. The determination of the proper value of K for terminating the incremental
procedure can be seen as one of our future studies on this area. Finally, we plan
to focus our attention on mixtures of hidden Markov models, since they can be
seen as more general probabilistic models for sequential data.

Acknowledgments. This research is partially supported by the EPEAEK II
Program.

55

1
3
5
7
9
11
13
15
17

cluster 1 cluster 3cluster 2

cluster 6

cluster 4 cluster 5

cluster 7 cluster 8 cluster 9 cluster 10

M symbols
colormap

Fig. 3. Visualization of the clustering results (K = 10) on the msnbc.com data. Each
image represents a cluster of user sessions in a colored raw form.

References

1. P Smyth. Clustering sequences with hidden Markov models. In M. C. Mozer,
M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems, volume 9, pages 648–654. The MIT Press, 1997.

2. G. Ridgeway. Finite discrete markov process clustering. Technical Report MSR-
TR-97-24. Microsoft Research, Redmod, WA, 1997.

3. I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Model-based clustering
and visualization of navigation patterns on a web site. Data Mining and Knowledge
Discovery, 7(4):399–424, 2003.

4. M. Bicego, V. Murino, and M. Figueiredo. Similarity-based classification of se-
quences using hidden Markov models. Pattern Recognition, 37:2281–2291, 2004.

5. G.M. McLachlan and D. Peel. Finite mixture models. New York: John Wiley &
Sons, Inc., 2001.

6. L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77:257–286, 1989.

7. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. B, 39:1–38, 1977.

8. E. Manavoglu, D. Pavlov, and C.L. Giles. Probabilistic user behavior models. In
IEEE International Conference on Data Mining (ICDM’03), pages 203–210, 2003.

9. A. Ypma and T.M. Heskes. Automatic categorization of web pages and user clus-
tering with mixtures of hidden Markov models. In WEBKDD 2002 - Mining web
data for discovering usage patterns and profiles, pages 35–49, Berlin, 2003.

10. P. Tino, A. Kaban, and Y. Sun. A generative probabilistic approach to visualiz-
ing sets of symbolic sequences. In ACM SIGKDD - International Conference on
Knowledge Discovery and Data Mining - KDD-2004, pages 701–706, 2004.

11. N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture learning.
Neural Processing Letters, 15(1):77–87, 2002.

12. K. Blekas, D.I. Fotiadis, and A. Likas. Greedy mixture learning for multiple motif
discovering in biological sequences. Bioinformatics, 19(5):607–617, 2003.

56

Improving Prediction Accuracy of an Incremental
Algorithm Driven by Error Margins ?

José del Campo-Ávila1, Gonzalo Ramos-Jiménez1, JoŻao Gama2, and Rafael
Morales-Bueno1

1 Departamento de Lenguajes y Ciencias de la Computación
E.T.S. Ingenierı́a Informática. Universidad de Málaga, Spain

{ramos, jcampo, morales}@lcc.uma.es
2 LIACC - University of Porto, Portugal

jgama@liacc.up.pt

Abstract. Incremental learning is an approach to deal with the classification
task when datasets are too large or when new examples can arrive at any time.
One possible approach uses concentration bounds (like Chernoff or Hoeffding
bounds) to ensure that expansions are done when the number of examples sup-
ports the change. Two algorithms that use this approach are VFDT or IADEM. In
this paper we extend the IADEM system in two directions: adding the ability to
deal with continuous data and including the use of more powerful classification
techniques at tree leaves. The proposed system, IADEMc, can incorporate and
classify new information as the basic algorithms do, using shorter time per exam-
ple. Another relevant property of our system is the ability to obtain a performance
similar to a standard decision tree algorithm independently of the datasets size.

1 Introduction

Machine learning systems are currently required to deal with large datasets. Moreover,
data streams have recently become a new challenge for data mining because of certain
features [1] of which infinite data flow is the most notable. Thus, datasets can indef-
initely grow at a very high rate and it would be highly desirable to be able to induce
concepts from them. Trying to extract knowledge from such numbers of examples can
become an inaccessible problem for traditional algorithms such as ID3 [2] or C4.5 [3]
due to system requirements. There are other approaches that are less demanding like
disk-based learners, such as SLIQ [4] or SPRINT [5], but, although they make more
efficient use of memory, they still have some limitations: they require multiple scans of
the dataset, they cannot handle infinite data flows because the datasets are needed to be
completed before executing, and they also fail when datasets are too large.

Probabilistic representation [6] provides the opportunity of exploring data and keep-
ing the most relevant information from seen examples. Therefore, required memory
does not have to depend on the number of examples in the dataset, but on the structure
and associated statistics. Some algorithms use this scheme in one way or another, such

? This work has been partially supported by the FPI program and the MOISES-TA project,
number TIN2005-08832-C03, of the MEC, Spain.

57

as ID4 [7], ITI [8] or VFDT [9]. However, the potential of this representation is limited
depending on which memory model [10] was used. Considering the characteristics of
large datasets and data streams we must say that partial example memory with forget-
ting mechanisms and no example memory are the models more appropriates because
of their memory requirements. Chernoff [11] and Hoeffding [12] bounds have recently
been used in Machine Learning area [9, 13–15] in conjunction with probabilistic repre-
sentation . They have been used to provide statistical evidence in favour of a particular
split test, to ensure a minimum number of scans through a sequence database, etc.

Incremental learning methods (including online, successive or sequential methods)
have some features that make them very suitable to deal with huge amounts of data.
The concept “incremental learning” has been used rather loosely, ranging from very
relaxed interpretations (such as the “revolutionary” approach of Michalski [16]) to ex-
cessively restrictive ones (such as proposed by Polikar [17]), but two main features
describe an incremental learning algorithm: its capability to incorporate new examples
into the knowledge base [7] and its capability to evolve this knowledge base from a very
basic concept to another more complex one [3].

In this paper we propose some extensions to the incremental algorithm IADEM:
the ability to deal with numerical attributes and the capability to apply naive Bayes
classifiers in the tree leaves. The paper is organised as follows. The next section de-
scribes IADEM and other related works that are the basis for this paper. In Section 3
we introduce the extensions made to IADEM leading to the algorithm IADEMc. The
experimental evaluation is presented in Section 4. Finally, in Section 5, we summarise
our conclusions and suggest future lines of research.

2 Related Work

In this section we present related work about powerful strategies for predicting and we
briefly summarise the basic algorithm that we are extending: IADEM.

2.1 Functional Tree Leaves

The standard algorithms that induce decision trees usually install at each leaf node a
constant that minimises a given loss function. In the classification setting, the constant
that minimises the 0-1 loss function is the mode of the target attribute of the examples
that fall at this leaf. Several authors have studied the use of other functions at tree leaves
[18, 19]. One of the earliest works is the Perceptron tree algorithm [20] where leaf nodes
may implement a general linear discriminant function. Also Kohavi [18] has presented
the naive Bayes tree that uses functional leaves. NBtree is a hybrid algorithm that gen-
erates a regular univariate decision tree, but the leaves contain a naive Bayes classifier
built from the examples that fall at this node. The approach retains the interpretability of
naive Bayes and decision trees, while resulting in classifiers that frequently outperform
both constituents, especially in large datasets.

In this paper we explore this idea in the context of incremental learning. As we show
in the experimental section, there are strong advantages in the performance of resulting
decision models.

58

2.2 Incremental Algorithm Driven by Error Margins

IADEM [15] is an incremental algorithm with no example memory which knowledge
base is represented using decision trees. IADEM receives examples to learn from, but
once they are processed they are forgotten. No example is saved, only the relevant
information for IADEM is kept using counters stored in the decision tree. Thus, the
memory requirements of this algorithm only depend on the size of the decision tree and
its associated counters. This way of processing data lets us deal with any kind of dataset
or data stream independently of size. The examples used by the algorithm are sampled
with reposition from the dataset or they can be taken directly from the data stream. It
is important that the source of data does not have concept drift because IADEM is not
ready to afford it yet.

In this algorithm, a very important point are the user’s requirements about max-
imum level of error and confidence. Thus, the user must set two arguments for the
algorithm: the maximum desired error for the tree that is going to be induced (ε) and its
confidence (1 − δ). IADEM calculates some statistics using the counters stored in the
decision tree. In addition to the estimated values for that statistics, the error margins for
those estimated values are calculated too. Using the statistics and their error margins,
IADEM maintains, at every moment, an estimation of the superior and inferior bounds
of the error in the decision tree. That estimation is fundamental for the operation of this
algorithm:

– the superior bound of the error (sup(error)) is used to stop the algorithm when the
user’s requirements are satisfied (sup(error) ≤ ε). Thus, the number of examples
needed to stop the algorithm does not depend on the size of the dataset. If the
dataset is too small, it will continue sampling with reposition until the maximum
error in the tree comes below the desired level. On the other hand, it is possible that
the algorithm uses less examples than the number of examples in the dataset.

– the inferior bound of the error (inf(error)) is used to limit the number of expan-
sions. IADEM considers the size of the tree as an important point too. If inf(error)
is lower than ε, that means, in the best case, that the error in the tree is below the
desired error, so we can continue sampling and trying to reduce sup(error). Thus,
the algorithm could find a solution without any additional expansion. Therefore,
the first condition for considering to do an expansion is that inf(error) must be
close to ε.

– the different values of sup(error) when expansions occur are used to detect noise.
When IADEM expands a leaf node, inf(error) and sup(error) usually decrease.
But, when the error in the tree is close to the noise in the datasets, the behaviour
changes and it is usual that sup(error) increase after an expansion. We consider a
maximum level of increases of sup(error) in the last expansions, and the algorithm
stops is this level is exceeded.

IADEM uses two kinds of nodes in the border of the tree: the real and the virtual
nodes. The real ones are the leaves of the tree and they constitute the real border of the
tree. Every real node (or leaf) has as many virtual nodes as attributes are unused in the
branch that ends in that leaf. The set of virtual nodes that corresponds to a real node
represents all the possible expansions for that leaf and they register all the information

59

that will be needed to do an expansion. The information stored in the real nodes is
the following: the total number of examples sampled since the node exists as virtual
(t ∈ N), the number of those that match with the branch that reaches that node (m ∈ N)
and the number of those examples depending on the class label (mk ∈ N where k ∈
{1 . . . z} and z is the number of classes). On the other hand, the information stored in
the virtual nodes is: the total number of examples sampled since the virtual node exists
(t′ ∈ N), the number of those that match with the branch that reaches that virtual node
depending on the value for the corresponding virtual node attribute (m′

v ∈ N where
v ∈ {1 . . . r} and r is the number of values of the attribute) and the number of those
examples depending on the class label (m′

v,k ∈ N).
Considering these counters and the number of examples that have been processed,

and using the Chernoff and Hoeffding bounds, IADEM provides estimated values and
error margins for different calculated elements: the probability of one example reaching
a real node (w = m/t); and the probability of an example being classified as k class in
a real node (pk = mk/m) or in a virtual node (p′v,k = m′

v,k/m′). To calculate the error
margins for them the following general expression is used:

ε margin(x) = min

{√
3 · a
b

ln(2/δ) ,

√
1

2 · b ln(2/δ) , 1

}
(1)

and the values for a and b depend on the calculated element (x) which error margin is
being considered. Thus, for x = w we have a = m/t and b = t; for x = pk we have
a = mk/m and b = m; and for x = p′v,k we have: a = m′

v,k/m′
v and b = m′

v .
With those elements and their error margins we can calculate the error produced

in every leaf node of the tree. Using those errors we can estimate the superior and
inferior bound of the error in the tree. Those calculated elements are also used in the
expansion process. To do an expansion we need to identify which is the node that will
be expanded. That leaf will be the one that contributes the most error to the tree. Once
we have selected the leaf node, we find the best attribute to do the expansion using the
information in the virtual nodes.

3 IADEMc

Despite IADEM’s characteristics, we have added two new features in order to increase
the usability and performance of the algorithm: the ability to deal with numerical at-
tributes and the capability to apply naive Bayes classifiers in the tree leaves. This
new extended version has been called IADEMc and presents the same extensions that
VFDTc [14] added to VFDT, although there are some differences.

3.1 Numerical Attributes

Real world problems usually contain numerical attributes, so this issue should be ad-
dressed by learning algorithms. Preprocessing is a possibility of facing this kind of
problems, but we have opted for including a local method in the algorithm.

Batch decision tree learners need a sort operation to work with these attributes, and
it is the most time consuming operation. In this subsection we will present an efficient

60

method to deal with numerical attributes in the context of incremental decision tree
learning. This method is based in the one proposed by Gama et al. [14].

In IADEMc a decision node that contains a split-test based on a continuous attribute
(attrj) has a condition and two descendant branches. The condition sets a cut point
(cut point) and the branches corresponds to the values that are less or equal than the
cut point (attrj ≤ cut point) and greater than the cut point (attrj > cut point).
The cut point is chosen using all the possible observed values for that attribute. The
problem of accessing and storing counters for all different values of attributes in a short
time is solved using balanced binary trees. Accessing to a value and inserting a new
value in this structure is O(log2(n)) in the worst case, where n is the number of distinct
values for the attribute seen so far.

The structure that we have used to store those values is managed in continuous vir-
tual nodes. Every real node (leaf) has as many continuous virtual nodes as continuous at-
tributes are defined in the problem. The same continuous attribute can be used multiple
times in the same branch. The structure that stores the different values of an attribute dif-
fers from the one used in VFDTc in two points: the binary tree is a balanced tree (what
allow insertion and access in O(log2(n))) and the amount of information stored in every
node is lesser. Every node in the balanced binary tree is labelled with a value (i) of the
corresponding continuous attribute and it keeps one vector which dimension is equal to
the number of classes (k) and one additional counter. The vector (counters per classi)
is used to count the number of examples that have the value that labels that node taking
into account the class label. The additional counter (sum countersi) is the sum of all
the counters in the vector. When an example reaches, the value of the considered at-
tribute is examined and only the node corresponding with that value is updated; if the
value is not in the balanced binary tree, a new node is inserted. The binary tree includes
some other general information as the total number of examples registered in the tree
(total) and this number taking into account the class label (total per class). This gen-
eral information in combination with the counters stored in the nodes of the balanced
binary tree is used to calculate the inferior and superior bound of the probability of one
example being classified as k class in a virtual node (inf(p′v,k) and sup(p′v,k)). These
bounds are calculated for every possible cut point using an exhaustive method that
only traverses the balanced binary tree once.

Every possible condition that can be built using the different cut points can be
seen as a nominal attribute with two values: true (when values are ≤ cut point) and
false (when values are > cut point). To calculate the estimated value of p′true,k and
p′false,k in every cut point we only need the number of examples per class (m′

true,k

and m′
false,k) and the total number of examples (m′

true and m′
false) at both sides of the

cut point. This counts are instantly calculated for the first cut point (after the smallest
value –smallest value –) of the attribute:

– the true branch (≤ smallest value) uses directly the counters in the node iden-
tified by the smallest value: counters per classsmallest value (that corresponds
with m′

true,k) and sum counterssmallest value (that corresponds with m′ true).
– the false branch (> smallest value) uses the general counters total per class

and total; and subtracts from them the counts calculated in the true branch. Thus,
m′

false,k = total per classk −m′
true,k and m′

false = total −m′ true

61

To calculate the values of p′v,k for successive cut points is very simple:

– the true branch (≤ cut point) increases its counters using the counters of the node
that change from the false side of the cut point to the true side.

– the false branch (> cut point) decreases its accumulated counters using the coun-
ters of the node that leaves the false side of the cut point and goes to the true
side.

At the same time that the estimated values for p′v,k are calculated, the error margins
for them are calculated too using the Chernoff and Hoeffding bounds (Equation 1).

We have explained how to calculate the interval where probability of one example
being classified as k class in a virtual node (p′v,k) can vary, but we must note that this
process is not executed when a new group of examples is sampled and it is not executed
for every continuous virtual node. The calculation is only made when an expansion is
allowed and the leaf node that contributes the most error to the tree (worst node) is
selected. Then we have to find which is the best attribute for doing the expansion in that
node and it is in that moment when the previous intervals are calculated.

The selection of the best attribute keeps similar to the process used when we only
considered nominal attributes: we look for the attribute which superior bound of the
disorder measure (we used entropy) is the lowest.

3.2 Improving Prediction With Functional Tree Leaves

A very simple strategy to classify a test example is to find the leaf node that match with
that example and classify it as the most representative class of the training examples
that fall at that leaf. One extension incorporated in IADEMc is the ability to use the
naive Bayes classifiers at tree leaves as it is used in VFDTc [14]. Thus, a test example
is classified with the class that maximises the posterior probability given by Bayes rule
assuming the independence of the attributes given the class.

There is a simple motivation for this option. IADEMc only changes a leaf to a
decision node when there are an attribute that it is clearly the best attribute (given a
confidence). Usually hundreds or even thousands of examples are kept in leaf nodes
before an expansion is done. To classify a test example, the majority class strategy only
use the information about class distributions and does not look for the attribute-values.
It uses only a small part of the available information, a crude approximation to the
distribution of the examples. On the other hand, naive Bayes takes into account not
only the prior distribution of the classes, but also the conditional probabilities of the
attribute-values given the class. In this way, there is a much better exploitation of the
available information at each leaf. Moreover, naive Bayes is naturally incremental. It
deals with heterogeneous data and missing values. It has been observed [21] that for
small datasets naive Bayes is a very competitive algorithm.

Given the example −→e = (x1, . . . , xj) and applying Bayes theorem, we obtain:
P (Ck|−→e) ∝ P (Ck) ·∏ P (xj |Ck). To compute the conditional probabilities P (xj |Ck)
we should distinguish between nominal attributes and continuous ones. In the former
the problem is trivial using the counters stored in the nominal virtual nodes. In the
latter, there are two usual approaches: assuming that each attribute follows a normal

62

distribution or discretizing the attributes. Assuming a normal distribution, the sufficient
statistics can be computed on the fly. Nevertheless, it is possible to compute the required
statistics from the binary-tree structure stored at each continuous virtual node. We have
opted to implement this method in IADEMc. Any numerical attribute is discretized into
min(10, Number of different values) equal width intervals.

We should note, that the use of naive Bayes classifiers at tree leaves does not in-
troduce any overhead in the training phase. In this phase and for nominal attributes,
the counters constitute (directly) the naive Bayes tables. For continuous attributes, the
naive Bayes contingency tables are efficiently derived from the balanced binary trees
used to store the numeric attribute-values. The overhead introduced is proportional to
depth of the binary tree, that is at most log2(n), where n is the number of different
values observed for a given attribute.

4 Experiments and Results

The experiments we have done and the results that we have obtained are exposed in
this section. The experiments have been done using synthetic datasets from UCI Ma-
chine Learning Repository [22]. We have selected LED (24 nominal attributes) and
Waveform (21 and 40 continuous attributes) in order to show how the new extended al-
gorithm IADEMc can deal with nominal and continuous attributes and how the using of
functional leaves can improve the prediction method. The dataset generators have been
used to build datasets of different sizes (from 10K to 1000K examples) with 10% noise.
In addition, for every size of dataset we have built 10 datasets using different seeds.

For studying the performance of IADEM we have selected two criteria: the classi-
fication accuracy – the percentage of test examples that are correctly classified – and
the size of the tree – number of nodes. The results given are the average value and
the standard deviation. In addition, induction time has been also measured and its av-
erage value is given too. We have compared IADEMc with several algorithms. As a
traditional algorithm we have chosen C4.5 [3], while as an incremental algorithm we
have selected VFDTc [14]. We have selected these algorithms because they are well-
documented algorithms, they induce decision trees, and their implementations can be
found available in the Internet. For the experiments, we have used the implementation
of C4.5 given in Weka [23], and the implementation of VFDTc algorithm available
in http://www.liacc.up.pt/∼jgama/ales2/vfdtc. For experiments with IADEMc, we have
implemented a prototype in Java and it has been configured with default parameters,
desired error (ε) equals to 0.001 and confidence (δ) equals to 0.1. We must note that all
algorithms have been executed using their default configuration.

As we can see in Table 1, the results show some interesting points. One of the
most important is about the memory requirements of different algorithms: we can see
how traditional algorithms are not good for dealing with very large datasets (or data
streams). C4.5 crashed because it went out of memory, while VFDTc or IADEMc had
no problem.

The improvement of using functional tree leaves is clear in experiments done with
VFDTc and IADEMc. As we have mentioned before, using stronger classification strate-
gies at tree leaves improves classifier’s performance. Considering the accuracy achieved

63

Table 1. Accuracy (average± standard deviation). Algorithm-MC means that the prediction uses
Majority Class while Algorithm-NB means that it uses Naive Bayes.

Led dataset - 24 attributes
C4.5 VFDTc-MC VFDTc-NB IADEMc-MC IADEMc-NB

100K 73.28 ± 0.04 25.12 ± 0.07 73.80 ± 0.11 71.13 ± 1.09 73.60 ± 0.25
500K Out of memory 25.13 ± 0.04 73.79 ± 0.16 70.89 ± 1.02 73.63 ± 0.38

1000K Out of memory 25.27 ± 0.25 73.86 ± 0.06 70.77 ± 0.96 73.60 ± 0.51
Waveform dataset - 21 attributes

C4.5 VFDTc-MC VFDTc-NB IADEMc-MC IADEMc-NB
100K 80.17 ± 0.08 74.87 ± 0.42 82.15 ± 0.46 77.13 ± 0.76 81.34 ± 0.38
500K 81.48 ± 0.08 78.69 ± 0.20 83.27 ± 0.21 75.94 ± 1.82 81.08 ± 0.71

1000K Out of memory 79.81 ± 0.20 83.50 ± 0.10 76.12 ± 2.23 81.08 ± 1.03
Waveform dataset - 40 attributes

C4.5 VFDTc-MC VFDTc-NB IADEMc-MC IADEMc-NB
100K 79.05 ± 0.09 74.98 ± 0.50 81.78 ± 0.42 77.00 ± 0.90 80.51 ± 0.56
500K 80.50 ± 0.10 78.68 ± 0.25 82.63 ± 0.21 76.93 ± 1.14 80.99 ± 0.95

1000K Out of memory 79.71 ± 0.10 82.73 ± 0.10 76.33 ± 0.92 81.22 ± 0.96

by IADEMc we can see that it is similar to the accuracy achieved by C4.5 and very close
to that achieved by VFDTc. The reason for not reaching higher degrees of accuracy (and
producing a higher variance) is a premature trigger of the noise detection heuristic. An
anomalous behaviour can be observed while using VFDTc with LED dataset but it may
be produced because of a bad selection of the expansions. The trees induced by VFDTc
have many empty leaves when using LED dataset.

Table 2. Number of nodes (average ± standard deviation) and induction time (msec. average)

Led dataset - 24 attributes - NODES Led-24 - MSEC.
C4.5 VFDTc IADEMc C4.5 VFDTc IADEMc

100K 8055.00 ± 154.76 17.20 ± 1.14 47.80 ± 16.50 9579 820 4634
500K Out of memory 81.60 ± 1.65 44.60 ± 12.57 Out mem. 4542 4531

1000K Out of memory 154.20 ± 2.15 43.80 ± 12.19 Out mem. 10190 4311
Waveform dataset - 21 attributes - NODES Waveform-21 - MSEC.

C4.5 VFDTc IADEMc C4.5 VFDTc IADEMc
100K 8042.60 ± 236.89 49.20 ± 1.75 119.80 ± 63.04 76713 5707 35939
500K 33434.80 ± 316.38 245.00 ± 5.50 72.80 ± 41.34 1005955 32245 23487

1000K Out of memory 487.80 ± 9.53 84.20 ± 52.02 Out mem. 67368 29022
Waveform dataset - 40 attributes - NODES Waveform-40 - MSEC.

C4.5 VFDTc IADEMc C4.5 VFDTc IADEMc
100K 9699.60 ± 184.65 49.60 ± 2.67 122.60 ± 54.05 133497 11536 75082
500K 42682.80 ± 450.45 242.80 ± 5.20 81.20 ± 36.15 1769030 64045 55299

1000K Out of memory 490.60 ± 5.72 69.00 ± 33.12 Out mem. 132297 44455

Considering the results shown in Table 2 and in Figure 1 we can notice other inter-
esting points. The size of the decision trees always increase in C4.5 and VFDTc while

64

Fig. 1. Induction time, number of examples used, tree size and accuracy

this size keeps quite stable in IADEMc. The main reason for this behaviour is the noise
detection heuristic and how it is used to stop the algorithm. The algorithm tries to satisfy
the user requirements, but, if noise is detected, the execution stops. Thus, examples are
sampled while the algorithm runs and this is a great difference with respect to C4.5 and
VFDTc because they use the entire dataset. The accuracy achieved by VFDTc when
there are few examples is not very good because it needs many examples to expand the
decision tree. On the other hand IADEMc samples with reposition as many examples
as are needed and achieves good accuracy even with small datasets.

5 Conclusion

This paper introduces two major extensions to IADEM, an incremental classifier for
learning from increasingly common high-volume datasets and data streams. The first
one is the ability to deal with numerical attributes and the second one is the ability to
apply naive Bayes classifiers in tree leaves. While the former extends the domain of
applicability of the algorithm to heterogeneous data, the latter reinforces the any-time
characteristic, an important property for any incremental learning algorithm. IADEMc
maintains all the desirable properties of IADEM. It is an incremental algorithm, new
examples can be incorporated as they arrive, it works online, only see one example
once, and using a small processing time per example. The experimental evaluation of
IADEMc clear illustrates the advantages of using more powerful classification tech-
niques.

Out aim of improving IADEMc involves some issues. We are working to improve
the detection of noise in order to get accuracy closer to the maximum ones. Another
important aspect that we will tackle is learning in the presence of concept drift.

65

References

1. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensem-
ble classifiers. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, ACM Press (2003) 226– 235

2. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986) 81– 106
3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
4. Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for data mining.

Lecture Notes in Computer Science 1057 (1996) 18– 32
5. Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for data mining.

In: Proc. 22th Int. Conf. on Very Large Data Bases, Morgan Kaufmann Publishers (1996)
544– 555

6. Smith, E.E., Medin, D.L.: Categories and Concepts. Harvard University Press (1981)
7. Schlimmer, J.C., Fisher, D.H.: A case study of incremental concept induction. In: Proc. 5th

Nat. Conf. on Artificial Intelligence, Philadelphia, Morgan Kaufmann (1986) 496– 501
8. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree

restructuring. Machine Learning 29(1) (1997) 5– 44
9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. of the 6th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM Press (2000) 71–80
10. Maloof, M.A., Michalski, R.S.: Selecting examples for partial memory learning. Machine

Learning 41(1) (2000) 27– 52
11. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sums

of observations. Annals of Mathematical Statistics 23 (1952) 493– 507
12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association 58 (1963) 13– 30
13. Yang, J., Wang, W., Yu, P.S., Han, J.: Mining long sequential patterns in a noisy environment.

In: Proc. ACM SIGMOD Int. Conf. on Management of Data, ACM Press (2002) 406– 417
14. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams.

In: Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
ACM Press (2003) 523–528

15. Ramos-Jiménez, G., del Campo-Ávila, J., Morales-Bueno, R.: Incremental algorithm driven
by error margins. Lecture Notes in Artificial Intelligence: 9th Int. Conf. on Discovery Science
(2006) to appear

16. Michalski, R.S.: Knowledge repair mechanisms: Evolution vs. revolution. In: Proc. 3rd Int.
Workshop on Machine Learning, Skytop, PA. (1985) 116– 119

17. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning algorithm
for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics 31
(2001) 497– 508

18. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision tree hybrid. In:
Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, AAAI
Press (1996) 202–207

19. Gama, J.: Functional trees. Machine Learning 55(3) (2004) 18– 32
20. Utgoff, P.: Perceptron trees: a case study in hybrid concept representations. In: Proc. of the

7th National Conference on Artificial Intelligence, Morgan Kaufmann (1988) 601–606
21. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classiffier under zero-

one loss. Machine Learning 29 (1997) 103–129
22. Blake, C., Merz, C.J.: UCI repository of machine learning databases. University of Califor-

nia, Department of Information and Computer Science (2000)
23. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implemen-

tations. Morgan Kaufmann, San Francisco (2000)

66

Analyzing Data Streams by Online DFT

Alexander Hinneburg1, Dirk Habich2, and Marcel Karnstedt3

1 Martin-Luther University of Halle-Wittenberg, Germany
hinneburg@informatik.uni-halle.de

2 Dresden University of Technology, Germany
dirk.habich@tu-dresden.de

3 Technical University of Ilmenau, Germany
marcel.karnstedt@tu-ilmenau.de

Abstract. Sensor data have become very huge and single measures are
produced at high rates, resulting in streaming sensor data. In this paper,
we present a new mining tool called Online DFT, which is particularly
powerful for estimating the spectrum of a data stream. Unique features
of our new method include its low update complexity with high-accuracy
estimations for very long periods, and its ability of long-range forecasting
based on our Online DFT. Furthermore, we describe some applications
of our Online DFT.

1 Motivation

Physical sensor environments can be found all over the world, and they are
involved in a wide range of applications. In recent time, sensor data have become
very huge and single measures are produced at high rates, resulting in streaming
sensor data. Examples can be found in financial applications dealing with time
series for various stocks, in applications monitoring sensors to detect failures and
problems in large buildings at an early stage, or in real-time market analyses of
supermarket customer data.

Aside from application-related issues, interesting general questions in data
stream environments are: What are the dominant frequencies of a streaming
signal? Which of them are currently most active in the stream? Is the stream
very volatile (mostly high frequencies are active) or more stable (low frequencies
are active)? How does the stream look like in the near future? To analyze the
frequencies in a data stream, the discrete Fourier transform (DFT) in its original
form is an unqualified tool because the Fourier coefficients do not contain any
information about the temporal location of the frequencies. To overcome this
disadvantage, the short time Fourier transform (STFT) can be used, which chops
the stream into overlapping pieces and estimates frequencies from these pieces.
The STFT represents a compromise between the resolution in the frequency
domain and in the time domain. However, due to the processing of pieces, it is
difficult to use the frequency information to forecast the stream. Wavelets have
been used to analyze streams as well. Aside from many advantages of wavelets,
such as fast online decomposition, there are also some disadvantages. First, there
is no one-to-one relation between wavelet coefficients and frequency intervals.

67

This complicates the task of interpreting the results of a wavelet transform.
Second, the wavelet transform is not shift-invariant; that means, the wavelet
coefficients of a stationary signal (i.e., frequencies do not change) also depend
on the starting point of the transformation. This is not the case for the DFT,
and therefore, we decided not to use a wavelet model as starting point.

Our main contribution is a one-pass method with sublinear runtime for esti-
mating the frequencies of a data stream. Our Online DFT approach partitions
the frequency range into subintervals of increasing size. Low frequencies are esti-
mated with higher resolution, while high frequencies are estimated more coarsely.
This is justified by the observation that many data streams are driven mainly
by low frequencies. Frequencies within the subintervals are estimated separately,
which allows using different sample rates for different frequency subintervals.
This leads to enormous savings in runtime because the sample rates can be ad-
justed to the estimated frequencies (low frequencies need only low sample rates).
The second feature of the new Online DFT is its adaptive choice of sample points,
which increases the power of our approach. The properties of the Online DFT
lead to a number of interesting applications, e.g., forecasting, cleaning, and mon-
itoring of streams, which are described in detail in the experiment section.

Related Work Stream mining is related to time series analyses and fore-
casting (e.g., [5]), which is based on discovering patterns and periodicity [3, 6].
Traditional generative time series models include auto-regressive (AR) models
and their generalizations (ARMA etc.). They can be used for forecasting, but
usually they fail in streaming environments and often have a number of limita-
tions (see [11] for more details on this). There are also approaches for nonlinear
forecasting, but they always require human intervention [12]. Papadimitriou et
al. [11] utilize incremental DWT [4] in order to find periods in streams and to do
long-range forecasting. In their AWSOM method, the authors model the wavelet
coefficients by an online linear auto-regression model [2]. This work focuses on
forecasting and thus, it is related to the proposed Online DFT, but it is based
on completely different methods. In this work, we focus on the DFT approach
and its characteristics only.

The Fourier transform has successfully been applied to numerous tasks. Re-
cent work deals with the approximation of large Fourier coefficients [9] by sam-
pling only a part of a time series. [5] discover representative trends using sketches,
and they utilize FFT to compute distances between stream sections. Based on
this, [1] define approximate periodicity and apply efficient sampling techniques
in order to find potential periods. Most relevant to our work is indexing of time
series (e.g., [8]), which would benefit from the availability of a fast Online DFT.
An approach closely related to the presented Online DFT is the incremental algo-
rithm introduced by Zhu and Shasha [13]. They use DFT to summarize streams
within a finite window. In contrast to our work, they do not focus on forecasting
but on finding correlations between different streams. Moreover, they uniformly
discretize the frequency domain, whereas we represent lower frequencies with
higher accuracy.

68

The remainder of this paper is organized as follows: After presenting neces-
sary prerequisites in Section 2, we introduce our novel Online DFT approach in
Section 3. In Section 4 we discuss some complexity aspects and present some
data stream experiments. The paper ends with the conclusion in Section 5.

2 Prerequisites

Discrete Fourier Transform The n-point discrete Fourier transform of a time
sequence x = x0, . . . , xn−1 is a sequence X = X0, . . . , Xn−1 of complex numbers
given by

Xf = 1/√n

n−1�

t=0

xt · e−j2πf ·t/n, f = 0, . . . , n − 1

where j is the imaginary unit j =
√−1. The original signal x can be recovered

by the inverse Fourier transform. The runtime complexity of the discrete Fourier
transform is O(n2). The fast Fourier transform (FFT) can compute the DFT
coefficients in O(n log n).
Filtering When estimating a frequency spectrum from a finite sample, alias-
ing becomes an issue. Aliasing happens if the stream contains frequencies larger
than half the sample rate. Those frequencies distort the spectrum in an unpre-
dictable way and cannot be removed afterwards. To be on the safe side, high
frequencies are removed from the stream by a low pass filter before applying
the DFT. Filtering can be done in the frequency as well as in the time do-
main. The advantage of a time-domain filter is that the output values have the
same rate as the input data. Linear filters in the time domain take a sequence
xt of input values and produce a sequence yt of output values by the formula:
yt =

∑M
k=0 ck · xt−k +

∑N
j=1 dj · yt−j. The M + 1 coefficients ck and the N co-

efficients dj are fixed and define the filter response. There exists an elaborate
theory on how to determine the coefficients ck and dj for a given pass band. In
the later sections, we use Chebyshev filters, but any other filter can be used as
well. We observed that the setting M = 5 and N = 5 gives good results in the
experiments. However, the results are not sensitive to the particular setting.

Any filter delays the signal. Note that the delay is in general not a constant
but a function depending on the frequency. The delay for specific frequencies
can be determined from the filter coefficients. We denote the phase delay by
τ(f), where f is the normalized frequency. Details on how to determine the
filter coefficients and the delay can be found in [7].

3 Online DFT

Now, we propose our novel data analyzing approach for streams based on Online
DFT. We introduce a model for the stream which is based on Fourier coefficients.
The approach is well-suited for streaming scenarios as it has sublinear runtime
complexity.

69

The method slides a window over the stream, which includes the last T
elements. The straight-forward estimation of the frequencies from the window
using the fast Fourier transform (FFT) runs in O(T log T). For large T , online
processing is not feasible, since the FFT has to be re-applied when new data
arrives. Our solution to the problem is to break up the frequency domain into
smaller intervals. The frequency intensities in each subinterval are estimated
from a small sample.

3.1 Online DFT Streaming Model

In this paper, we consider streaming elements S = x0, x1, . . . , xt−1, xt, which
are measured at an even rate. The window of the last T stream elements at the
current time index t is denoted by Wt = xt−T−1, . . . , xt−1, xt. We assume that
(i) the duration between the arrival of two consecutive data stream elements is
one standard time unit, and (ii) the stream does not contain frequencies above
the critical Nyquist frequency4 fc = 1/2.

The goal is to estimate all frequencies between zero and 1/2 of the window
Wt to model the stream. Our idea is to partition the frequency range (0, 1/2)
into L subintervals. The l-th interval is (1/2l+1, 1/2l) for 1 ≤ l < L and (0, 1/2l)
for l = L. So, the numbering goes from right to left as shown below:

(0, 1/2L), (1/2L, 1/2L−1), . . . , (1/22+1, 1/22), (1/21+1, 1/21)

The intervals can be estimated separately. We use short sliding windows for high
frequencies and long sliding windows for low frequencies. Using filters, the input
for the estimation of the l-th frequency interval (1/2l+1, 1/2l) is bandwidth-limited
to 1/2l. Due to the Nyquist theorem, the sample rate for the input can be much
lower without loss of information. We use a bandpass filter with a pass band
(1/2l+1, 1/2l) for 1 ≤ l < L and a lowpass filter (0, 1/2l) when l = L, respectively.
The filter used for the l-th interval is denoted by Hl and the filtered stream by
Hl(S) = y

(l)
1 , y

(l)
2 , . . . , y

(l)
t−1, y

(l)
t .

The distance between sample points, δl, increases with l. Thus, for high
frequencies, the sample points are close, while for low frequencies, they lie more
apart: δl = 2l−1, 1 ≤ l ≤ L. To determine the frequencies in the l-th interval,
we consider only the filtered data stream sample points with a distance of δl.
This is an enormous saving, e.g., when l = 8, only every δl = 28−1 = 128th point
has to be used as sample point, instead of having to use all points. As explained
before, this saving comes without loss of information.

The number of sample points for each frequency interval is upper-bounded
by Nmax, where Nmax � T and δL ·Nmax ≤ T . The sample points are the points
that arrived last in the stream. The actual number of sample points, Nl, for each
frequency subinterval l is adaptively chosen with respect to the data stream in
order to avoid artifacts. The adaptive choice of Nl is crucial for the power of our
approach. Details on how to choose Nl will be explained in subsection 3.2.

4 Filtering can be used to guarantee this assumption.

70

The number of intervals, L, depends on the maximal number of sample points,
Nmax, and the size of the sliding window, T : L = max{i ∈ N : 2i−1 ·Nmax ≤ T } =
�log T−1/Nmax−1�+1. The input for the frequency estimation in the l-th subinter-
val is the sequence of sample points taken from the output of the filter Hl: S(l) =
y
(l)
t−(Nl−1)δl

, y
(l)
t−(Nl−2)δl

, . . . , y
(l)
t−δl

, y
(l)
t ,

Subinterval 3

Frequency
1/41/8 1/2

Subinterval 1

Subinterval 2

Fig. 1. Results of the DFT of
S(1), S(2), S(3) in the frequency domain,
(L = 3, Nmax = 16). Each rectangle
represents a Fourier coefficient, the
shaded coefficients are non-zero.

where Nl ≤ Nmax. The frequencies in
the l-th subinterval are estimated from
S(l) by DFT. The output consists of Nl

Fourier coefficients, from which those
between �Nl/4� and �Nl/2	 estimate fre-
quencies in the desired interval. The
first quarter of coefficients is zero due
to the band pass filter. An exception is
the estimate of the L-th interval, from
which the Fourier coefficients between
1 and �Nl/2	 are used. Figure 1 illus-
trates the interplay of the frequency
estimation for different subintervals.

After this overview of the Online DFT model, the next sections discuss some
further details and explain how the model is used for several example applications
on data streams. In subsection 3.2, we explain how to choose the number of
sample points per level. In subsection 3.3, we introduce the inverse Online DFT.

3.2 The Difficult Choice of Sample Points

The estimation of dominant frequencies by the DFT from a finite set of sam-
ple points is very sensitive to the choice of actual sample points. As the DFT
needs infinite support of the signal, it must be possible to cyclically continue
to sample points. Otherwise, the Fourier spectrum would include some artificial
frequencies. For example, let the signal be a pure sinus s(t) = sin(2π/20 · t), and

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

time

si
gn

al

Signal with Sample Points

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

In
te

ns
ity

Fourier Spectrum, 13 Sample Points

1 2 3 4 5
0

0.5

1

1.5

2
Fourier Spectrum, 10 Sample Points

Frequency

In
te

ns
ity

0 5 10 15
0

2

4

6

8

10

12

Suffix

S
co

re

Score Function

(a) (b) (c) (d)

Fig. 2. (a) Signal with sample points, (b) spectrum when all 13 points are used, (c)
spectrum when only the last 10 points are used, (d) score function.

the current time point t = 60. If 13 sample points are used with δ = 4 (Figure
2(a)), the spectrum based on this choice of sample points includes more than one
non-zero component (Figure 2(b)). Ideally, the spectrum should include exactly
one non-zero component because the signal is a pure tone. In case the right-most

71

three sample points are discarded, the DFT gives the desired spectrum (shown
in Figure 2(c)).

When Nmax sample points of the filtered signal yt−(Nmax−1)δl
, yt−(Nmax−2)δl

,
. . . , yt−δl

, yt are available, it remains to be decided which suffix of that sequence
is the best choice to determine the spectrum by the DFT. The first observation
is: if the sample points cannot be cyclically continued, some extra effort has to be
applied to compensate the jumps at the borders.

0 500 1000 1500 2000 2500 3000
−6

−4

−2

0

2

4

6

time

si
gn

al

0 100 200 300 400
0

5

10

15

20

25

Prefix

S
co

re

(a) (b)

Fig. 3. (a) Complex signal and (b) the
score function for the suffixes.

We call the sum of the absolute Fourier
coefficients the energy E of the DFT,
E =

∑Nmax
i=1 |Yi|. If some compensa-

tions at the borders are necessary, this
is reflected by increased energy. Thus,
a criterion for the choice of a good suf-
fix is to take one with low energy. As
a second observation, the suffix needs
a certain length to include informa-
tion about all relevant vibrations. Very
short suffixes may have low energy but
do not reveal much about the signal’s spectrum. The length of a suffix is denoted
by Ni ≤ Nmax and its energy is Ei, which is computed by a DFT of that partic-
ular suffix of sample points. So, we are looking for a long suffix with low energy.
We combine both requirements to a scoring function

sc(Ni) =
Ni · log Ni

Ei
=

Ni · log Ni∑Ni

i=1 |Yi|
The scoring function of our example (Figure 2(d)) has a local maximum at suffix
length 10, which gives the ideal spectrum, as shown in Figure 2(c). The figure
shows that small, non-informative suffixes can also get a high score. To exclude
those from further considerations, we set a lower bound Nmin for the minimum
length of a suffix. How to set Nmin depends on the data stream, but we do not
further investigate it here.

A more complex signal is shown in Figure 3(a). Our proposed scoring function
(Figure 3(b)) has two clear peaks for the suffixes of length 150 and 300, which
are exactly the positions at which the true spectrum of the signal is revealed.

3.3 Inverse Online DFT

The main obstacle for the inverse Online DFT is the delay from the used filters.
We only gain from the splitting strategy if the bandpass filters can be applied at
little runtime cost. Therefore, we use fast linear filters, e.g., Chebyshev filters,
where filter delay is unavoidable. The example in Figure 4(a) shows the original
stream (solid curve), which consists of two sinuses x = sin(2π/300)+1/2 sin(2π/40).
The output of the filter is the dotted curve, which is delayed with respect to the
original curve. The phase delay is not a constant but a function τ(f) depending
on the normalized frequency (see Figure 4b).

72

Our idea is to correct the phase delay during the inverse DFT to be able
to reconstruct the stream correctly. In the example, the corrected result is the
dashed curve, which is also reconstructed between the sample points. The recon-
structed curve (dashed) matches almost perfectly with the original sin(2π/300).

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

Original Stream
Filtered Stream with Delay
Corrected Reconstructed Stream

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Normalized Frequency (×π rad/sample)

P
ha

se
 d

el
ay

 (
sa

m
pl

es
)

(a) (b)

Fig. 4. The left plot shows the original stream consisting of two sinuses, the filtered
stream from which sample points (x) are taken, and the reconstructed stream with
phase delay correction. The right plot shows the phase delay depending on the fre-
quency.

To explain our example formally, we assume n sample points y1, . . . , yn with
sample distance δ. From the sample points, we get n complex Fourier coefficients
Y1, . . . , Yn by DFT. The reconstruction of the n sample points with corrected
phase delay works as follows:

ỹi = re

(
2√
n
·
�n

2 �−1∑
k=0

Yk · exp
(
j · 2π · k · (i + τ(2π/knδ))/n

))

with i = 0, . . . , n − 1. The function re() returns the real part of a complex
number. In general, an inverse DFT of a real-valued stream does not need to
use the re() function, since – due to the symmetry property – each coefficient in
the lower half has a counterpart in the upper half with the same real part, but
with a negative imaginary part. Thus, the imaginary parts would be canceled
out, while the real part is doubled. Here, we are additionally dealing with the
phase delay correction. It is simpler to double the real part and to cut off the
imaginary part explicitly.

When i is incremented in steps smaller than one, intermediate points between
the sample points are computed. By that strategy, the reconstructed stream can
be refined to the original resolution, or when i > n − 1, even future stream
values can be predicted. For the final inverse Online DFT, the inverse DFTs
with phase delay correction from different levels are added up at the stream’s
original resolution.

4 Complexity Consideration and Experiments

In this section, we (1) describe some runtime and space complexity experiments
and (2) present some applications of our Online DFT. As presented previously,

73

when a new stream element arrives, the L subintervals are completely recom-
puted and the sliding window is shifted. This is the simplest implementation.
The main runtime factor is formed by choosing the best of all Nmax − Nmin

suffixes for each subinterval. When the DFT is implemented by FFT, this step
takes time

∑Nmax
i=Nmin

Ni · log Ni = O(N2
max log Nmax) in each subinterval l, where

Ni is the length of each possible suffix of sample points. Thus, the update run-
time complexity of the core algorithm is O(L · N2

max log Nmax), which can be
simplified to O(�log T−1/Nmax−1� · N2

max log Nmax). This shows that the update
runtime complexity is sublinear in the size of the sliding window.

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

Sliding Window Size

tim
e

[in
 s

ec
]

Original DFT
Online DFT with Nmax=50
Online DFT with Nmax=100

Fig. 5. Runtime Comparison of our
Core Algorithm against the DFT ap-
plied on the entire sliding window.

Figure 5 illustrates these results on
an empirical basis. We figure the run-
time of the core algorithm (for Nmax =
50 and Nmax = 100) in comparison
to the FFT applied to the entire slid-
ing window, where T is varied and
Nmin = 1. In both cases, the runtime
grows sublinearly with the size T of
the sliding window. The runtime of the
Online DFT is a stair-case function:
each step indicates the introduction of
an additional subinterval. A better im-
plementation is to investigate the best
suffix only when the score for that suf-
fix drops. We conducted an experiment
on the sunspot data stream (see Figure 6) and computed the length of the best
suffixes for each subinterval, where the window slided from time 1, 000 till 1, 500.
The percentage of how often the score dropped and the suffix length changed
with the next stream element is l = 1 : 20%, l = 2 : 76%, l = 3 : 35%, l = 4 : 19%.
This shows that there is still room for optimization.

The space complexity of our algorithm depends on the size of the sliding
window. In order to be able to shift the window by one element, all elements
have to be stored. We have to store δlNmax elements per subinterval, where the
sum over all subintervals is in O(T ·Nmax). The space needed can be reduced by
applying time series compression techniques, e.g., piecewise linear approximation
[10]. More optimization issues are the focus of our ongoing work.

Prediction of the future behaviors of data streams and time series is im-
portant for various applications. With the Online DFT, any time forecasting is
possible using the inverse transformation. Figure 6 shows the original sunspot
data stream, the forecasts based on our Online DFT, and the AWSOM forecast.
As code of AWSOM is not available, we took the best plot for AWSOM for that
experiment from [11]. The part to be forecasted (starting at time point 1000)
shows 7 peaks in the original stream. AWSOM’s forecast contains 5 peaks, while
the forecast of our Online DFT includes 8 peaks. Both forecasts find the average
peak width quite precisely, even though they are based on different approaches.
Using the Online DFT, the average peak height is predicted more accurately.

74

0 500 1000 2000
0

50

100

150

200

Sunspot − Original

Time

S
u
n
s
p
o
t

0 500 1000 2000
0

50

100

150

200

Sunspot − Online DFT

Time

S
u
n
s
p
o
t

(a) (b) (c)

Fig. 6. Experiment for forecasting data streams; (a) original Sunspot stream; (b) fore-
casting based on Online DFT; (c) forecasting based on AWSOM.

Based on such a prediction property, we are also able to detect outliers and
other kinds of deviations by comparing the current element with the prediction
for that element. In general, outlier detection in data streams is a further impor-
tant issue, e.g., it may be used to quickly detect situations in which something
unexpected happens. Furthermore, knowledge about the frequency distribution
in a data stream can be used for cleaning tasks. In particular, several anomalies
are easier to correct in the frequency domain than in the time domain. There are
many possible reasons for dirty sensor data. This includes missing and/or incor-
rect values (often forming noise). Reasons for those errors may be sensors low on
power, network or communication problems, inaccurate sensors, etc. Therefore,
streaming sensor data must be appropriately cleaned with respect to errors.

0 200 400 600 800 1000
−5

0

5

Time

V
al

ue

Original Data Stream

0 200 400 600 800 1000
−5

0

5

Time

V
al

ue

Cleaned Data Stream
Uncleaned Data Stream

0 0.5 1 1.5 2
0

200

400

600

800

σ2

R
M

S

Cleaned Data Stream
Uncleaned Data Stream

(a) (b) (c)

Fig. 7. Experiment for noise reduction; (a) original data stream, (b) data stream after
cleaning, and (c) root means square errors (RMS).

To demonstrate the utilization of our Online DFT for cleaning tasks, we
generated a synthetic data stream consisting of two sinuses. The original data
stream is depicted in Figure 7(a). We simulated noise by adding a Gaussian
distributed random number to each stream element. We investigated this noisy
data stream with our proposed Online DFT approach. Figure 7(b) depicts the
result of the noise reduction starting at time point 610. The noise cleaning task is
processed by neglecting high frequencies and frequencies with small intensities.
Using the inverse Online DFT, we are able to reconstruct a data stream with
reduced noise. As the figures show, the cleaned data stream is close to the original
generated data stream without noise.

To highlight the quality of this cleaning process, we determined the root
mean square values (RMS) as error measures of (i) the cleaned data stream, and

75

(ii) the data stream with noise, and compared it against the pure data stream
without noise. Figure 7(c) shows the RMS depending on different variances. The
higher the variance, the more noise is included in the generated data stream.
With our proposed Online DFT approach, we are able to significantly reduce
noise in data streams.

5 Conclusion

In this paper, we proposed a novel online model for data streams, called On-
line DFT, for estimating the frequencies of a data stream. Characteristics of
our Online DFT are its low update complexity with high-accuracy estimations
for periods and its ability of long-range forecasting. Furthermore, we described
some applications of our approach. Aside from forecasting of data streams, On-
line DFT can be applied to detect outliers by comparing the current arriving
element with the prediction. We demonstrated how to use our Online DFT
for data stream cleaning tasks. Open issues for future research are specialized
implementations for sensor applications as well as cost- and quality-based opti-
mizations of the used algorithms, especially an incremental version of our Online
DFT. Additionally, we plan to do performance comparisons to related methods
based on more real-world data sets.

References

1. F. Ergün, S. Muthukrishnan, and S. C. Sahinalp. Sublinear methods for detecting
periodic trends in data streams. In LATIN, 2004.

2. Box et al. Time Series Analysis: Forecasting and control. Prentice Hall, 1994.
3. Elfeky et al. Periodicity detection in time series databases. IEEE Trans. Knowl.

Data Eng., 17(7), 2005.
4. Gilbert et al. Surfing wavelets on streams: One-pass summaries for approximate

aggregate queries. In VLDB, 2001.
5. Indyk et al. Identifying representative trends in massive time series data sets using

sketches. In VLDB, 2000.
6. Keogh et al. Finding surprising patterns in a time series database in linear time

and space. In Proc. of the ACM SIGKDD, 2002.
7. Oppenheim et al. Discrete-time signal processing. Prentice-Hall, Inc., 1989.
8. Ch. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases. In SIGMOD, 1994.
9. A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal

sparse fourier representations via sampling. In STOC, 2002.
10. D. P. Kacso. Approximation by means of piecewise linear functions. Results in

Mathematics, 35, 1999.
11. S. Papadimitriou, A. Brockwell, and Ch. Faloutsos. Adaptive, unsupervised stream

mining. The VLDB Journal, 13(3), 2004.
12. A. S. Weigend and N. A. Gerschenfeld. Time Series Prediction: Forecasting the

Future and Understanding the Past. Addison-Wesley, 1994.
13. Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data

Streams in Real Time. In VLDB, 2002.

76

Early Drift Detection Method ?

Manuel Baena-Garćıa1, José del Campo-Ávila1, Raúl Fidalgo1, Albert Bifet2,
Ricard Gavaldà2, and Rafael Morales-Bueno1

1 Departamento de Lenguajes y Ciencias de la Computación
E.T.S. Ingenieŕıa Informática. Universidad de Málaga, Spain

{mbaena, jcampo, rfm, morales}@lcc.uma.es
2 Universitat Politècnica de Catalunya, Spain

{abifet, gavalda}@lsi.upc.edu

Abstract. An emerging problem in Data Streams is the detection of
concept drift. This problem is aggravated when the drift is gradual over
time. In this work we define a method for detecting concept drift, even in
the case of slow gradual change. It is based on the estimated distribution
of the distances between classification errors. The proposed method can
be used with any learning algorithm in two ways: using it as a wrapper
of a batch learning algorithm or implementing it inside an incremental
and online algorithm. The experimentation results compare our method
(EDDM) with a similar one (DDM). Latter uses the error-rate instead
of distance-error-rate.

1 Introduction

Many approaches in machine learning assume that training data has been gen-
erated from a stationary source. This assumption is likely to be false if the data
has been collected over a long period of time, as it is often the case: it is likely
that the distribution that generates the examples changes over time. In this case,
change detection becomes a necessity. Real applications examples are user mod-
elling, monitoring in biomedicine and industrial processes, fault detection and
diagnosis, safety of complex systems, etc.

We are interested in drift detection over data streams. Data streams are
unbounded sequence of examples received at so high a rate that each one can
be read at most once [1]. So, we can not store all the examples in memory, only
partially at maximum, and we can not spend so much time processing data, due
to the high rate that it arrives.

In this work we present Early Drift Detection Method, a method to detect
concept drift, that gets good results with slow gradual changes. Abrupt changes
are easier to detect by current methods, but difficulties arise with the slow grad-
ual changes. Our method uses the distance between classification errors (number
of examples between two classification errors) to detect change, instead of using

? This work has been partially supported by the FPI program and the MOISES-TA
project, number TIN2005-08832-C03, of the MEC, Spain.

77

errors classifications (as it is done in previous work [2]). It detects change faster,
without increasing the rate of false positives, and it is able to detect slow gradual
changes.

The paper is organised as follows. The next section presents related work
in detecting concept drifting. In section 3 we present our method, Early Drift
Detection Method. In Section 4 we evaluate the method and Section 5 concludes
the paper and present future work.

2 Related Work

To deal with change over time, most previous work has been classified observing
if they use full, partial or not examples memory.

The partial memory methods used variations of the sliding-window idea: at
every moment, one window (or more) containing the most recently read examples
is kept, and only those are considered relevant for learning. A critical point in any
such strategy is the choice of a window size. The easiest strategy is deciding (or
asking the user for) a window size W and keeping it fixed through the execution
of the algorithm (see e.g. [3–5]). In order to detect change, one can keep a
reference window with data from the past, also of some fixed size, and decide
that change has occurred if some statistical test indicates that the distributions
in the reference and current windows differ.

Another approach, using no examples memory, only aggregates, applies a
“decay function” to examples so that they become less important over time [6].

Other approach to detect concept drift monitors the values of three perfor-
mance indicators [7]: accuracy, recall and precision over time. Then they are
compared with a confidence interval of standard sample errors for a moving av-
erage value (using the last M batches) of each particular indicator. The key idea
is to select the window size so that the estimated generalisation error on new
examples is minimised. This approach uses unlabelled data to reduce the need
for labelled data, it doesn’t require complicated parameterization and it works
effectively and efficiently in practise.

A new method to detect changes in the distribution of the training examples
monitors the online error-rate of the algorithm [2]. In this method learning takes
place in a sequence of trials. When a new training example is available, it is
classified using the current model. The method controls the trace of the online
error of the algorithm. For the actual context they define a warning level, and
a drift level. A new context is declared, if in a sequence of examples, the error
increases reaching the warning level at example kw, and the drift level at example
kd. They take this is as an indication of a change in the distribution of the
examples. It uses 6σ ideas, well known in quality theory.

Our method it is based on the latter, but taking into account distances be-
tween classification errors as it is presented in the next section.

78

3 Drift Detection Methods

We consider that the examples arrive one at a time, but it would be easy to
assume that the examples arrive in bundles. In online learning approach, the
decision model must make a prediction when an example becomes available. Once
the prediction has been made, the system can learn from the example (using the
attributes and the class) and incorporate it to the learning model. Examples can
be represented using pairs (−→x , y) where −→x is the vector of values for different
attributes and y is the class label. Thus, i-th example will be represented by
(−→x i, yi). When the current model makes a prediction (y′i), it can be correct
(yi = y′i) or not (yi 6= y′i).

3.1 DDM: Drift Detection Method [2]

There are approaches that pay attention to the number of errors produced by
the learning model during prediction. The drift detection method (DDM) pro-
posed by Gama et al. [2] uses a binomial distribution. That distribution gives
the general form of the probability for the random variable that represents the
number of errors in a sample of n examples. For each point i in the sequence
that is being sampled, the error rate is the probability of missclassifying (pi),
with standard deviation given by si =

√
pi(1− pi)/i. They assume (as states the

PAC learning model [8]) that the error rate of the learning algorithm (pi) will
decrease while the number of examples increases if the distribution of the exam-
ples is stationary. A significant increase in the error of the algorithm, suggests
that the class distribution is changing and, hence, the actual decision model is
supposed to be inappropriate. Thus, they store the values of pi and si when
pi + si reaches its minimum value during the process (obtaining pmin and smin).
And it checks when the following conditions triggers:

– pi+si ≥ pmin+2 ·smin for the warning level. Beyond this level, the examples
are stored in anticipation of a possible change of context.

– pi + si ≥ pmin + 3 · smin for the drift level. Beyond this level the concept
drift is supposed to be true, the model induced by the learning method is
reset and a new model is learnt using the examples stored since the warning
level triggered. The values for pmin and smin are reset too.

This approach has a good behaviour detecting abrupt changes and gradual
changes when the gradual change is not very slow, but it has difficulties when
the change is slowly gradual. In that case, the examples will be stored for long
time, the drift level can take too much time to trigger and the examples memory
can be exceeded.

3.2 EDDM: Early Drift Detection Method

The method that we propose in this paper, called Early Drift Detection Method
(EDDM), has been developed to improve the detection in presence of gradual

79

concept drift. At the same time, it keeps a good performance with abrupt concept
drift. The basic idea is to consider the distance between two errors classification
instead of considering only the number of errors. While the learning method is
learning, it will improve the predictions and the distance between two errors
will increase. We can calculate the average distance between two errors (p′i) and
its standard deviation (s′i). What we store are the values of p′i and s′i when
p′i +2 ·s′i reaches its maximum value (obtaining p′max and s′max). Thus, the value
of p′max +2 · s′max corresponds with the point where the distribution of distances
between errors is maximum. This point is reached when the model that it is
being induced best approximates the current concepts in the dataset.

Our method defines two thresholds too:

– (p′i + 2 · s′i)/(p′max + 2 · s′max) < α for the warning level. Beyond this level,
the examples are stored in advance of a possible change of context.

– (p′i + 2 · s′i)/(p′max + 2 · s′max) < β for the drift level. Beyond this level
the concept drift is supposed to be true, the model induced by the learning
method is reset and a new model is learnt using the examples stored since
the warning level triggered. The values for p′max and s′max are reset too.

The method considers the thresholds and searches for a concept drift when a
minimum of 30 errors have happened (note that it could appear a large amount
of examples between 30 classification errors). After occurring 30 classification
errors, the method uses the thresholds to detect when a concept drift happens.
We have selected 30 classification errors because we want to estimate the dis-
tribution of the distances between two consecutive errors and compare it with
future distributions in order to find differences. Thus, p′max + 2 · s′max represents
the 95% of the distribution. For the experimental section, the values used for α
and β have been set to 0.95 and 0.90. These values have been determined after
some experimentation.

If the similarity between the actual value of p′i +2 ·s′i and the maximum value
(p′max + 2 · s′max) increase over the warning threshold, the stored examples are
removed and the method returns to normality.

4 Experiments And Results

In this section we describe the evaluation of the proposed method: EDDM.
The evaluation is similar to the one proposed in [2]. We have used three dis-
tinct learning algorithms with the drift detection methods: a decision tree and
two nearest-neighbourhood learning algorithms. These learning algorithms use
different representations to generalise examples. The decision tree uses DNF
to represent generalisation of the examples. The nearest-neighbourhood learn-
ing algorithms uses examples to describe the induced knowledge. We use the
weka implementation [9] of these learning algorithms: J48[10] (C4.5, decision
tree), IB1[11] (nearest-neighbourhood, it is not able to deal with noise) and
NNge[12] (nearest-neighbourhood with generalisation). We have used four artifi-
cial datasets previously used in concept drift detection [13], a new data set with

80

very slow gradual change and a real-world problem [14]. As we want to know
how our algorithms work in different conditions, we have chosen those artificial
datasets that have several different characteristics - abrupt and gradual drift,
presence and absence of noise, presence of irrelevant and symbolic attributes,
numerical and mixed data descriptions.

4.1 Artificial Datasets

The five artificial datasets used later (Subsections 4.2 and 4.3) are briefly de-
scribed. All the problems have two classes and each class is represented by 50%
of the examples in each context. To ensure a stable learning environment within
each context, the positive and negative examples in the training set are alter-
nated. The number of examples in each concept is 1000, except in Sine1g that
have 2000 examples in each concept and 1000 examples to transit from one
concept to another.

– SINE1. Abrupt concept drift, noise-free examples. The dataset has two rele-
vant attributes. Each attribute has values uniformly distributed in [0, 1]. In
the first concept, points that lie below the curve y = sin(x) are classified as
positive, otherwise they are labelled as negative. After the concept change
the classification is reversed.

– CIRCLES. Gradual concept drift, noise-free examples. The examples are la-
belled according to a circular function: if an example is inside the circle, then
its label is positive, otherwise is negative. The gradual change is achieved by
displacing the centre of the circle and growing its size. This dataset has four
contexts defined by four circles:

Center (0.2,0.5) (0.4,0.5) (0.6,0.5) (0.8,0.5)
Radius 0.15 0.2 0.25 0.3

– GAUSS. Abrupt concept drift, noisy examples. The examples are labelled ac-
cording to two different but overlapped gaussian density functions (N([0, 0], 1)
and N([2, 0], 4)). The overlapping can be considered as noise. After each con-
text change, the classification is reversed.

– MIXED. Abrupt concept drift, boolean noise-free examples. Two boolean
attributes (v, w) and two numeric attributes (x, y). The examples are clas-
sified positive if at least two of the three following conditions are satisfied:
v, w, y < 0.5 + 0.3 sin(3πx). After each concept change the classification is
reversed.

– SINE1G. Very slow gradual drift, noise-free examples. This dataset remains
the same as Sine1, but the concept drift is made by gradually choosing
of examples from the old and the new concept. So, there is a transition
time between concepts. The probability of selecting an example from the old
concept becomes lower gradually and the probability of selecting an example
from the new concept becomes higher when the transition time is ended.

81

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000

IB
1

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000

IB
1

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

EDDM

DDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000

J
4
8

P
re

q
u
en

ti
a
l
E

rr
o
r

CIRCLES

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000

J
4
8

P
re

q
u
en

ti
a
l
E

rr
o
r

CIRCLES

EDDM

DDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

Nr. Examples

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

Nr. Examples

EDDM

DDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

SINE1

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

SINE1

EDDM

DDM

Fig. 1. Prequential error of J48 (up) and IB1 (down) on Circles (left) and Sine1 (right)
datasets

4.2 Results On Artificial Domains: Abrupt And Gradual Drifts

The purpose of these experiments is to analyse how the proposed drift detection
method works with different learning algorithms, and compare it to the one
proposed by Gama et al. [2] (we refer to it as DDM, Drift Detection Method) in
terms of prequential [15] error (prequential error is the mean of the classification
errors obtained with the examples to be learnt). It is not the aim of this article
to compare the results of the different learning algorithms used. Figure 1 shows
the prequential error results when Circles and Sine1 datasets are faced with two
learning algorithms with the proposed drift detection method (EDDM) and with
DDM. Note that changes occur every 1000 examples.

We can observe that prequential error curves obtained by EDDM and DDM
on Sine1 dataset (an abrupt changing dataset) are almost the same. When they
deal with a gradual dataset (Circles) the results of both methods are very similar,
independently of the learning method used.

Table 1 presents the prequential error results and the total number of changes
detected by the learning algorithms with both drift detection methods at the
end of each dataset. On datasets with abrupt concept change, both algorithms
react quickly and reach low error rates. When noise is present, EDDM is more
sensitive than DDM, detecting changes and improving the performance when the
base algorithm does not support noise (i.e. IB1). This is so because after some
time (some number of examples) the base algorithms overfit and the frequency
of classification errors increases.

82

Table 1. Prequential error and total number of changes detected by methods

EDDM DDM
Prequential Drifts Prequential Drifts

IB1 0.0340 3 0.0343 3
Circle J48 0.0421 3 0.0449 3

NNge 0.0504 4 0.0431 4

IB1 0.1927 32 0.1888 9
Gauss J48 0.1736 22 0.1530 9

NNge 0.1763 31 0.1685 12

IB1 0.0322 9 0.0330 10
Mixed J48 0.0425 9 0.0449 11

NNge 0.0639 10 0.0562 9

IB1 0.0376 9 0.0377 9
Sine1 J48 0.0847 11 0.0637 10

NNge 0.0819 14 0.0767 11

Table 2. Prequential error and total number of changes detected by methods in Sine1g
dataset

EDDM DDM
Prequential Drifts Prequential Drifts

IB1 0.1462 50 0.2107 12
Sine1g J48 0.1350 34 0.1516 12

NNge 0.2104 28 0.2327 12

4.3 Results On Artificial Domains: Slow Gradual Drift

There are many real-world problems that have slow gradual drift. In this section
we use the Sine1g dataset to illustrate how EDDM works with this kind of
change. Figure 2 shows the prequential error curves obtained when EDDM and
DDM deal with this dataset. The plots on the left are prequential error calculated
with the whole dataset, and the plots on the right are prequential error calculated
from scratch after every concept change detected by both methods.

Although the global curves are similar, the local prequential curves show that
EDDM reacts before and more times than DDM when a slow concept drift is
present. During the transition from the previous concept to the next, EDDM
detects repeatedly concept drifts. This is so because the frequency of classifi-
cation errors continuously increase until the next concept is stable. Meanwhile,
DDM shows less sensitivity to this kind of problems, reacting later and less
than EDDM. Table 2 presents the final prequential errors and number of drifts
obtained by these two methods on Sine1g dataset.

83

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

IB
1

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

EDDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

IB
1

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

EDDM

DDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

J
4
8

P
re

q
u
en

ti
a
l
E

rr
o
r

Global

EDDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

J
4
8

P
re

q
u
en

ti
a
l
E

rr
o
r

Global

EDDM

DDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

Nr. Examples

EDDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

Nr. Examples

EDDM

DDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

Local

EDDM

0

0.2

0.4

0.6

0.8

1

0 9000 18000 27000

Local

EDDM

DDM

Fig. 2. Prequential global error (left) and local error (right) for EDDM and DDM in
Sine1g dataset

4.4 The Electricity Market Dataset

The data used in this experiment was first described by M. Harries [14]. The data
was collected from the Australian New South Wales Electricity Market. In this
market, the prices are not fixed and they are affected by demand and supply of
the market. A factor for the price evolution is the time evolution of the electricity
market. During the time period described in the data the electricity market was
expanded with the inclusion of adjacent areas. This produced a more elaborated
management of the supply. The production surplus of one region could be sold
in the adjacent region. A consequence of this expansion was a dampener of the
extreme prices. The ELEC2 dataset contains 45312 instances dated from May
1996 to December 1998. Each example of the dataset refers to a period of 30
minutes. Each example on the dataset has 5 fields, the day of week, the time
stamp, the NSW electricity demand, the Vic electricity demand, the scheduled
electricity transfer between states and the class label.

The class label identifies the change of the price related to a moving average
of the last 24 hours. The class level only reflect deviations of the price on a one
day average and removes the impact of longer term price trends. The interest of
this dataset is that it is a real-world dataset. We do not know when drift occurs
or if there is drift. We have considered this problem as a short term prediction:
predict the changes in the prices relative to the next 30 minutes.

In Figure 3 we present the traces of the prequential error rate of EDDM and
DDM, with the base learning algorithms, through the full ELEC2 dataset. As

84

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

J48

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000

P
re

q
u
en

ti
a
l
E

rr
o
r

Nr. Examples

J48

EDDM

DDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000

Nr. Examples

IB1

EDDM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000

Nr. Examples

IB1

EDDM

DDM

Fig. 3. Prequential error for EDDM and DDM in ELEC2 dataset

Table 3. Prequential error and total number of changes detected by methods in ELEC2
dataset

EDDM DDM
Prequential Drifts Prequential Drifts

IB1 0.1426 171 0.2764 44
Elect2 J48 0.1564 187 0.2123 10

NNge 0.1594 193 0.2110 130

can be seen, EDDM outperforms DDM, detecting concept changes earlier and
with a better sensitivity. Table 3 shows the final prequential errors and number
of drifts obtained by these two methods on the electricity market dataset.

5 Conclusion

This paper introduces a new method for detecting concept drifts based on the
distances between classification errors. This method achieves an early detection
in presence of gradual changes, even when that change is very slow. The results
that are presented have been obtained after using the method as a wrapper for
different learning algorithms, but it would be easy to implement it in a local
way inside those algorithms. The experimental evaluation of EDDM illustrates
the advantages of using this detection method. As well as obtaining good results
detecting concept drifts, this method shows itself as a way to deal with noisy
datasets even when the base algorithm is not designed with that aim. When the
base algorithm begins to overfit, the frequency of classification errors begins to
increase and that is detected by the proposed method.

85

Out aim of improving EDDM involves some issues where the most important
is finding a way to determine the values for the parameters of the method (α
and β) in an automatic way.

References

1. Muthukrishnan, S.: Data streams: algorithms and applications. In: Proc. of the
4th annual ACM-SIAM symposium on discrete algorithms. (2003)

2. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
Lecture Notes in Computer Science 3171 (2004)

3. Dong, G., Han, J., Lakshmanan, L.V.S., Pei, J., Wang, H., Yu, P.S.: Online mining
of changes from data streams: research problems and preliminary results. In: Proc.
of the 2003 ACM SIGMOD Workshop on Management and Processing of Data
Streams. (2003)

4. Fan, W.: Streamminer: A classifier ensemble-based engine to mine concept-drifting
data streams. In: Proc. of the 30th VLDB Conference. (2004)

5. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams us-
ing ensemble classifiers. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, ACM Press (2003) 226– 235

6. Cohen, E., Strauss, M.: Maintaining time-decaying stream aggregates. In: Proc. of
the 21nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. (2003)

7. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector ma-
chines. In: Proc. of the 17th Int. Conf. on Machine Learning. (2000) 487 – 494

8. Mitchell, T.: Machine Learning. McGraw Hill (1997)
9. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques. 2 edn. Morgan Kaufmann, San Francisco (2005)
10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
11. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6

(1991) 37–66
12. Martin, B.: Instance-based learning : Nearest neighbor with generalization. Mas-

ter’s thesis, University of Waikato, Hamilton, New Zealand (1995)
13. Kubat, M., Widmer, G.: Adapting to drift in continuous domain. In: Proc. of the

8th European Conference on Machine Learning, Springer Verlag (1995) 307–310
14. Harries, M.: Splice-2 comparative evaluation: Electricity pricing. Technical report,

The University of South Wales (1999)
15. Dawid, A., Vovk, V.: Prequential probability: Principles and properties (1999)

86

Mining Frequent Items in a Stream Using
Flexible Windows

(Extended Abstract)

Toon Calders, Nele Dexters and Bart Goethals

University of Antwerp, Belgium
firstname.lastname@ua.ac.be

Abstract. In this paper, we study the problem of finding frequent items
in a continuous stream of items. A new frequency measure is introduced,
based on a flexible window length. For a given item, its current frequency
in the stream is defined as the maximal frequency over all windows from
any point in the past until the current state. We study the properties of
the new measure, and propose an incremental algorithm that allows to
produce the current frequency of an item immediately at any time. It
is shown experimentally that the memory requirements of the algorithm
are extremely small for many different realistic data distributions.

1 Introduction

Mining frequent items over a stream of items presents interesting new challenges
over traditional mining in static databases. It is assumed that the stream can
only be scanned once, and hence if an item is passed, it can not be revisited,
unless it is stored in main memory. Storing large parts of the stream, however,
is not possible because the amount of data passing by is typically huge.

Most previous work on mining frequently occurring items from a stream
either focusses on (1) the whole stream, (2) on only the most recent items in
a window of fixed length [1, 4, 6], or (3) where a time-decaying factor fades out
the history of the stream [5]. In many applications, however, it is not possible
to fix a window length or a decay factor that is most appropriate for every item
at every timepoint in an evolving stream. For example, consider a large retail
chain of which sales can be considered as a stream. Then, in order to do market
basket analysis, it is very difficult to choose in which period of the collected
data you are particularly interested. For many products, the amount of them
sold depends highly on the period of the year. In summer time, e.g., sales of
ice cream increase. During the world cup, sales of beer increase. Such seasonal
behavior of a specific item can only be discovered when choosing the correct
window size for that item, but this size can then also hide a similar behavior
of other items. Therefore, we propose to consider for each item the window
in which it has the highest frequency. More specifically, we define the current
frequency of an item as the maximum over all windows from the past until the
current state. The disadvantage of having a frequency of 100%, when the stream

87

ends with the particular item, can be resolved by setting a minimum window
length all windows have to obey. Hence, when the stream evolves, the length
of the window containing the highest frequency for a given item can grow and
shrink continuously. We show some important properties on how the length of
the maximal window can evolve.

In our approach, on every timestamp, a new item arrives in the stream. We
present an incremental algorithm that maintains a small summary of relevant
information of the history of the stream that allows to produce the current fre-
quency of an item immediately at any time. That is, when a new item arrives, the
summary is updated, and when at a certain point in time, the current frequency
is required, the result can be obtained instantly from the summary. The struc-
ture of the summary is based on some critical observations about the windows
with the maximal frequency. In short, many points in the stream can never be-
come the starting point of a maximal window, no matter what the continuation
of the stream will be. The summary will thus consist of some statistics about
the few points in the stream that are still candidate starting points of a maximal
window. These important points in the stream will be called the borders.

Critical for the usefulness of the technique are the memory requirements of
the summary that needs to be maintained in memory. We show experimentally
that, even though in worst case the summary depends on the length of the
stream, for realistic data distributionsits size is extremely small. Obviously, this
property is highly desirable as it allows for an efficient and effective computation
of our new measure. Also note that our approach allows exact information as
compared to many approximations considered in other works.

The organization of the paper is as follows. In Section 2, the new measure is
defined and the problem is formally introduced. Section 3 gives the theoretical
results for the basic theorem, on which the incremental algorithm in Section 4 is
based. Section 5 contains experiments that show that the memory requirements
for the algorithm are extremely small for many real-life data distributions.

2 New Frequency Measure in Stream Mining

In this section, we define our new frequency measure for streams and we formally
introduce the problem. Throughout the paper, we assume that the items in the
stream come from a finite set of items I, unless explicitly mentioned otherwise.

2.1 Streams and Max-Frequency

A stream S is a sequence 〈i1, i2, . . . , in〉 of items, where n is the length of the
stream, denoted |S|. The number of occurrences of an item i in the stream S will
be denoted count(i, S). The frequency of i in S, is defined as

freq(i, S) :=
count(i, S)

|S|
.

88

The concatenation of m streams S1, . . . , Sm is denoted S1 · S2 · . . . · Sm. Every
stream is glued at the end of the previous stream. Let S = 〈i1, i2, . . . , in〉. Then,
S[s, t] denotes the sub-stream or window 〈is, is+1, . . . , it〉. The sub-stream of S

consisting of the last k items of S, denoted last(k, S), is

last(k, S) = S
[
|S| − k + 1, |S|

]
.

We are now ready to define our new frequency measure:

Definition 1. The max-frequency mfreq(i, S) of an item i in a stream S is

defined as the maximum of the frequency of i over all windows extending from

the end of the stream; that is:

mfreq(i, S) := max
k=1...|S|

(freq(i, last(k, S))) .

This mfreq(i, S) is used as a new frequency measure for stream mining. For a

given item, its current frequency in the stream is defined as the maximal fre-

quency over all evolving windows from the end to the beginning of the stream.

The longest window in which the max-support is reached, is called the max-
imal window for i in S, and its starting point is denoted maxwin(i, S). That is,

maxwin(i, S) is the smallest index such that

mfreq(i, S) = freq(i, S
[
maxwin(i, S), |S|

]
) . 2

Note that, by definition, the max-frequency of an item a in a stream that ends
with an a, is always 100%, independently of the overall frequency of a. Hence,
even in a stream where a is extremely rare, at some points, the max-frequency
will be maximal! This disadvantage of max-frequency, however, can easily be
resolved by either considering streams of blocks of items instead of single items,
or by setting a minimal length all windows must obey. We did not include these
solutions in the paper, as they are not fundamental for the theory developed.

Example 1. We focus on target item a.

mfreq(a, abaaab) = max
k=1...6

(freq(a, last(k, abaaab)))

= max

(
0

1
,
1

2
,
2

3
,
3

4
,
3

5
,
4

6

)

=
3

4
.

mfreq(a, bcdabcda) = max

(
1

1
, · · ·

)

= 1 .

mfreq(a, xaaxaax) = max

(
0

1
,
1

2
,
2

3
,
2

4
,
3

5
,
4

6
,
4

7

)

=
2

3
.

Notice that our definition of frequency is quite different from the usual ap-
proaches, where the frequency of an item i in a stream S is either defined as
freq(i, last(wl , S)) for a fixed window length wl , or with a time-decaying factor;

e.g., freq(i, S) =
∑|S|/wl

j=1
djfreq(i, S[(j − 1)wl + 1, jwl]), with d < 1.

89

2.2 Problem Statement

Notice that we defined a stream as a statical object. In reality, however, a stream
is an evolving object. At every timepoint, a new item might be inserted at the
end of the stream. As such, evolving streams are essentially unbounded, and
when processing them, it is to be assumed that only a small partcan be kept in
memory.

In our examples, new entrieswill be added on the right side of the stream.
This means that the older items are on the left side of the stream. For simplicity
we assume that the first item arrived at timestamp 1, and since then, at every
timestamp a new item was inserted. St denotes the stream up to timestamp t.

The problem we study in the paper is the following: For an evolving stream S

and a fixed item a, maintain a small summary of the stream in time, such that,

at any timepoint t, mfreq(a, St) can be produced instantly from the summary.

More formally, we will introduce a summary of a stream summary(S), an
update procedure Update, and a procedure Get mfreq , such that, if we assume
that on timestamp t + 1 item i is added to the stream, Update(summary(St), i)
equals summary(St · 〈i〉) equals summary(St+1), and Get mfreq(summary(St′))
equals mfreq(a, St′). Because Update has to be executed every time a new item
arrives, it has to be extremely efficient, in order to be finished before the next
item arrives. Similarly, because the stream continuously grows, the summary
must be independent of the number of items seen so far, or, at least grow very
slowly as the stream evolves. The method we develop will indeed meet these
criteria, as the experiments will show.

stream time stamp mfreq(a, St)

|a 1 max(1

1
) = 1

|aa 2 max(1

1
, 2

2
) = 2

2
= 1

|aaa 3 max(1

1
, 2

2
, 3

3
) = 3

3
= 1

|aaab 4 max(0

1
, 1

2
, 2

3
, 3

4
) = 3

4

|aaabb 5 max(0

1
, 0

2
, 1

3
, 2

4
, 3

5
) = 3

5

|aaabbb 6 max(0

1
, 0

2
, 0

3
, 1

4
, 2

5
, 3

6
) = 3

6

aaabbb|a 7 max(1

1
, 1

2
, 1

3
, 1

4
, 2

5
, 3

6
, 4

7
) = 1

aaabbb|aa 8 max(1

1
, 2

2
, 2

3
, 2

4
, 2

5
, 3

6
, 4

7
, 5

8
) = 2

2

· · · · · · · · ·

Fig. 1. Max-frequency of a stream at every timepoint.

In Fig. 1, the max-frequency has been given for an example evolving stream.
The starting point maxwin(a, S) of each maximal window is marked with |.

3 Properties of Max-Frequency

In this section we show some properties of max-frequency that are crucial for
the incremental algorithm that maintains the summary of the stream. Obviously,

90

checking all possible windows to find the maximal one is infeasible algorithmi-
cally, given the constraints of stream problems. Fortunately, not every point in
the stream needs to be checked. The theoretical results from this section show
exactly which points need to be inspected. These points will be called the borders

in the stream. The summary of the stream will consist exactly of the recording
of these borders, and the frequency of the target item up to the most recent
timepoint.

Theorem 1. Consider a stream S1 ·B1 ·B2 ·S2. If B2 ·S2 is the maximal window

for a in S, then freq(a, B1) < freq(a, B2)

Proof. If B2 · S2 is the maximal window for a in S, then this implies that the
frequency of a in B2 ·S2 is strictly higher than in B1 ·B2 ·S2 and at least as high as
in S2 (remember that in the case of multiple windows with maximal frequency,
the largest one is selected). Let now l1 = |B1|, l2 = |B2|, and l3 = |S2|, and let
a1 = count(a, B1), a2 = count(a, B2), and a3 = count(a, S2), as depicted in:

S1

︷ ︸︸ ︷
B1

︷ ︸︸ ︷

a1

B2

︷ ︸︸ ︷

a2

S2

︷ ︸︸ ︷

a3

←→ ←→ ←→
l1 l2 l3

.

Then, the conditions on the frequency translate into:

a2 + a3

l2 + l3
>

a1 + a2 + a3

l1 + l2 + l3
and

a2 + a3

l2 + l3
≥

a3

l3
.

From these conditions, it can be derived that

freq(a, B1) =
a1

l1
<

a2

l2
= freq(a, B2). 2

Based on this theorem, it is possible to give an exact characterization of
which points in St can potentially become the starting point of the maximal
window at a future point in time, after new items have been added. The next
corollary gives this characterization.

We now formally define the important notion of a border. Intuitively, a border
is a point in the stream that can still become the starting point of the maximal
window.

Definition 2. The position q in S is called a border for a in S if there exists

another stream B such that q = maxwin(a, S · B).

Corollary 1. Let S be a stream, and let q = 1. Position q is a border for item

a if and only if the first item in the stream equals the target item a.
Let S be a stream, and let 2 ≤ q ≤ |S|. Position q is a border for item a in

S if and only if for all indices j, k with 1 ≤ j < q and q ≤ k ≤ |S|, it holds that

freq(a, S[j, q − 1]) < freq(a, S[q, k]).

91

Proof. Only if: Suppose that there exist indices j and k, and a stream B such
that freq(a, S[j, q−1]) ≥ freq(a, S[q, k]), and q = maxwin(a, S ·B). This situation
is in contradiction with Theorem 1: split the stream S ·B as (S[1, j−1]) · (S[j, q−
1]) ·(S[q, k]) ·(S[k+1, |S|] ·B). In this stream, (S[q, |S|]) ·B is the maximal window,
while freq(a, S[j, q − 1]) ≥ freq(a, S[q, k]).

If: It can be shown that the item at timepoint q must be the target item a.
If enough non-target items are added to the stream S, eventually q will become
the starting point of the maximal window. The full proof of this part, however,
is omitted due to space restrictions. 2

Example 2. Assume we have the following stream S27:

4/9 4/10 2/3 1/2

aaabbbabb ababababbb b aab ab ba

In the stream, two positions have been marked with |. Both these points do not
meet the criteria given in Corollary 1 to be a border. Indeed, for both positions, a
block before and after it is indicated such that the frequency in the before-block
is higher than in the after-block. In this stream, the only positions that meet
the requirement are indicated in aaabbbabbababababbbb|aababb|a. 2

The following simple facts play an important role in the algorithm that will
be developed in the next section.

Corollary 2. Every border always ends on a target item. If p is not a border in

S, then neither it can ever be a border in any extension S · B.

4 Algorithm

Based on the theorems of Section 3, we now present an incremental algorithm
to maintain a summary.

The summary. The summary for an item a in the stream St is the array of
that contains a pair (p, x/y) for every border on position p, with x the number of
occurrences of a since p, i.e., count(a, St[p, t]), and y the length of the block from
p until the end of the stream St, i.e., t−p+1. The output of the algorithm in the
case of r borders is written as an array of the form [(p1, x1/y1), · · · , (pr, xr/yr)],
visualized by

Tt =
p1 · · · pr

x1/y1 · · · xr/yr
.

This array is in fact summary(St), and is abbreviated by Tt. In this array, the
border positions are ordered from old to most recent, reflecting in p1 < · · · < pr.
The corresponding frequencies must follow the same ordering x1/y1 < · · · <
xr/yr; indeed, consider two consecutive borders pi and pi+1. Suppose for the
sake of contradiction, that xi/yi ≥ xi+1/yi+1. From this, it follows that

freq(a, S[pi, pi+1 − 1]) =
xi − xi+1

yi − yi+1

≥
xi

yi
= freq(a, S[pi+1, |S|]) .

92

According to Theorem 1 this implies that pi+1 cannot be a border because the
frequency of a in a before-block is at least the frequency of a in an after-block for
pi+1. Notice that this implies that the current frequency can always be obtained

immediately from the summary; the most recent entry in the summary is always

the largest and thus holds the current max-support.

In every next step, the algorithm adjusts the stored values in the array based
on the newly entered item in the stream. Hence, at every step, we need to test
for every border of St if it is still a border in St+1. Hence, we need to check
if still the frequency in all before blocks is smaller than the frequency in all
after blocks. However, adding a new item to the stream does not introduce a new

before-block, and only one after-block! Hence, only one test has to be performed
for every border of St: the before-block with the highest frequency of a has to
be compared to the new after-block. The frequency of the new after-block for
border pi can easily be obtained from the pair (pi, xi/yi) in the summary of St:
if the new item is a non-target item, the frequency of a in the new after-block is
xi/(yi+1). Notice that, as the before block never changes when a new item enters

the stream, and the insertion of the target item a only results in an increased

frequency in the new after block, the addition of a target-item will never result

in the removal of borders.

Based on the observation that in any summary the borders must be in order
w.r.t. the frequency of a, it is not too hard to see that the before-block with the
maximal frequency is exactly the block St[pi−1, pi − 1]. Via a similar reasoning
as above, it follows that pi is still a border for St+1 if and only if the updated
frequency xi/(yi + 1) is still larger than the updated frequency xi−1/(yi + 1) of
pi−1. To summarize, we have the following properties:

– The frequencies in the summary are always increasing.

– When the target item is added to the stream, all borders remain borders.
The frequencies of the borders can be updated by incrementing all nomina-
tors and denominators by 1. A new entry with the current timestamp and
frequency 1/1 can be added, unless the last entry has also 100% frequency.

– If a non-target item enters the stream, the frequencies of the borders can
be updated by adding 1 to the denominators of the frequencies. All former
borders for which after the update, the frequency no longer is larger than in
the previous entry, are no borders anymore.

Algorithm 1 is based on these observations.

The Algorithm. Before the first target item enters the stream, the array
will remain empty. The pseudo-code of the algorithm to create Tt+1, based on
Tt and the item t that enters the stream at time t + 1 is given in Algorithm 1.
In short, when a new item i enters the stream, the frequencies are updated by
increasing the nominators if i equals the target item, and always increasing the
denominators. If the item i is the target item, a new border will be added only
if the frequency of the last block in Tt was not equal to 1. Furthermore, we have
to take into account that some of the borders of St might no longer be borders
in St+1. This can only happen if the item that enters the stream is a non-target

93

Algorithm 1 Update(Tt, i) for target item a on time t + 1

Require: Tt = summary(St) = [(p1, x1/y1), · · · , (pr, xr/yr)]
Ensure: Tt+1 = summary(St+1) = summary(St · 〈i〉)

1: Set Tt+1 := []
2: if (Tt is empty) then

3: if (i = target item a) then

4: Tt+1 := [(t + 1, 1/1)]
5: else

6: if (i = target item a) then

7: for 1 ≤ j ≤ r do

8: Tt+1 := Tt+1 +
�
pj , (xj + 1)/(yj + 1)

�
9: if xr 6= yr then

10: Tt+1 := Tt+1 +
�
t + 1, 1/1

�
11: else

12: high := 0
13: for all j := 1 . . . r do

14: if (xj)/(yj + 1) > high then

15: Tt+1 := Tt+1 +
�
pj , (xj)/(yj + 1)

�
16: high := (xj)/(yj + 1)

item, and is tested in lines 12-16: the frequencies have to increase for increasing
positions of the borders.

1 2 3 4 5 6 7 8

b
−→

a
−→

2

1/1
a

−→
2

2/2
a

−→
2

3/3
b

−→
2

3/4
a

−→
2 6

4/5 1/1
a

−→
2 6

5/6 2/2
b

−→
2

5/7

9 10 11 12 13 14

a
−→

2 9

6/8 1/1
b

−→
2

6/9
b

−→
2

6/10
a

−→
2 12

7/11 1/1
a

−→
2 12

8/12 2/2
a

−→
2 12

9/13 3/3

15 16 17

a
−→

2 12

10/14 4/4
b

−→
2 12

10/15 4/5
a

−→
2 12 17

11/16 5/6 1/1

Fig. 2. Example for stream baaabaababbaaaaba.

We explain the working of the algorithm for the stream baaabaababbaaaaba.
For each timestamp, the output of the algorithm is given in Figure 2.

In this example, some interesting things happen. First of all, the stream starts
with a junk item b. Therefore, Update(T0, b) = Update([], b) on timestamp 1
remains empty, i.e., T1 = []. The algorithm in fact really starts at timestamp
2. At this moment, Update([], a) results in T2 = [(2, 1/1)], corresponding to the
stream b|a with a border at position 2. On timestamp 8, another interesting fact

94

 0

 100

 200

 300

 400

 500

 600

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(a) linear distribution

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(b) twin peaks distribution

 10

 11

 12

 13

 14

 15

 16

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(c) random distribution

 0

 20

 40

 60

 80

 100

 120

 140

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(d) sinus distribution

Fig. 3. Size of the summaries for two items a and b

happens. T7 = [(2, 5/6), (6, (2/2))], corresponding with the stream b|aaab|aa.
Update(T7, b) will yield T8 = [(2, 5/7)], and not [(2, 5/7), (6, 2/3)], because the
frequency decreases from the border at position 2 to the border at position 6,
and hence, we can conclude that position 6 is no longer a border.

5 Experiments

From the description of the algorithm it is clear that the update procedure is
very efficient, given the summaries remain small. Producing the current support
of the target item is obviously very efficient, as it amounts to simply a lookup in
the most recent entry. Hence, the complete approach will be feasible if and only
if the summaries remain small. Therefore, for different streams, we have recorded
the size of the summary. The results are reported in Figure 3. The streams we
consider are over the items a and b, and have length 107. After every 10 000
items, the size of the summary for the items a and b are reported. The streams
are randomly generated. The probability of having item a in the stream is given
by the line P (a). Thus, in the random graph, the probability of having a is 1/2
in the whole stream, independent of the moment. The probability of b is 1 minus

95

the probability of a. The graphs report the average over 100 streams, generated
with the indicated distributions. In general, we can conclude that the size of the
summary is extremely small w.r.t. the size of the stream. If the probability of
the target item increases, also the size of the summary will increase, when the
probability decreases, the summary will shrink. This is easily explained by the
entries in the summary that need to have increasing frequency.

6 Conclusion and Future Work

We presented a new frequency measure for items in streams that does not rely
on a fixed window length or a time-decaying factor. Based on the properties of
the measure, an algorithm to compute it was shown. An experimental evaluation
supported the claim that the new measure can be computed from a summary
with extremely small memory requirements, that can be maintained and updated
efficiently.

In the future, we will look at the same topic, but try to mine for frequent
itemsets instead of items, based on this new frequency measure.

References

1. Ruoming J. and Agrawal G.: An Algorithm for In-Core Frequent Itemset Mining
on Streaming Data. in Proc. 5th IEEE Int. Conf. on Data Mining (ICDM’05), pp
210–217.

2. Agrawal R., Imielinski T. and Swami A.: Mining Association Rules between Sets of
Items in Large Databases. in Proc. ACM SIGMOD Int. Conf. on Management of
Data (1993), pp 207–216.

3. Cormode G. and Muthukrishnan S.: What’s Hot and What’s Not: Tracking Most
Frequent Items Dynamically. in Proc. PODS (2003).

4. Demaine E.D., Lopez-Ortiz A. and Munro, J.I.: Frequency Estimation of Internet
Packet Streams with Limited Space. in Proc. of the 10th Annual European Sympo-
sium on Algorithms (2002), pp 348–360.

5. Giannella C., Han J., Robertson E. and Liu C.: Mining Frequent Itemsets Over
Arbitrary Time Intervals in Data Streams. Technical Report TR587 at Indiana
University, Bloomington, (Nov 2003), 37 pages.

6. Karp, R. M., Papadimitriou, C. H. and Shenker, S.: A Simple Algorithm for Finding
Frequent Elements in Streams and Bags. in ACM Trans. on Database Systems
(2003), 28, pp 51–55.

7. Lee, L.K. and Ting, H.F.: A Simpler and More Efficient Deterministic Scheme for
Finding Frequent Items over Sliding Windows. in ACM PODS (2006).

8. Misra J. and Gries, D.: Finding Repeated Elements. in Science of Computer Pro-
gramming (1982), 2(2), pp 143–152.

9. Chi-Wing Wong R. and Wai-Chee Fu A.: Mining Top-K Frequent itemsets from
Data Streams. in Data Mining and Knowledge Discovery. to appear 2006

96

Hard Real-time Analysis of Two Java-based
Kernels for Stream Mining

Rasmus Pedersen

Dept. of Informatics, Copenhagen Business School, Copenhagen, Denmark
rup.inf@cbs.dk

Abstract. Embedded real-time data stream mining is an important
branch of data mining. We propose and provide some fundamental pre-
requisites for using statistical pattern recognition in stream-based learn-
ing/decision systems in this paper: namely some real-time kernel func-
tions and a real-time analysis of the support vector machine’s decision
function. In this paper we analyze two kernels and a support vector
machine on a real-time Java processor to provide upper bounds (worst
cases) for execution time analysis.

1 Introduction

Embedded machine learning is important: One reason is the mere size of
the embedded chip market, which may account for 98% of all processors
sold [1]. In this paper we combine a worst case execution time analysis
(a key field in real-time embedded systems research) with a method for
building sparse kernel learning algorithms (a recent method for direct
sparcity control of a kernel learning algorithm) by Wu et al.[2].
The support vector machine (SVM) is formulated within Vladimir Vap-
nik’s framework of statistical learning theory [3]. Later, the SVM is ex-
tended by Cortes and Vapnik to cover binary classification problems
with misclassifications [4]. One particularly significant discovery in terms
of enabling the use of SVMs in embedded systems [5] is due to John
Platt [6]: using the sequential minimal optimization (SMO) method, we
are able to train SVMs using an insignificant memory footprint, which
can be mandatory on embedded systems. Later, the SVM is extended
beyond classification to other classic machine learning frameworks such
as non-linear regression, novelty detection, and clustering [7] [8] [9].
Java-based data mining and machine learning packages exist: such as
WEKA [10], YALE [11] [12], or the Java version of LIBSVM [13]. Fur-
thermore, recent developments in real-time Java for embedded systems
makes WCET analysis possible [14]. Some relevant applications of dis-
tributed data mining is also presented in [15].
An implicit contribution by this paper is that researchers already familiar
with machine learning in Java can migrate and analyze many learning
algorithms by following the same steps using the open source WCET tool
(see package com.jopdesign.wcet)1 based on the Byte Code Engineering
Library [16].

1 see http://www.opencores.net/projects.cgi/web/jop/overview

97

2

The paper is organized as follows. In Section 1.1 we discuss the WCET
properties of the target processor for this paper. In Section 1.2, it is
presented how the advancements of Wu et al. [2] can be combined with
WCET analysis. Then we provide WCET experimentation with a depar-
ture in Java bytecodes and end up with the parameterized SVM formulas
depicting WCET for standard SVMs in Section 2. We also provide some
benchmark analysis in Section 2.3 of selected classification sets. We con-
clude the paper with some pointers to future research directions.

1.1 Java Optimized Processor

The Java Optimized Processor (JOP [14]) is a field programmable gate
array-based (FPGA) implementation of the Java Virtual Machine. One
design goal for JOP is its applicability to worst-case execution time
(WCET) analysis. This design principle is consistent throughout the JOP
processor. In particular, this makes it possible to analyze certain data
mining algorithms with respect to their WCET properties. As the proces-
sor is implemented in an FPGA and all sources are available, it is also
possible to add specialized hardware accelerators to this processor [17].

1.2 SVMs for real-time environments

The binary classification SVM provides a decision function: f(x, α, b) =

{±1} = sgn
�Pl

i=1 αiyik(xi, x) + b
�
. α is the result of solving the fol-

lowing optimization problem:
maximize W (α) =

Pl
i=1 αi − 1

2

Pl
i=1

Pl
j=1 yiyjαiαjk(xi, xj)

subject to 0 ≤ αi ≤ C and
Pl

i=1 yiαi = 0.
The functional output of the decision function works as a classification or
categorization of the unknown datum x into either the + or − class. An
SVM model is constructed by summing a linear combination of training
data (historical data) in feature space. The feature space is implicitly
constructed by the use of kernels, k, resulting in a non-linear classifier in
the input space. The optimization problem is constructed by enforcing
a margin of 1 for the support vectors. Support vectors (SV), are those
data xi, which have active constraints, αi > 0.

The idea of using SVMs in distributed and embedded environments–ie.
constrained environments–have been argued by Pedersen [5]. In addi-
tion, a recent publication by Wu, Schölkopf, and Bakir [2] introduce a
method to directly control the number of expansion vectors NXV . It
simplifies the task of using kernel based learning algorithms in computa-
tionally constrained environments. The reason is that it allows the design
and constraints of other parameters such as battery lifetime, real-time
schedulability, or HW/SW codesign issues to prescribe the requirements
of the sparse kernel learning algorithm. We will see in Table 7 that even
a 90% reduction in support vectors generate modest increases of the
average error by ∼0.1%.

98

3

2 WCET Analysis

In this section we analyze the linear kernel and the SVM decision for-
mulas in detail. Later, in Section 2.3, we include the popular gaussian
kernel in the analysis. The output from this section is a formula for
describing the worst-case-execution-time (WCET) of these two critical
components in a kernel learning system. The work is general to the ex-
tent that others can apply the same steps to analyze similar systems or
similar algorithms.

2.1 Linear Kernel Analysis for Real-time Application

The linear kernel is composed of a dot product between two n-dimensional
vectors. We use a 32-bit fixed-point representation, which mandates a 16-
bit right shift as part of the multiplication of two 32-bit numbers. In this
paper, we do not discuss fixed point scaling. Instead, we settle for an
8-bit right-shift operation on each operand. In Figure 1 the Java kernel
is shown, which implements this scheme2.

private static int kernelDot(int i1, int i2) {

int r;

int n = KFP.n;

int a[] = data[i1];

int b[] = data[i2];

r = 0;

while (n != 0) { //@WCA loop=2

n = n - 1;

r += (a[n] >> 8) * (b[n] >> 8);

}

return r;

}

Fig. 1. Linear dot product kernel Java method

The linear kernel in Figure 1 is compiled to Java bytecodes [18] as is
shown in Table 1, which forms the basis of the WCET analysis. To deal
with the bytecodes, we have divided them into basic blocks [19]. Each
block becomes a node in a directed control flow graph. The basic block
boundaries are created from a static analysis of the compiled Java class
files. A boundary exists on both conditional and unconditional branch
instructions and their targets. First, the basic blocks: In B0 the static
variable KFP.n is assigned to a local variable n, which denotes the
dimension of the training vectors. An examination of the cycle count
reveals the explanation for this: it takes 16 cycles to retrieve the static

2 see http://sourceforge.net/projects/dsvm

99

4

variable KFP.n and since we will branch (ie. use the variable in a loop)
it saves CPU cycles to do this optimization. See ifeq at addr. 21 in
Table 1. Accordingly, we save cycles in those cases where the data sets
are multi-dimensional. The local variable n is loaded onto the stack in 1
cycle as opposed 16 cycles for the static counterpart. A similar approach
is taken regarding the two vectors subject to the dot product. Each one
is loaded into a local array: a[] and b[]. It is a result of Figure 1 that basic
block B2 is the most frequently used block of code for this method. It
decrements the dimension index n and accumulates the dot product into
the int r. It should be noted that a sparse vector dot product can be
implemented as well, which would only perform the multiplication if both
inputs are non-zero.

Table 1. Linear kernel with machine cycle mappings

Block Addr. Bytecode Cycles Misc.

B0 0: getstatic[178] 16 int dsvmfp.model.smo.kernel.KFP.n
3: istore 3[62] 1 ->I:n
4: getstatic[178] 16 int[][] dsvmfp.model.smo.kernel.KFP.data
7: iload 0[26] 1 I:i1
8: aaload[50] 29 Ljava/lang/Object;
9: astore[58] 2 ->[I:a
11: getstatic[178] 16 int[][] dsvmfp.model.smo.kernel.KFP.data
14: iload 1[27] 1 I:i2
15: aaload[50] 29 Ljava/lang/Object;
16: astore[58] 2 ->[I:b
18: iconst 0[3] 1
19: istore 2[61] 1 ->I:r sum(B0):115/115

B1 20: iload 3[29] 1 I:n
21: ifeq[153]->49: 4 sum(B1): 5/5

B2 24: iload 3[29] 1 I:n
25: iconst 1[4] 1
26: isub[100] 1
27: istore 3[62] 1 ->I:n
28: iload 2[28] 1 I:r
29: aload[25] 2 [I:a
31: iload 3[29] 1 I:n
32: iaload[46] 29 I
33: bipush[16] 2
35: ishr[122] 1
36: aload[25] 2 [I:b
38: iload 3[29] 1 I:n
39: iaload[46] 29 I
40: bipush[16] 2
42: ishr[122] 1
43: imul[104] 35
44: iadd[96] 1
45: istore 2[61] 1 ->I:r
46: goto[167]->20: 4 sum(B2):116/116

B3 49: iload 2[28] 1 I:r
50: ireturn[172] 19 sum(B3): 20

An further analysis of the linear kernel in Figure 1 is performed by creat-
ing the directed control flow graph of basic blocks. As noted previously,
the basic block B2 is the one where the multiplication/addition is per-
formed. B2 is executed n times: one time for each dimension in the data
vectors. The branching block, B1, is executed n + 1 times. This infor-
mation is captured by the directed graph of basic blocks in Table 2. The
directed graph is parameterized on the dimensionality of the problem:
ie. the directed graph is B0 + (n + 1)B1 + nB2 + B3 and the result is
shown on the bottom line in Table 3.

The directed graph is described by the parameter n, which allows us to
describe a maximum and minimum execution time for the dot product

100

5

Table 2. Directed graph of basic blocks for linear kernel

B0 B1 B2 B3
B0 . 1 . .
B1 . . n 1
B2 . n . .
B3

kernel. A result of this analysis is presented in Table 3. Thus, the mini-
mum cycle count for n = 1 is 261 cycles (assuming that the kernelDot

method is the cache. Cache analysis is not the subject of this paper).

Table 3. Dot product cycle count analysis of basic blocks based on n

Max. cycles(n) Min. cycles(n=1)
Block Cycles Count Total Count Total

B0 115 1 115 1 115
B1 5 n+1 5n+5 2 10
B2 116 n 116n 1 116
B3 20 1 20 1 20

Execution cycle count: 121n+140 261

The SVM decision function uses a kernel function to return the func-
tional output of a given test vector. To this end it uses a bias and sums
up the kernel outputs of the test vector and the support vectors. As the
kernel is now analyzed, we can proceed to the SVM decision function and
discuss the worst-case-execution-time (WCET) and best-case-execution-
time (BCET). In Figure 2, the method getFunctionOutputTestPointFP

takes a test vector reference as argument and returns a fixed-point repre-
sentation of the functional output of the SVM decision function. Similar
to (and for the same reasons as before in Figure 1), we re-assign static
references to a local variables for performance reasons. As can be seen in
Figure 2, the local variable functionalOutput_fp accumulates the dot
product using the same 8 bit pre-shifting of the two scalars. It can be
seen that the method is inlined such that there are not any invocations
of other methods inside the getFunctionOutputTestPointFP method.
There are several different ways to construct the details of the decision
method. In this analysis we will focus on the code in Figure 2 and re-
place the multiply and add code with a method call outside the current
method. As a further step in analyzing the SVM decision function, we
must get access to the annotated bytecode with instruction cycle count-
ing, basic block analysis and partial sums of basic block cycle counts.

Using the information in Table 5, we can see that the SVM decision
function translates into 7 basic blocks. The analysis of the directed graph
associated with the basic blocks is important because there are now two

101

6

1 : static public int getFunctionOutputTestPointFP(int[] xtest) {

2 : int functionalOutput_fp = 0;

3 : int[][] data_fp_local = data_fp;

4 : int m = data_fp_local.length;

5 : int n = xtest.length;

6 : for (int i = 0; i < m; i++) { //@WCA loop=(data points)

7 : if (alpha_fp[i] > 0) {

8 : while (n != 0) { //@WCA loop=(dimensionality)

9 : n = n - 1;

10: //functionalOutput_fp += KFP.kernelX(i); // cached

11: functionalOutput_fp +=

12: (data_fp_local[m][n] >> 8) * (xtest[n] >> 8);

13: }

14: }

15: }

16: functionalOutput_fp -= bias_fp;

17: return functionalOutput_fp;

18: }

Fig. 2. SVM decision function in Java

conditions in the decision function: one is that we do not multiply if
the Lagrange multiplier αi is zero (see B2 addr.: 28) and the second is
that the loop runs over the training examples (see B3 addr.: 33). The
directed graph allows for the cycle count estimate to be parameterized
on the number of support vectors: sv:∀αi > 0.

2.2 Real-time analysis of SVM decision function

An analysis the directed graph (same approach as in Table 2) of the SVM
decision function shows that basic block B1, B2, and B3 have conditional
branches. B1 is conditioned on the number of training examples, B2 is
conditioned on a support vector being non-zero, and B3 is conditioned
on the dimension of the training problem, n.

Since we have inlined (ie. no outgoing method calls) the SVM decision
function allows us to perform a WCET (they are equal if ∀αi > 0)
analysis of the SVM decision function parameterized only on m, n and,
sv, the number of support vectors without regard to the cache. The
directed graph is annotated with this information. Accordingly, it is then
possible to construct the table for the SVM decision function, which then
depicts the formula for cycle count based on m, n, and sv. This time (as
opposed to Table 3) the min. cycle count is omitted.

The SVM decision function is an important part of the code, and we
provide an abbreviated bytecode analysis and basic block information in
Table 5.

102

7

Table 4. Parameterized cycle count analysis of inlined SVM

Block Cycles Count Total

B0 43 1 43
B1 7 m+1 7m+7
B2 51 m 51m
B3 6 sv(1 + n) 6sv(1 + n)
B4 148 sv n 148sv n
B5 15 m 15m
B6 39 1 39

Execution cycle count: 89 + 73m + 6sv + 154sv n

Table 5. Bytecodes of the SVM decision function

Approach Addr. Bytecode Cycles Misc.

...
B2 22: getstatic[178] 16 int[] SMOBinaryClassifierFP.alpha fp

25: iload[21] 2 I:i
27: iaload[46] 29 I
28: ifle[158]->65: 4 sum(B2): 51/51

B3 31: iload[21] 2 I:n
33: ifeq[153]->65: 4 sum(B3): 6/6

...

Table 6. Inline vs. method call in SVM decision function

Block Addr. Bytecode Cycles Misc.

Object-oriented SVM decision function,
Java: functionalOutput fp += KFP.kernelX(i);

42: iload 1[27] 1 I:functionalOutput fp
43: iload[21] 2 I:i
45: invokestatic[184] 91/109 kernelX(I)I, invoke(n=7):72/72 return(n=17):19/37
48: iadd[96] 1
49: istore 1[60] 1 ->I:functionalOutput fp

Inlined SVM decision function,
Java: functionalOutput fp += (data fp local[m][n] >> 8) * (xtest[n] >> 8);

42: iload 1[27] 1 I:functionalOutput fp
43: aload 2[44] 1 [[I:data fp local
44: iload 3[29] 1 I:m
45: aaload[50] 29 Ljava/lang/Object;
46: iload[21] 2 I:n
48: iaload[46] 29 I
49: bipush[16] 2
51: ishr[122] 1
52: aload 0[42] 1 [I:xtest
53: iload[21] 2 I:n
55: iaload[46] 29 I
56: bipush[16] 2
58: ishr[122] 1
59: imul[104] 35
60: iadd[96] 1
61: istore 1[60] 1 ->I:functionalOutput fp

103

8

2.3 WCET Benchmarks with Exponential Kernel

Recently, it has been established that the number of support vectors
(also named expansion vectors) can be explicitly controlled [2]. In order
to demonstrate the WCET analysis in action, we can extend the results
of Wu et al.[2] to a hard real-time environment.
Up to this point, we have demonstrated that we can provide WCET
analysis of a Java program that runs on the Java Optimized Processor.
With the results of Wu et al., it is possible to adjust the stream classifier
by reducing the number of expansion vectors in the system until some
right balance of test error and decision speed is achieved. Subsequently,
we can annotate (see for example the //@WCA loop=2 in Figure 1) the
Java code such that the worst-case analysis tool can provide the WCET
number.
We want to calculate the WCET numbers of SVMs from the 7 data sets
used in [2] and the change in classification accuracy of working with a
90% reduction in the number of support vectors, NSV . The numbers
are taken from Wu’s paper and adorned with a WCET analysis in Ta-
ble 7. We use the dsvmfp.TestSMO.measure() method in the following
experiments. For each analysis we annotate the Java program with n
and mNSV (assuming that the arrays are compacted to avoid the check
on line 7 in Figure 2) as the dimension and the number of data points
respectively. This is also indicated on line 6 and 8 in Figure 2.

Table 7. WCET analysis of data sets using an exponential kernel

Dataset m n mNSV ∆e10%SLMC(%) SLMCWCET 10%

Banana 400 2 ∼87 -0.8 257,833
Breast Cancer 200 9 ∼113 -0.7 748,461
German 700 20 ∼409 0.4 5,060,958
Image 1300 18 ∼173 0.8 1,959,972
Titanic 150 3 ∼71 0.3 247,623
USPS 7291 256 2683 0.4 364,354,484
Waveform 400 21 ∼159 0.0 2,050,864

Table 7 shows the WCET analysis applied to the sparse kernel learning
algorithm (SKLA) results for a sparse large margin classifier (SLMC). We
display the number of training data m, the dimensionality of the data n,
the number of support(expansion) vectors mNSV for a traditional SVM,
the difference in error from using the traditional SVM versus a SKLA
SVM with 10% expansion vectors, and finally we show the cycle count for
an SVM decision function: ie. a direct application of the WCET analysis.
So we can guarantee that the cycle count of the Banana classification
of a test point is 257,833 cycles, which translates to an upper bound
of 2578.33 µs for a new digit classification given execution on a JOP
processor configured to 100 MHz. Note that the CPU frequency can be
reduced for a better energy/performance balance if the WCET does not
violate a given hard deadline.

104

9

3 Conclusion

We provide two contributions in this paper. The first (to our knowledge)
WCET analysis of parts of the SVM and kernel functions. Our second
contribution is the identification and combination of the applicability of
the SKLA method in addition to the methods described by Pedersen[5]
for better design control of constrained embedded or distributed kernel-
based learning algorithms. Analysis of experimental results suggests the
possibility of achieving significant reductions in the upper bound (ie.
WCET) of an SVM decision function by direct application of the SKLA
approach by Wu et al. [2].

Future SVM directions may include worst case execution time analysis
of feature reduction methods and real-time drift detection [20].

Acknowledgement: Martin Schöberl for providing feedback on the
JOP/WCET sections.

References

1. Engblom, J., Ermedahl, A., Nolin, M., Gustafsson, J., Hansson, H.:
Worst-case execution-time analysis for embedded real-time systems.
International Journal on Software Tools for Technology Transfer 4(4)
(2003) 437–455

2. Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse
kernel learning algorithms. Journal of Machine Learning Research 7
(2006) 603–624

3. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer,
NY (1995)

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3)
(1995) 273–297

5. Pedersen, R.U.: Using Support Vector Machines for Distributed Ma-
chine Learning. PhD thesis, University of Copenhagen (2005)

6. Platt, J.: Fast training of support vector machines using sequential
minimal optimization in Advances in Kernel Methods — Support
Vector Learning. MIT Press (1999)

7. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.:
Support vector method for novelty detection. In: Neural Information
Processing Systems 12. (2000)

8. Schölkopf, B., Bartlett, P.L., Smola, A., Williamson, R.: Shrinking
the tube: a new support vector regression algorithm. In Kearns,
M.S., Solla, S.A., Cohn, D.A., eds.: Advances in Neural Information
Processing Systems 11, Cambridge, MA, MIT Press (1999) 330 – 336

9. Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.: Support vector
clustering. Journal of Machine Learning Research 2 (2001) 125–137

10. Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Wit-
ten, I.H., Trigg, L.: Weka - a machine learning workbench for data
mining. In Maimon, O., Rokach, L., eds.: The Data Mining and
Knowledge Discovery Handbook. Springer (2005) 1305–1314

105

10

11. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.:
YALE: Rapid Prototyping for Complex Data Mining Tasks. In:
Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2006). (2006)

12. Fischer, S., Klinkenberg, R., Mierswa, I., Ritthoff, O.: Yale: Yet an-
other learning environment - tutorial, technical report ci-136/02 (2nd
edition). Technical report, Collaborative Research Center on Com-
putational Intelligence (SFB 531), University of Dortmund, Dort-
mund, Germany (August 2003)

13. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector ma-
chines. (2001) Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.
14. Schoeberl, M.: JOP: A Java Optimized Processor for Embedded

Real-Time Systems. PhD thesis, Vienna University of Technology
(2005)

15. Kargupta, H., Park, B., Hershberger, D., Johnson, E.: Collective
Data Mining: A New Perspective Towards Distributed Data Mining.
In Kargupta, H., Chan, P., eds.: Advances in Distributed and Parallel
Knowledge Discovery. MIT/AAAI Press (2000) 133–184

16. Dahm, M.: Byte code engineering with the bcel api. Technical report,
Freie Universität at Berlin, Institut für Informatik (2001)

17. Pedersen, R., Scöberl, M.: An embedded support vector machine.
In: Proceedings of the Fourth Workshop on Intelligent Solutions in
Embedded Systems (WISES 2006), Austria, Vienna (2006)

18. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification.
Second edn. Addison-Wesley, Reading, MA, USA (1999)

19. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1986)

20. Klinkenberg, R., Joachims, T.: Detecting concept drift with support
vector machines. In Langley, P., ed.: Proceedings of the 17th Inter-
national Conference on Machine Learning (ICML), San Francisco,
CA, USA, Morgan Kaufmann (2000) 487–494

106

Dynamic Feature Space
and Incremental Feature Selection

for the Classification of Textual Data Streams

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
{katak,greg,vlahavas}@csd.auth.gr

Abstract. Real world text classification applications are of special inter-
est for the machine learning and data mining community, mainly because
they introduce and combine a number of special difficulties. They deal
with high dimensional, streaming, unstructured, and, in many occasions,
concept drifting data. Another important peculiarity of streaming text,
not adequately discussed in the relative literature, is the fact that the
feature space is initially unavailable. In this paper, we discuss this aspect
of textual data streams. We underline the necessity for a dynamic fea-
ture space and the utility of incremental feature selection in streaming
text classification tasks. In addition, we describe a computationally un-
demanding incremental learning framework that could serve as a baseline
in the field. Finally, we introduce a new concept drifting dataset which
could assist other researchers in the evaluation of new methodologies.

1 Introduction

The world wide web is a dynamic environment that offers many sources of con-
tinuous textual data, such as web pages, news-feeds, emails, chat rooms, forums,
usenet groups, instant messages and blogs. There are many interesting applica-
tions involving classification of such textual streams. The most prevalent one is
spam filtering. Other applications include filtering of pornographic web pages
for safer child surfing and delivering personalized news feeds.

All these applications present great challenge for the data mining community
mainly because they introduce and/or combine a number of special difficulties.
First of all, the data is high dimensional. We usually consider as feature space
a vocabulary of hundreds of thousands of words. Secondly, data in such appli-
cations always come in a stream, meaning that we cannot store documents and
we are able to process them only upon their arrival. Thirdly, the phenomenon of
concept drift [8] might appear. This means that the concept or the distribution
of the target-class in the classification problem may change over time.

In this paper we tackle with another issue that, to the best of our knowledge,
haven’t been given enough attention by the research community. This is, the

107

initial unavailability of the feature space. There is no prior knowledge of the
words that might appear over time and the use of a global vocabulary of millions
of words is simply inefficient. To deal with this problem we introduce the idea of
the feature-based classifier. This, is a special class of classifiers that can execute
in a dynamic feature space.

We furthermore investigate the utility of Incremental Feature Selection (IFS)
which deals with a specific type of concept drift appearing in applications, where
feature selection is of vital importance. The main notion is that as time goes by,
different set of features become important for classification and some totally new
features with high predictive power may appear.

We also propose a computationally undemanding framework for the classifi-
cation of text streams that takes under consideration the aforementioned state-
ments: An incremental classifier that can execute in a dynamic feature space,
enhanced by an IFS procedure. Due to its simplicity and effectiveness, this ap-
proach could serve as a baseline method for other, more advanced, stream learn-
ing techniques. Finally we introduce a new concept drifting dataset which we
hope it will help other researchers evaluate their work.

This paper extends previous work-in-progress report [4] by introducing: a) a
new concept drifting dataset from the news classification domain, b) an investi-
gation on the effect of IFS in three classical stream learning techniques and c)
a discussion on the need for a dynamic feature space. The rest of this paper is
organized as follows: Section 2, presents background knowledge on text stream
mining. In Section 3, we describe the proposed approach and in Section 4 we
give details about the experimental setup and discuss results. Finally in Section
5 we conclude and present our future plans.

2 Text Streams and Concept Drift

Data stream mining is a field that draws attention from data mining and database
community [1, 7, 3]. The main distinctiveness of the data is that we cannot store
incoming records/transactions/documents and therefore we need algorithms that
process the data only once. Text streams, have additional difficulties. Some of
them, like the initial unavailability of the feature space and the occurrence of
concept drift are already mentioned in the introduction.

A lot of effort has been directed for the effective classification of data and
text streams, especially in concept drifting environments. There are some simple
methodologies dealing with concept drift. We could use a single incremental clas-
sifier updating for each document arriving. The main problem with this method
is that the model is strongly built on past data and cannot quickly adapt to the
drift. Another simple approach is Weighted Examples (WE) which associates
recent examples with a weight in order to force the classifier focus on new data.
A third well known approach is Time Window (TW). In this case, we retrain
the classifier on the newest N examples in order for the classifier to model only
the latest knowledge. The main disadvantages of these techniques are firstly, the
assumption that older knowledge is useless for future classification (which does

108

not apply to all cases) and secondly the fact that the classifier is trained only
from a small number of examples (equal to the size of the time window)1. Some
more advanced methodologies involve ensembles of classifiers (a nice overview
of such methods can be found in [6]). The main drawbacks of many of these
approaches are the fact that they are demanding in computational sources and
that many of them need a step of retraining.

3 Our Approach

3.1 Motivation

A type of concept drift that appears in textual data streams, concerns the ap-
pearance of new highly predictive features (words) that do not belong to the
original feature vector. In spam filtering for example, new words must be learned
by a classifier as new unsolicited commercials come into vogue [2]. In addition,
spammers exercise the practice of obfuscating perpetual spam topics by replac-
ing letters with numbers or by inserting irrelevant characters between letters
(e.g. viagra becomes v1agra or v.i.a.g.r.a etc). Another application where the
importance of words changes over time is personalized news filtering. In this
case, the interests of the user might change over time. Therefore, new words
that can better discriminate the new interests of the user must be introduced in
the feature vector.

So far, the feature vector in text classification approaches has been static.
The features that are selected based on an initial collection of training docu-
ments, are the ones that are subsequently considered by the classifier during the
operation of the system. New words are introduced only with periodic retrain-
ing, which includes rebuilding the vocabulary and re-vectorization. Retraining
demands the storage of all the documents seen so far, a requirement that might
either be infeasible or too costly for textual streams. In addition, retraining has
the disadvantage that it does not update the model online as new documents
arrive, so it might take some time until it catches up with the drift.

Another point, not adequately discussed in the literature is the fact that
in personalized applications an initial training set and consequently the feature
space is unavailable. Therefore we need to use flexible algorithms and feature
selection techniques that are able to execute in a dynamic feature space that
would be empty in the beginning and add features when new documents arrive.

A third point is that in many cases we need classification techniques that
are flexible, incremental, and, at the same time require minimum computational
sources. Consider for example a web-based personalized newspaper. Each user
subscribes to certain topics of interest (Sports, Arts), and a classifier is trained
(by taking into consideration user feedback) in order to separate interesting mes-
sages for the user. Eventually a classifier per user and per topic is required. There-
fore, a large number of computationally undemanding classifiers is required.

1 The introduction of Adaptive Time Windows actually alleviates these problems [8]

109

3.2 Framework

Our approach uses two components in conjunction: a) an incremental feature
ranking method, and b) an incremental learning algorithm that can consider a
subset of the features during prediction. Feature selection methods that are com-
monly used for text classification are filters that evaluate the predictive power
of each feature and select the N best. Such methods evaluate each word based
on cumulative statistics concerning the number of times that it appears in each
different class of documents. This renders such methods inherently incremen-
tal: When a new labeled document arrives, the statistics are updated and the
evaluation can be immediately calculated without the need of re-processing past
data. These methods can also handle new words by including them in the vocab-
ulary (and fulfil the dynamic feature space requirement discussed earlier) and
initializing their statistics. Therefore the first component of our approach can
be instantiated using a variety of such methods, including information gain, the
x2 statistic or mutual information [10].

The incremental re-evaluation and addition of words will inevitably result
into certain words being promoted to / demoted from the top N words. This
raises a problem that requires the second component of the proposed approach:
a learning algorithm that is able to classify a new instance taking into account
different features over time. We call learning algorithms that can deal with it
feature-based, because learning is based on the new subset of features, in the same
way that in instance based algorithms, learning is based on the new instance.

Two inherently feature based algorithms are Naive Bayes (NB) and k Nearest
Neighbors (kNN). In both of these algorithms each feature makes an indepen-
dent contribution towards the prediction of a class. Therefore, these algorithms
can be easily expanded in order to instantiate the second component of our ap-
proach. Specifically, when these algorithms are used for the classification of a
new instance, they should also be provided with an additional parameter denot-
ing the subset of the selected features. NB for example will only consider the
calculated probabilities of this subset, while kNN will measure the distance of
the new instance with the stored examples based only on this feature subset.
Note, that the framework could apply to any classifier that could be converted
into a feature-based classifier.

It is also worth noticing that the proposed approach could work without an
initial training set and fulfil the dynamic feature space requirement discussed
earlier. This is useful in personalized web-content (e-mail, news, etc.) filtering
applications that work based largely on the user’s perception of the target class.

Figure 1 presents algorithm Update for the incremental update of our ap-
proach. When a new Document arrives as an example of class DocClass, the
first thing that happens is to check if it contains any new words. If a new Word
is present then it is added to the vocabulary (AddWord) and the WordStats
of this Word are initialized to zero. Then, for each Word in the Vocabulary we
update the counts based on the new document and re-calculate the feature eval-
uation metric. Finally, the Classifier must also be vertically updated based on the
new example and also take into account any new words. For the classification

110

of a new unlabeled Document, the algorithm selects the top-N words based on
their evaluation and then predicts the class of the document by taking under
consideration only the selected feature subset.

input : Document, DocClass, Classes, Vocabulary
output: Classifier, Vocabulary, WordStats, Evaluation

begin
foreach Word ∈ Document do

if Word /∈ Vocabulary then
AddWord(Word, Vocabulary)
foreach Class ∈ Classes do

WordStats [Word][Class][1] ← 0
WordStats [Word][Class][0] ← 0

foreach Word ∈ Vocabulary do
if Word ∈ Document then

WordStats [Word][DocClass][1] ← WordStats [Word][DocClass][1] + 1
else

WordStats [Word][DocClass][0] ← WordStats [Word][DocClass][0] + 1

foreach Word ∈ Vocabulary do
Evaluation ← EvaluateFeature(Word, WordStats)

Classifier ← UpdateClassifier(Document, DocClass)
end

Fig. 1. Algorithm Update

4 Experimental Results

4.1 Feature Selection and Learning Algorithm

The x2 metric was selected for instantiating the feature evaluation method of the
proposed approach, due to its simplicity and effectiveness [10]. We extended the
implementation of the x2 feature evaluation method of Weka [9] with a function
that allows incremental updates. As we mentioned in the previous section, there
are many other similarly simple metrics that could be used for instantiating our
framework. Here, we are not focusing on the effectiveness of different feature
evaluation methods, but rather on whether a feature based classifier coupled
with an incremental version of such a method is useful in textual data stream
classification.

The learning algorithm that was selected for instantiating the learning mod-
ule of the proposed approach was Naive Bayes. kNN is inefficient for data-
streams, as it requires the storage of training examples. NB on the other hand
stores only the necessary statistics and is also widely used in text classification

111

applications. In addition, NB can take advantage of the already stored feature
statistics for the purpose of feature ranking and thus integrates easier in the
proposed approach. We extended Weka’s implementation of NB with a function
that accepts a feature subset along with a new instance and uses only the fea-
tures of this subset for the classification of the instance. Note that we are not
focusing on the effectiveness of the specific algorithm. Any incremental machine
learning algorithm could be used as long as it is, or, could be transformed to, a
feature-based classifier.

4.2 Data Sets

The first requirement of an empirical study of the proposed approach is a data
set with documents obtained from a real word textual data stream. We actually
experimented with two content filtering domains, spam and news.

For the domain of spam filtering we ideally need real-world spam and legiti-
mate emails chronologically ordered according to their date and time of arrival.
In this way we can approximate the time-evolving nature of the problem and
consequently evaluate more properly the proposed approach. For that reasons,
we used the SpamAssasin (http://spamassasin.apache.org/) data collection be-
cause a) Every mail of the collection is available with the headers, thus we were
are able to extract the exact date and time that the mail was sent or received,
and b) It contains both spam and legitimate (ham) messages with a decent spam
ratio (about 20 %). This dataset consists of 9324 instances and initially 40000
features. This datasets represents the so-called gradual concept drift.

For the domain of news filtering we needed a collection of news documents
corresponding to the interests of a user over time. As such a collection was not
available, we tried to simulate it using usenet posts from the 20 Newsgroups
collection2. The data set was created to simulate concept drift. The scenario
involves a user that over time subscribes to and removes from different general
mailing lists (or news feeds) (e.g. sports, science etc) but is interested only on
certain subcategories of these mailing lists. Table 1 shows, the particular interests
of the user and how her general interests change over time. For example the user
is initially interested in sports, but then loses this interest and subscribes in a
science mailing list. The user is perpetually interested in driving, while in the last
part she also gets into religion issues and at the same time unsubscribes from
the hardware list. This dataset consists of 6000 instances and initially 28000
features. In both datasets, we have removed headers and used a boolean bag-
of-words approach for the representation of documents. Other methods for IFS
presented in the literature like [5] haven’t been tested on such high-dimensional
datasets. This dataset represents the sudden concept drift3.

2 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
3 both datasets are available at http://mlkd.csd.auth.gr/datasets.html

112

Table 1. Interest of user in the various newsgroups over time

instances
newsgroup1-3000 3001-6000 4501-6000

comp.pc.hardware Yes Yes -
comp.mac.hardware No No -

rec.autos Yes Yes Yes
rec.motorcycles No No No

rec.sport.baseball Yes - -
rec.sport.hockey No - -

sci.med - No No
sci.space - Yes Yes

soc.religion.christian - - Yes
alt.atheism - - No

4.3 Methods

To evaluate the effectiveness of our methodology, we applied the basic frame-
work proposed before (IFS) to the three simple learning techniques discussed
in the introduction (Simple Incremental Classifier, Weighted Examples, Time
Windows).

4.4 Results

We compare the predictive performance of the above methodologies (using x2

for feature ranking with a classical Incremental Naive Bayes (INB) classifier in
the non-IFS approaches and a Feature Based NB classifier for the IFS-enhanced
approaches. All methods are executed on the two document collections (spam,
news), using as initial training set the first 10, 20 and 30% of the documents. The
rest of the documents were used for testing: all methods first predict the class for
each new document and then update their models based on the actual class of it.
We fixed the number of features to select to 500, as past results have shown that
a few hundreds of words are an appropriate size of features. Table 2 shows the
results of the experiments. After preliminary experimentation, we concluded that
300 instances was a good window size for the TW method and that a decent way
to update the weights in the WE method was w(n) = w(n−1)+n2, where w(n)
is the weight of the n-th instance. Note, that we are not focusing on the accuracy
of the aforementioned methodologies, but rather on the effect of IFS on them.
We first notice that all methods when enhanced with IFS have better predictive
performance than the classical approaches in both data sets, all percentages
of initial training documents and both metrics. This shows that incremental
feature selection manages to catch up with the new predictive words that are
introduced over time. In the spam domain, the inclusion of more training data
increases the predictive performance of all methodologies due to the inclusion
from the beginning of the important features that appear early in the data set.
In the news domain on the other hand the inclusion of more training data does

113

Table 2. Accuracy (acc) and area under the ROC curve (au) for the two data sets and
the three different percentages of training documents for three learning methodologies
(with and without IFS)

10% 20% 30%
Dataset Method acc auc acc auc acc auc

spam INB 66.06 81.64 51.44 81.53 88.55 93.23
INB+IFS 86.28 92.48 90.27 95.42 94.02 97.11
TW 89.71 93.08 90.62 93.03 91.86 92.44
TW+IFS 90.99 94.42 91.80 94.67 93.56 94.68
WE 89.76 93.67 92.35 94.60 96.00 97.08
WE+IFS 93.61 96.75 95.56 98.01 95.81 97.56

news INB 76.04 87.74 76.06 87.57 74.11 85.28
INB+IFS 84.07 93.57 84.11 93.53 83.77 93.19
TW 78.38 86.38 78.41 86.10 78.12 85.80
TW+IFS 79.27 87.50 79.54 87.55 79.59 87.42
WE 80.38 88.77 80.00 89.06 78.38 87.63
WE+IFS 84.98 93.33 85.03 93.15 85.08 93.07

not increase performance significantly as it becomes harder for the classifiers
to forget the initial knowledge and adapt to the new predictive features that
appear later on. Figures 4a to 4c shows the moving average (over 200 instances)
of the prediction accuracy of all methods (with and without IFS) using the
first 20% of all messages of the news collection for training4. We notice that
for the first instances the performance is comparable, but from then on the
performance of IFS-enhanced methods becomes and remains much better than
simple methods. This happened because at that time-point the user subscribed
to new lists and new predictive words appeared. The same thing occurred after
the first 3200 examples when the user changed interests for the second time. Non-
IFS methods failed to keep up with the new user interests, while IFS-enhanced
methods managed to maintain their initial predictive performance. The TW
method is the only one that is not significantly affected from IFS, and that
can be seen in table 2 (see accuracy TW versus TW+IFS in both datasets)
and also from figure 4c. This is mainly because of the small window size that
the IFS is applied to. Figures 4e and 4d show the moving average (over 200
instances) of the number of words promoted to/demoted from the top 500 words
in both datasets for the INB+FS method. Note that in the news domain, in
the beginning more words are promoted to/demoted from the top 500 words as
the evaluation scores of already included words continue to change with more
training examples, while towards the end they stabilize. The peak in the spam
domain is due to the skewness of the collection (a large number of new spam
messages arrived at that time point).

SVMs are well known accurate text classifiers and independent of feature se-
lection. Indicatively, we applied an SVM (Weka implementation (SMO), default

4 The respective figures for the spam corpus are similar

114

parameter setting (Polynomial Kernel of degree 1, C=1, L=0,001), no initial
training) in the news dataset with retraining for every 300 instances and ob-
tained an average accuracy of 70.02%. With TW+IFS method (no retraining)
we obtained 77.95% accuracy. Naturally the time needed for the execution of
the SVM was much larger (approx. 4 times).

0,5

0,6

0,7

0,8

0,9

1

1 1001 2001 3001 4001

INB

INB+IFS

0,5

0,6

0,7

0,8

0,9

1

1 1001 2001 3001 4001

WE

WE+IF
S

0,5

0,6

0,7

0,8

0,9

1

1 1001 2001 3001 4001

TW

TW+IF
S

 (a) (b) (c)

0

2

4

6

8

10

12

14

16

18

20

1 1001 2001 3001 4001

0

2

4

6

8

10

12

1 1001 2001 3001 4001 5001 6001 7001

 (d) (e)

Fig. 2. (a),(b),(c) Moving average of the accuracy for the news domain, and (d),(e)
Moving average of the number of words promoted to/domoted from the top 500 words,
using the first 20% of all messages of the news collection (d) and spam corpus (e) for
training (INB+FS method).

5 Conclusions and Future Work

This paper focused on an interesting special type of concept drift that is inherent
to textual data streams: The appearance of new predictive features (words) over
time. In the past, this type of concept drift has not been considered by online
learning approaches to the best of our knowledge, rather it was confronted with
the cumbersome approach of retraining. We presented a computational unde-
manding approach that combines an incremental feature selection method with

115

what we called a feature based learning algorithm in order to deal with this
problem and we underlined the importance of a dynamic feature space. The ex-
perimental results showed that the proposed approach offers better predictive
accuracy compared to classical incremental learning and are encouraging for
further developments. We also hope that the use of the 20 newsgroups for simu-
lating drifting interests will inspire other researchers for similar experiments. We
believe that the proposed approach is a straightforward method for dealing with
online learning in high-dimensional data streams, and could be considered as a
baseline for comparison with other more complex methods, such as approaches
based on ensembles of classifiers, due to its simplicity and effectiveness.

6 Acknowledgements

This work was partially supported by the Greek R&D General Secretariat through
a PENED program (EPAN M.8.3.1, No. 03E ∆ 73).

References

1. P. Domingos and G. Hulten. Mining high-speed data streams. In Knowledge
Discovery and Data Mining, pages 71–80, 2000.

2. T. Fawcett. ”in vivo” spam filtering: A challenge problem for data mining. KDD
Explorations, 5(2), December 2003.

3. F. Ferrer-Troyano, J. S. Aguilar-Ruiz, and J. C. Riquelme. Incremental rule learn-
ing based on example nearness from numerical data streams. In SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied computing, pages 568–572, New
York, NY, USA, 2005. ACM Press.

4. I. Katakis, G. Tsoumakas, and I. Vlahavas. On the utility of incremental fea-
ture selection for the classification of textual data streams. In 10th Panhellenic
Conference on Informatics (PCI 2005), pages 338–348. Springer-Verlag, 2005.

5. S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection
by gradient descent in function space. Journal of Machine Learning Research,
3:1333–1356, 2003.

6. M. Scholz and R. Klinkenberg. Boosting classifiers for drifting concepts. Intelligent
Data Analysis (IDA), Special Issue on Knowledge Discovery from Data Streams
(accepted for publication), 2006.

7. P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi. On reducing classifier granularity
in mining concept-drifting data streams. In ICDM, pages 474–481. IEEE Computer
Society, 2005.

8. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

9. I. Witten and E. Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, 1999.

10. Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In D. H. Fisher, editor, Proceedings of ICML-97, pages 412–420.
Morgan Kaufmann Publishers, San Francisco, US, 1997.

116

User constraints over data streams

Carlos Ruiz Moreno1, Myra Spiliopoulou2, and Ernestina Menasalvas1

1 Facultad de Informatica, Universidad Politecnica, Madrid, Spain
cruiz@cettico.fi.upm.es,emenasalvas@fi.upm.es

2 Faculty of Computer Science, Magdeburg University, Germany
myra@iti.cs.uni-magdeburg.de

Abstract. Models and patterns discovered upon accumulating or streamed data
must be updated whenever the data change. However, whether apattern is still
valid or useful is not determined solely by its statistical properties; it also depends
on the expert’s perception and the demands of the application. These can be best
expressed as “user constraints”. Constraint clustering methods enjoy increasing
attention, because constraints can capture the expert’s perspective of the domain,
so that solutions with given properties are derived, thus improving quality and,
sometimes, convergence time of the clustering algorithm.
We propose a model for user constraints upon clusters over data streams. We
introduce different types of constraints, needed to express phenomena associated
with cluster semantics and with the role of individual objects in the clusters, while
taking account of data decay, as is typical in data streams. We further present
a mechanism that updates the set of constraints as data decay. To support the
enforcement of constraints during re-clustering, we propose a method that ranks
the constraints to be enforced and we extend the constraint-based K-means of
[16] into a clustering algorithm that enforces a prioritized set of constraints.

1 Introduction

Knowledge Discovery from Streams studies the extraction ofuseful knowledge from
non-stopping data streams [8]. Obviously, a stream is subject to endogenous or exoge-
nous changes that affect the validity of the extracted models and patterns: The customer
base of a retailer may change in response to a marketing campaign or due to demo-
graphic evolution; the usage patterns of a web site change asits contents change or as
users become more experienced; spam distributors change their strategy in response to
more elaborate anti-spam filters. Although such changes areof potential interest, the
“interestingness” of patterns and of their changes also depend on the perception and
expectations of the human expert.

The importance of linking derived patterns with backgroundknowledge and expec-
tations of the expert is stressed among else in [1, 13]. “Userconstraints” are a pow-
erful concept for the establishment of this link. Recently,user constraints are used in
clustering to shift from the generation of unsupervised solutions to “semi-supervised”
clusterings [9] that exploit prior knowledge on the data.

In this study, we extend the notion of user constraints from static data to data
streams, focussing on clustering and cluster evolution in streams. Constraints are a very
appropriate instrument to guide the cluster adaptation andreconstruction process across

117

a stream: A clustering model is derived upon the first instance of the population; con-
straints are derived from this model, reflecting the properties of the population; these
constraints should be respected by all further instances ofthe population, otherwise the
expert should be alerted. However, current models of constraints cannot support this
process, because they mostly refer to concrete data records. Such constraints cannot be
transferred to stream mining, because the records of a stream are gradually forgotten.

After discussing the literature on constraints for the clustering of static data (Sec-
tion 2), we propose a model for constraints over streams (Section 3). Our model covers
different types of constraints and deals with the aspect of data decay. It is accompanied
by an algorithm that updates the set of constraints at each timepoint of observation,
identifying obsolete constraints, updating and re-weighting active constraints on the
basis of the age of the associated data records. Constraint weights are used to design
a first variation of a “prioritized” constraint-based clustering algorithm that re-clusters
data after a constraint violation and attempts to enforce asmany high priority constraints
as possible. The last section concludes the study with future work on dedicated cluster
violation predictors and on constraint enforcement for streamed data.

2 Clustering with user constraints

Recently, clustering with constraints has received particular attention as a means to
alleviate some endogen problems of conventional clustering. Halkidi et al point out
that the notion of “right clustering” depends on the user’s perspective [10]. Bennet et al
stress that clustering algorithms cannot always avoid solutions of poor quality, including
clusterings with some empty clusters [3]. User constraintscan improve the quality of
the output clustering and sometimes even improve computational performance [7], [6].

Moreover, user constraints are appropriate for expressingimportant aspects of do-
main knowledge, thus leading to solutions with specific properties. In constraint-based
clustering, background knowledge often takes the form ofinstance-level constraints,
i.e. constraints on whether two records/instances may or may not belong to the same
cluster (e.g. [16]). Such constraints have been applied to real-world problems such as
detecting road lanes from GPS data [16] or helping the navigation of a Sony Aibo Robot
[7], yielding promising results.

2.1 Types of Conventional User Constraints

Han et al [12] propose five general categories of contraints:(i) knowledge type con-
straintsthat reflect strategic objectives of the analysis, expressed by the type of knowl-
edge to be mined (e.g. association, classification); (ii)data constraintsspecified by the
user upon the data selected for data mining; (iii)dimension/level constraintsrefering to
the level of abstraction and the dimensions or properties ofthe data that should be stud-
ied; (iv) rule constraints, i.e. constraints upon the rules to be discovered by data mining;
(v) interestingness constraintsupon the discovered patterns, meant to express the use-
fulness or interestingness of the patterns. Such constraints can be based upon quality
measures for clustering, association and classification; an extensive overview of such

118

measures can be found in [14]. With respect to this categorization, our approach con-
centrates on the last three types of constraints: Our constraint model capture restrictions
on properties of the data within a cluster and properties of the clusters themselves.

When studying conventional user constraints for clustering, we can further distin-
guish between instance-level and cluster-level constraints. The former refer to concrete
data records. They are motivated by the fact that many applications deliver some labeled
data that can be exploited for the clustering of non-labeleddata (cf. “semi-supervised
clustering”). Some specific types of constraints proposed in the literature under this
categorization are:

– Must-Link constraints[15] specify that a pair of pointsx andy must be assigned to
the same cluster.

– Cannot-Link constraints[15] specify that a pair of pointsxandy cannot be assigned
to the same cluster.

– δ-constraints(also called minimum separation) [7] specify that for any two clusters
Ci andC j and for any two pointsx ∈ Ci andy ∈ C j , Distance(x, y) ≥ δ.

– ǫ-constraints[7] specify that for any clusterCi it holds that∀x ∈ Ci ,∃y ∈ Ci , and
Distance(x, y) ≤ ǫ.

– τn-constraint[3]: This constraint refers to a cluster as a whole and specifies that
this cluster must have at leastn members/records.

The τn constraint is a cluster-level constraint, intended to prevent locally optimal
solutions that involve empty or very small clusters.Must-Link and Cannot-Linkare
instance-level constraints. The typesδ-constraint andǫ-constraint are so-calledcondi-
tional constraints. They can be used to transform cluster-level constraints toinstance-
level constraints. This means that multiple constraints are generated using aδ-constraint
as the minimum separation between clusters and anǫ-constraint as the maximum dis-
persion in a cluster.

A crucial issue on (instance-level) constraint-based clustering is the feasibility of a
solution that satisfies all constraints. Davidson et al. [7]prove that satisfying all types
of constraints is an NP-Complete problem for K-Means. However, it is a P-Complete
problem for hierarchical clustering [6].

2.2 Algorithms and Frameworks Using Constraints

The COP-KMeans proposed in [16] is a K-Means variant that incorporates background
knowledge in the form of instance-level constraints, concretely Must-Link and Cannot-
Link. The algorithm takes as input a dataset and a set of constraints and returns a data
partitioning that satisfies all specified constraints. The algorithm progresses iteratively
by checking whether constraints are violated and stopping when a partitioning that sat-
isfies all constraints has been built.

As pointed out in [7], the convergence of such an algorithm isnot guaranteed. They
propose a K-means variant that minimizes the vector quantization error (the distor-
tion), while attempting to satisfy as many constraints as possible. The idea behind this
proposal is that satisfying a constraint may increase the error, so they define a new
constrained vector quantization error based on penalties over constraints that cannot be
satisfied [7].

119

In [4, 2], constraints are used to learn the distance function that determines the par-
titioning. In “semi-supervised learning”, constraints are derived from labeled data and
are used to cluster unlabeled data. In this context, Halkidiet al [10] propose a clus-
tering framework, where quality measures for clustering (as in [11]) serve as so-called
“objective criteria” and are combined with Must-Link and Cannot-Link constraints as
so-called “subjective criteria” derived from the labeled data.

Those approaches consider constraints over static data. Inthe following, we present
our approach on constraint modeling and enforcement over stream data.

3 Modeling and Checking Constraints across a Data Stream

When dealing with an accummulating dataset or a data stream,the notion of “con-
straint” must be adjusted: Constraints on individual data records cannot be sustained in
a stream, because old data are gradually forgotten. In a stream, we are rather interested
in constraints on a cluster’s cardinality (cf. constraintτn [3]) or support within a clus-
tering, on the dominance of some attribute values inside a cluster and, as a special case,
on the cluster’s derived “label”, i.e. the ad hoc class of thedata records it contains.

We enhance the notion of “user constraint” in two ways. First, instead of assuming
that a constraint is either satisfied or violated, we allow that a constraint may be active or
obsolete; active constraints may be satisfied or violated, obsolete ones are not checked
at all. Second, the notion of crisp constraint is replaced bya “weighted constraint”
whose enforcement depends on its weight.

3.1 Modeling User Constraints over Accummulating Data

Similarly to constraint-based clustering, constraints are derived from a set of labeled
examples and then exploited to cluster the unlabeled data [5]. However, instead of as-
suming the existence of labeled and unlabeled data at the same timepoint, we assume
quite naturally that all data upon which the first clusteringζ1 at timepointt1 is cre-
ated are now labeled and can be used to derive constraints. Insubsequent timepoints
t2, . . . , tn, we need to check whether the clusteringsζ2, . . . , ζn over the new data have
experienced constraint violations. We model a user constraint as a predicatep ∈ P and
consider the following types of predicates:

1. Constraint on pattern:Let ξ be a pattern over the data anda be a property of this
pattern. Further, letV(a) be the valuerange ofa and X ⊂ V(a) a subset of it. A
“constraint on pattern” has the formpattern(ξ, a,X), stating that the value ofa for
ξ must belong to subsetX. We denote the set of those constraints asPpattern.
For example, assume that we want to partition the IRIS dataset (cf. UCI repos-
itory) with a clustering algorithm and letζ be a derived clustering. A constraint
pattern(ζ, cardinality, {3}) means thatζ must consist of exactly 3 clusters. A con-
straint pattern(C, support, (0, 0.33]) states that the clusterC ∈ ζ (which is also a
pattern) should not accommodate more than one third of the dataset.

2. Constraint on attribute:Let C ∈ ζ be a cluster. LetA be a data attribute,V(A) be its
valuerange and letX ⊂ V(A). A “constraint on attribute” has the formattr(C,A,X),

120

stating that all values of attributeA for the records inC should belong toX. We
denote the set of those constraints asPattr.
Let ζgood = {Cx,Cy,Cz} be a clustering that satisfies the example constraints on
pattern above. The constraintattr(Cx, petalWidth,X) states that the petal width for
all flowers inCx should be within the valuerangeX. Further, forX′ := (−∞,+∞) \
X, the additional constraintsattr(Cy, petalWidth,X′) andattr(Cz, petalWidth,X′)
would ensure that flowers with petal width inX appear only in the clusterCx.

3. Constraint on co-appearance:Let C ∈ ζ be a cluster and letd ⊆ D be a subset of
the dataset. A “constraint on co-appearance”inside(C, d) states that all members of
d should belong toC. We denote the set of those constraints asPin.

4. Constraint on separation:Let C ∈ ζ be a cluster and letd ⊆ D be a subset of the
dataset. A “constraint on separation”outside(C, d) states that none of the members
of d may belong toC. We denote the set of those constraints asPout.

The type “constraint on co-appearance” subsumes the constraint typemustlink, while
the type “constraint on separation” subsumescannotlink between pairs of records, ex-
cept that our new types refer to a predefined clusterC. This is intuitive, since constraints
in our context refer to already identified clusters.

3.2 States of a Constraint

User constraints are defined upon the original data encountered at the first timepoint
t1 and grouped into the initial clusteringζ1. Intuitively, constraints that explicitly refer
to specific data records become irrelevant when the records are forgotten. Hence, we
specify that a constraint can be eitheractiveor obsolete. If a constraint is active, then it
is checked for violation and is found to be eithersatisfiedor violated.

A constraintp refering to a patternξ is obsolete if one of the following conditions is
satisfied: (i)ξ is a cluster,p() is a constraint on co-appearance or separation (i.e.p() has
the forminside(ξ, d) or outside(ξ, d)) and the datasetd is empty because the records in
it are forgotten. (ii)ξ is a cluster that does not exist any more because the old records in
it are forgotten and no new ones have been inserted. This condition affects constraints
on attribute, co-appearance and separation. (iii)ξ is a cluster or clustering that has been
replaced because of reclustering. This condition concernsconstraints on pattern.

Obsolete constraints are not checked against violation butare not removed either,
because new records may lead to their re-activation. Constraint violation checking and
constraint enforcement (through re-clustering) are performed for active constraints only.

3.3 Updating Constraints

Let P be a set of constraints. For conventional constraint violation checking, it is suf-
ficient to juxtapose each constraint to the dataset. In our expanded model, constraint
checking must be preceded by an “updating step” that identifies obsolete constraints. In
Fig. 1 we show a simple greedy algorithmConstraintUPD to this purpose.1

1 In the verbatim listings of the algorithms in Fig. 1 and Fig. 2, subscripts of the formYsomething

could not be reproduced. We have used the notationY somethinginstead.

121

1 O← ∅ // Set of obsolete constraints - Initialization
2 Z attr ← ∪{C ∩ D i|p ≡ attr(C,A,X) ∈ P attr} // Records in constraints on attribute
3 Z in← ∪{d∩ D i|p ≡ inside(C,d) ∈ P in} // Records in constraints on co-appearance
4 Z out← ∪{d∩ D i|p ≡ outside(C,d) ∈ P out} // Records in constraints on separation
5 if Z attr = ∅ then O← P attr
6 if Z in = ∅ then O← ∪ P in
7 if Z out = ∅ then O← ∪ P out
8 if Z attr , ∅ then
9 for each p ≡ attr(C,A,X) ∈ P attr
10 if C ∩ D i = ∅ then O← O∪ {p}
11 endfor
12 endif
13 if Z in , ∅ then
14 for each p ≡ inside(C,d) ∈ P in
15 if C ∩ D i = ∅ or d∩ D i = ∅ then O← O∪ {p} else d← d∩ D i
16 endfor
17 endif
18 if Z out , ∅ then
19 for each p ≡ outside(C,d) ∈ P out
20 if C ∩ D i = ∅ or d∩ D i = ∅ then O← O∪ {p} else d← d∩ D i
21 endfor
22 endif
23 for each p ≡ pattern(C, a,X) ∈ P pattern
24 if C ∩ D i = ∅ then O← O∪ {p} //Constraint on pattern upon an empty cluster
25 endfor
26 if O , ∅ then raise an alert
27 P pattern← P pattern\O; P attr ← P attr \O
28 P in ← P in \O; P out ← P out\O
29 return P pattern, P attr, P in, P out

Fig. 1. Algorithm ConstraintUPD for the updating of constraints and associated datasets

At each timepointti , ConstraintUPDoperates upon the datasetD i and the current
state of the clusteringζ i. D i consists of the records inserted betweenti−1 andti and
those old records whose decay value is still larger than zero. ConstraintUPD takes as
input the four sets of constraints (one per constraint type), identifies obsolete ones and
raises an alert, if some constraints are no more active (cf. line 26 of Fig. 1).

In lines 2–4,ConstraintUPD initializes the sets of records involved in constraints
on attribute, co-appearance and separation, denoted asZ-sets hereafter. For the con-
straints on co-appearance,Zin contains the records involved in constraints ofPin and
appearing inDi (line 3). Zout for constraints on separation is computed similarly (line
4). Zattr is the intersection ofDi with all clusters involved in constraints ofPattr.

If a Z-set is empty, then all constraints of the corresponding type are marked as
obsolete (lines 5–7). IfZattr is not empty, then each constraint on attributep is checked
(lines 8–12): If it refers to a cluster whose records are no more inDi , thenpsis obsolete.

122

If Zin is not empty, then the corresponding test is applied upon theconstraints on co-
appearance (line 13–17): For such a constraintp ≡ inside(C, d), the associated dataset
is actualized by removing records that are no more inDi (line 15). The same procedure
is performed for constraints on separation (lines 17–22). Finally, constraints on pattern
are checked (lines 23–25), detecting those applied on clusters of decayed records.

3.4 Detecting Constraint Violations

Once obsolete constraints are identified and filtered out, active constraints can be checked
and re-enforced, if necessary. Constraint checking is not necessary for all constraints
though: Constraints on co-appearnace and separation, oncesatisfied at timepointt0,
cannot be violated unless a re-clustering takes place. Hence, constraint violation check-
ing needs to be invoked for constraints on attribute and constraint on pattern only.

An active constraint on attributeattr(C,A,X) may be violated by the newly inserted
data, i.e. whenever a recordx is inserted such thatx.A < X. The detection of violations
for these constraints can be incorporated inConstraintUPD of Fig. 1, line 10.

Active constraints on pattern may also be violated, since the decay of records affects
the cardinality, mean, standard deviation and further properties of clusters. A constraint
pattern(C, a,X) refering to a clusterC can be checked when testing whetherC still has
members (lines 23–25 of Fig. 1). Constraints that refer to clusteringζ as a whole are
always active and can be checked after the constraint updating process. It is noted that
constraints on the cardinality ofζ may be violated if some clusters are empty.

3.5 Priorization of Constraints for Re-Clustering

Constraint violation triggers alerts and data re-clustering. As pointed out in [5], the en-
forcement of some constraints may be intractable. Hence, constraint-based algorithms
do not guarantee that all constraints are satisfied. We partially alleviate this problem as
follows: First, we introduce aweightingof constraints based on the age of the records
they refer to. Next, at each timepointti we instantiateconstraints on attribute into con-
straints on co-appearance upon the datasetDi . Third, we use the weights of the con-
straints to compute ranks for constraint groups. Finally, we extend the constraint-based
K-means of [16] to deal withprioritized lists of constraints on co-appearance and sep-
aration. We discuss those steps in the following.

Weights of Constraints.The weight of a constraint on co-appearancep = inside(C, d)
or separationp = outside(C, d) is the maximum weight among the data ind:

weight(p) := maxx∈d{weight(x)}
where a record’s weight depends on its decay value. If data decay is implemented with a
sliding window, then all records inside the window have the weight 1, while all records
outside it have the weight 0. If decay is implemented as a continuous functionage() ∈
[0, 1] with value one for the newest records, then for each recordx, weight(x) := age(x).

The weight of a constraint on attributep = attr(C,A,X) is the maximum weight
among the relevant data inC: weight(p) := maxx∈C{weight(x)|x.A ∈ X}. Obviously,
decayed records do not contribute to the weight ofp, since their weight is zero. Finally,
constraints on patterns have always the weight 1.

123

Instantiating Constraints on Attribute.For the datasetDi at ti , we instantiate each con-
straint on attributeattr(C,A,X) ∈ Pattr into a co-appearance constraint by stating that
all recordsx ∈ C such thatx.A ∈ X must be assigned to the same cluster. Hence, we
derive fromattr(C,A,X) the constraintinside(C, dA,X) with dA,X = {x ∈ Di |x.A ∈ X}.
We denote this set of derived constraints on co-appearance as Derivedin.

It is noted that a derived constraint is extensionally but not intentionally equivalent
to the original one: The derived constraint is not violated if a new recordy with y.A ∈ X
is not inC. Hence, we use derived constraints only during re-clustering. It is also noted
that the weight of the derived constraint is the same as the weight of the original one,
since they both consider the same non-decayed data records.

Ranking Constraints.For constraint ranking, we deriven adjacent intervals of weight
valuesrank1, . . . , rankn, such thatranki > ranki+1. We associate with each interval
ranki two sets of constraints: The setci consists of the original and derived active con-
straints on co-appearance that have weights inranki, while si accommodates the active
constraints on separation with weights inranki.

Enforcing a Prioritized List of Constraints.In Fig. 2 we present a prioritized variation
of the constraint-based K-means proposed in [16]. Our algorithm takes as input a lower
boundaryτ over the ranks of constraints and builds clusterings that satisfy most con-
straints downtoτ by performing up tom attempts/iterations. It deals with constraints
on co-appearance (original and derived ones) and on separation. When specifyingK,
constraints on this number (i.e. constraints on pattern) are also respected. Further con-
straints on pattern are only checked after the re-clustering.

Our prioritized constraint-based K-means consists of two phases: In Phase I (lines
1–15), it considers the constraints on co-apperance, starting with the highest rank and
building one clustering per rank if possible. In Phase II (lines 16–22), it considers the
constraints on separation, again starting with the highestrank. It returns the clusteringξ0
that satisfies most co-apperance constraints (line 23) and the clusteringξ1 that satisfies
all constraints on separation downto a minimum rankrankx (line 24). Clusterings that
violate individual constraints on separation are also retained for inspection (line 19).

Our algorithm starts by building a set of proto-clusters, similar to the connected
components of the original algorithm in [16]: The proto-clusters satisfy constraints on
co-apperance ofranki (lines 2,3). For each proto-cluster, the average of the datarecords
is computed and used as centroid thereafter (line 4). We assume that the number of clus-
tersK does not change, so that the number of clusters involved in constraintŝk cannot
exceedK. The remaining centroidsK − k̂ are generated randomly. Clusterings are then
built progressively, ensuring that more and more constraints of lower weights are sat-
isfied (line 12), until some constraint violation occurs (line 13). Thereafter, separation
constraints are considered against the retained clusterings (lines 16-22).

4 Conclusions and Outlook

We have presented a model for user constraints, which encompasses constraint check-
ing, updating and enforcement over a data stream. Our model is motivated by the ob-
servation that user constraints over a data stream are of different nature than constraints

124

1 for each i = 1, . . . ,n and while rank i > τ do
2 for each cluster C appearing in constraints of c i do
3 protoC← ∪{d|p ≡ inside(C,d) ∈ c i}
4 compute the centroid of protoC as the average of the records in it
5 endfor // k̂ centroids generated from proto-clusters
6 generate K − k̂ cluster centroids for clustering ζ i
7 iterate at most m times
8 assign each record x ∈ D i to the closest feasible cluster
9 recalculate the centroids of ζ i
10 end-iterate
11 if ζ i has converged
12 then retain ζ i; continue for i ← i + 1
13 else break
14 endif
15 endfor
16 for each j = i, . . . , 1 such that ζ j exists do
17 for each i = n, . . . ,1 and while rank i > τ do
18 if there is a p ∈ s i that is violated in ζ j
19 then retain (ζ j, rank i, p)
20 else retain (ζ j, rank i, ∅) // ζ j satisfies all separation constraints of rank i
21 endif
22 endfor
23 ξ 0← ζ i where i is minimum // clustering satisfying most co-appearance constraints
24 ξ 1← ζ u such that (ζ u, rank x, ∅) is retained and rank x is minimum
25 return ξ 0, ξ 1

Fig. 2. Prioritized variation of constraint-based K-means (cf. [16]) for constraints over a stream

over static data. Hence, next to constraints over individual records in the clusters, we
consider constraints on the statistics of the clusters and on the dominant attribute values
of the clusters. Our constraint updating algorithm eliminates constraints refering to de-
cayed data and assigns weights to retained constraints - computed upon the age of the
associated data records.

The violation of active constraints calls for constraint-sensitive re-clustering. To
this purpose, we extend the constraint-based K-means algorithm of [16]. Our algorithm
exploits the weights of the constraints by attempting to enforce as many high-weight
constraints as possible.

Our approach is only an initial conceptual effort in modeling and enforcing con-
straints upon streams. We intend to study extensions of constraint-enforcing algorithms
with convergence guarantees, as those proposed in [7], and design them for different
types of constraints on streams. Further, we are interestedin early indicatorsof a forth-
comingconstraint violation and intend to study how functions thatdepict the statistics
of clusters and clusterings can serve to this purpose.

125

References

1. S. S. Anand, D. A. Bell, and J. G. Hughes. The Role of Domain Knowledge in Data Min-
ing. In CIKM ’95: Proceedings of the Fourth International Conference on Information and
Knowledge Management, pages 37–43, New York, NY, USA, 1995. ACM Press.

2. S. Basu, M. Bilenko, and R. J. Mooney. A Probabilistic Framework for Semi-supervised
Clustering. InKDD ’04: Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 59–68, New York, NY, USA, 2004. ACM
Press.

3. K. Bennett, P. Bradley, and A. Demiriz. Constrained K-Means Clustering. Technical report,
Microsoft Research, 2000. MSR-TR-2000-65.

4. M. Bilenko, S. Basu, and R. J. Mooney. Integrating Constraints and Metric Learning in Semi-
supervised Clustering. InICML ’04: Proceedings of the twenty-first international conference
on Machine learning, page 11, New York, NY, USA, 2004. ACM Press.

5. I. Davidson and S. Basu. Clustering with Constraints. InTutorial at the The 5th IEEE
International Conference on Data Mining, Houston, Texas, USA, 27-30 November, 2005.

6. I. Davidson and S. S. Ravi. Agglomerative hierarchical clustering with constraints: Theoreti-
cal and empirical results. InPKDD’05: Principles of Knowledge Discovery from Databases,
pages 59–70, 2005.

7. I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means al-
gorithm. InSIAM’05: Society for Industrial and Applied Mathematics International Confer-
ence on Data Mining International Conference in Data Mining, Newport Beach, California,
USA, 21-23 April, 2005.

8. M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a review.SIGMOD
Rec., 34(2):18–26, 2005.

9. D. Gunopulos, M. Vazirgiannis, and M. Halkidi. From Unsupervised to Semi-supervised
Learning: Algorithms and Evaluation Approaches. InSIAM’06: Tutorial at Society for
Industrial and Applied Mathematics International Conference on Data Mining, Bechesoa,
Marylan, USA, 20-22 April, 2006.

10. M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, andC. Domeniconi. A Framework
for Semi-Supervised Learning Based on Subjective and Objective Clustering Criteria. In
ICDM’2005: IEEE International Conference on Data Mining, pages 637–640, 2005.

11. M. Halkidi and M. Vazirgiannis. Clustering Validity Assessment: Finding the Optimal Par-
titioning of a Data Set. InICDM’2001: IEEE International Conference on Data Mining,
pages 187–194, 2001.

12. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional data mining.
Computer, IEEE Computer Society Press, 32(8):46–50, 1999.

13. I. Kopanas, N. M. Avouris, and S. Daskalaki. The Role of Domain Knowledge in a Large
Scale Data Mining Projects. In I. P. Vlahavas and C. D. Spyropoulos, editors,Methods
and Applications of Artificial Intelligence, Second Hellenic Conference on AI, SETN 2002,
volume 2308 ofLecture Notes in Computer Science. Springer, 2002.

14. M. Vazirgiannis, M. Halkidi, and D. Gunopoulos.Quality Assessment and Uncertainty Han-
dling in Data Mining. Springer-Verlag, LNAI Series, 2003.

15. K. Wagstaff and C. Cardie. Clustering with Instance-level Constraints. In ICML’00: Proceed-
ings of the Seventeenth International Conference on Machine Learning, pages 1103–1110,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

16. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-meansClustering with
Background Knowledge. InICML’01: Proceedings of 18th International Conference on
Machine Learning, pages 577–584, 2001.

126

StreamSamp

DataStream Clustering Over Tilted Windows Through
Sampling

Baptiste Csernel1, Fabrice Clerot2, and Georges Hébrail3

1 École Nationale Supérieure des Télécommunications, 46 rue Barrault, 75013 Paris
Département Informatique et Réseaux. csernel@enst.fr

2 France Télécom R&D, 2 avenue P. Marzin, 22307 Lannion
fabrice.clerot@orange-ft.com

3 École Nationale Supérieure des Télécommunications, 46 rue Barrault, 75013 Paris
Département Informatique et Réseaux. hebrail@enst.fr

Abstract. This article presents StreamSamp, a new algorithm for data
stream summarizing. The approach proposed here is simply based on the
fundamental technique of sampling the entering stream followed by an
intelligent storage of the generated samples thus allowing for the study of
the entire stream as well as a part of it. This algorithm is of course one
pass and benefits from its capability to process large amounts of high
speed data independently of its dimensionality. The versatility of this
summarizing algorithm as a pre-processing bmock is contrasted with
other more dedicated state-of-the-art algorithms and its performances
are illustrated on a clustering task by a comparison with the perfor-
mances of CluStream, a reference algorithm in the field for this task.

1 Introduction

In the last few years, a growing number of applications or industrial systems
have had to deal with data streams that need to be controlled or measured in
one way or another. A data stream is defined here as an infinite sequence of
elements generated continuously at a fast rate in regard to the treatment and
storage capacity available.

Examples of such data streams can be found in applications as different as
web site logs ([1]), mobile or main phone telecommunication tickets ([2]), or in
sensor data, for traffic sensors for instance, but also for stock indexes ([3]) or
meteorology ([4]). It thus seems reasonable to assume that, in the long run, most
networked economies will generate, for control or marketing purpose, important
quantities of data streams.

Depending on the application type, the treatments that are required on data
streams range from the design of SQL-like systems adapted to data streams to the
detection of specific patterns within the streams and this area (”stream-mining”)
is becoming very active with contributions from the data-mining, data-base or
machine learning communities.

127

2

In this article, we introduce a new versatile data stream summary, Stream-
Samp and illustrate its performance on the unsupervised data stream clustering
task.

1.1 Problem Definition

The classic unsupervised clutering problem is, for a given set of elements, to
partition them into a given number of classes in order to regroup in the same
class similar elements, where this similarity is defined in regard to a given metric
or an objective function chosen according to the problem at hand. This problem
has been given a lot of attention in the data mining community for years due to
its many uses in all kind of applications.

When it comes to data streams, the problem remains the same but a number
of additional constraints have to be taken into account which prevent the use of
previously developed methods. Namely, considering the nature of a data stream,
algorithms are allowed at most one pass over the data, and, despite the stream
being endless, must run using a fixed amount of memory while taking into ac-
count the evolution of the streaming data over time. Last but not least, since
the data rate in streams is expected to be high, the treatment time per element
has to be accordingly low.

1.2 Related Work

The data stream mining community has already put forward a number of cluster-
ing algorithms for data streams. Among these, only two will be considered here.
The first one called Smaller Space and developed by S. Guha et. al. in [5] has a
concept slightly similar to the one described here. The other one, proposed by C.
Aggarwal et al. in [6] is certainly one of the most successful recent algorithms,
judging both by its performance and how it was received by the community.

Smaller Space is based on a divide and conquer approach. The algorithm
operates by clustering successive chunks of data, each time keeping only the
centroids resulting from the clustering. When a sufficient number of chunks have
been read, all the so far calculated centroids are clustered into higher level clus-
ters. This time again, only the centroids are kept. The process is then repeated
at each level of the hierarchy. This algorithm is efficient, however, it can only
provide results for the whole stream, and not for any given portion of it as more
recent algorithms can. Besides, it only gives the center of each class and no in-
formation regarding the radius or the population of a class reducing the value
of the resulting information.

CluStream is mainly based on two ideas. The first one, inspired by the classic
clustering algorithm BIRCH [7] is to use micro classes to summarize the data
stream in central memory by keeping only a small sketch called a Cluster Feature
Vector (CFV) for each of them. A CFV is a structure containing for a given
micro class, its number of elements, and for each variable the sum of its values
on the elements contained by the micro class, as well as the sum of all their
values squared. In the case of CluStream, these two sums are also kept for the

128

3

timestamps of each element which are treated as just another variable. Upon
receiving a new stream element, the algorithm assigns it to its closest micro
class and updates this class’ CFV information accordingly. If no micro class is
found close enough to the new element, a new micro class is created centered on
that element, while at the same time two older micro clusters are merged or one
is destroyed to preserve a constant number of micro classes while still remaining
representative of the stream. The evolution of all the micro classes is tracked
down through the use of unique identifiers which enable to follow the evolution
of each micro cluster in CluStream even through several fusions.

The second idea is to take snapshots of the state of the algorithm at pre-
defined times by saving on disk the CFV of all micro classes. Those snapshots
are then saved according to a geometric time frame designed to hold more snap-
shots for times closer to the current time and less and less of them as they age
(this is referred to as tilted windows). The mathematical properties of the CFVs,
the fact that they include timestamps information about the clusters, and the
records of the identifiers of merged clusters allow for substraction operations to
be executed between two snapshots to obtain the contents that went through
the stream between the dates at which they were taken and thus keep track of
the evolution of the micro clusters.

Then, the final clustering step is achieved by clustering the micro classes
through a classic clustering algorithm using the CFV as elements weighted by
the number of elements they represent. Such clusters built from carefully selected
snapshots so as to represent a given portion of the stream are really representa-
tive of the information contained.

This principle of a two step clustering based first on an online part using
some micro clusters and a system of snapshots and an offline part that clusters
the micro cluster to produce the final result has appealed the community with
its flexibility and the many post-treatments which can be applied on the stored
snapshots. A number of variations have been published with different summary
structures or clustering algorithms [8–10].

2 StreamSamp

The work presented in this paper is based on a two step approach inspired
from CluStream, but whereas CluStream is based on BIRCH and the kmean
algorithm, StreamSamp is based on sampling.

2.1 Principle

The algorithm which builds the StreamSamp summary is quite simple. As ele-
ments of the stream go by, they are sampled in a purely random way at a fixed
sampling rate α and kept in a sample. When that sample has reached a given
size T it is stored with the dates marking its starting and ending point and it
receives the order 0. Another sample is then started to replace the previous one
in the stream’s treatment (see fig. 1 on page 5).

129

4

It is of course impossible to store all the samples thus created because of the
unending nature of the stream. To solve this problem, we design the summary
structure so as to make samples cover periods of time of varying length, the older
the sample, the longer the covered period of the stream. In practice, when the
number of samples of a given order o has reached a given limit L, the two oldest
samples of this order are fused into a single sample of size T and of order o + 1.
This new sample covers the same period of time as it’s two parent samples put
end to end (see fig. 2 on the next page) and is built by randomly keeping T/2
elements of each of its parent samples.

A sample on any given part of the stream or the whole stream can then be
created by fusing together a number of samples (fusing all the stored samples
providing a sample for the entire stream). If samples of different orders are to
be fused, they must be weighted in order to retrain an equal representativity for
each element of the final sample. This is achieved by giving a weight of 2o to
all the elements of a sample of order o. The final sample thus constructed then
remains representative of the data it summaries.

It is on this final sample built according to the portion of the stream which
has to be analyzed that all the real analysis will be made. Since this sample is
a normal weighted sample, all classic techniques of data analysis can be directly
applied to it. In this article, only the clustering process has been evaluated by
using the kmeans algorithm on the samples, however, any algorithm able to deal
with weighted samples could be applied to this summary, which makes it a very
versatile tool.

Finally, to evaluate the quality of the resulting clustering, a score equal to the
sum of the squared distances of all the elements of the reference sample to their
cluster centroid is calculated. This score is known as the intra cluster inertia
(also SSQ, for Sum of SQuare in [6]). The kmeans algorithm is thus repeatedly
launched 10 times, and each time, the intra cluster inertia is calculated using
the final sample as a reference. The final classes selected are those produced
by the kmeans launch that resulted in the highest score and represent the final
result of the algorithm. Each of these classes is representative of the classes of
the streamed data and can be used to give estimates of the number of elements,
the center, and the radius of the original classes.

2.2 Tests

Series of tests have been run so as to assess the performance of StreamSamp
and compare it with CluStream, and the tests settings will be presented here.
The data file is read at a randomly variable speed to simulate changes in the
stream’s speed in a real word type of application. The data is then processed
by the algorithms, both of them parametrized so as to use the same amount of
memory. Once the processing of the stream is done, the actual tests are run on
the resulting summaries, samples for StreamSamp, and snapshots of the micro
cluster’s CFV for CluStream. The file concerning the horizon of the stream on
which the accuracy of the clustering needs to be tested is then built according to
each algorithm’s process and the resulting final file is clustered 10 times in both

130

5

Fig. 1. Archiving of a new sample for L = 3

Fig. 2. Archiving of a new sample for L = 3

131

6

cases using the k-means algorithm and the same number of expected clusters;
(k = 5). The best pass is then selected by estimating it’s intra cluster inertia,
using the final sample file (StreamSamp) or the centroids of all the micro clusters
extracted from the CFV (CluStream) as a reference file.

The quality of the final clusterings is then assessed by calculating the intra-
cluster inertia using the original data file of the stream as a reference file.

For the purpose of this test, we used the data intrusion set given at the 1999
KDD cup and used by Aggarwal to evaluate the performance of his algorithm in
[6]. The parameter setting for CluStream were the same has the ones that were
used in that article. For StreamSamp, the size of the samples and the maximum
order limit were chosen so as to make it use as much memory as CluStream
(T = 200L = 4α = 0.5).

In order to evaluate the performance of both algorithms, tests have been run
on various portions of the streams. In one series of analysis have been performed,
in one fig. 3 on the facing page, the horizon of the clustered elements ranges from
the last element of the stream received to encompass an ever larger number of
elements, each time including more of the past streamed data in the analysis.
In an other fig. 4 on the next page, the horizon starts with the first element
and then grows as well to include newer elements. Finally, in the last one, one
of the experiences described by Aggarwal in [6] has been reproduced, using the
published score for CluStream’s performance. In that test, the horizon starts at
various places in the stream and each time encompasses 50000 elements.

In all tests it appears that StreamSamp’s gives much better results than
Clustream with a performance increase ranging between 10 and 15%. It does
however appear that performance on the oldest data does not increase nearly as
much as on more recent elements.

The speed of StreamSamp has also been assessed during those tests; the
results are shown in fig. 4 on the facing page. The speed reported here for
CluStream comes from [6] as our own java implementation of CluStream didn’t
prove as fast. Still, the increase of performance of StreamSamp over CluStream
is of an order of magnitude.

2.3 Discussion

We have chosen to test CluSamp and CluStream over large time horizons encom-
passing portions of the stream lying both close and far in the stream history so as
to assess how CluSamp and CluStream deal with old and new stream data and
how they can be used to run analysis on precise chunks of data having occured
far in time in the stream history. Since both algorithms only take into account
relevant data, the performance increase observed for CluSamp over CluStream
isn’t as dramatic as the one observed for CluStream over Stream in [6]. Further-
more, the results indicate that the performance of StreamSamp might start to
decrease slightly when very old elements are included in the horizon. This can
be explained by the increasing weight of old samples for a fixed sample size ,
which slowly decreases the representativity of the data. However, StreamSamp

132

7

Fig. 3. Result Curve for an Increasing Quantity of Stream Data Starting with the Last
Element

Fig. 4. Result Curve for an Increasing Quantity of Stream Data Starting with the First
Element

133

8

Fig. 5. Result Scores for Various Chunks of the Stream

Fig. 6. Result Curve for Stream Processing Speed

134

9

outperforms CluStream in all the tests run, proving that samples are a more
effective representation than micro clusters even for clustering tasks.

Besides, if only the case of clustering has been studied here, the Streamsamp
summaries can be used for any type of analysis to obtain information on the
stream’s data distribution, making it an extremely flexible and reusable tool.

Moreover, StreamSamp’s execution speed is not affected by the dimensional-
ity of the stream elements and is only slightly affected by the length of the stream
since the number of fusions to realize at the arrival of a new element increases
linearly with the number of stored samples, as shown in fig. 6 on the preceding
page. This is especially interesting when dealing with complex data, and, com-
pared to an algorithm like CluStream which requires an important amount of
online computation at the arrival of each new stream element, StreamSamp has
a very straightforward online part which allows it to deal with very high speed
streams.

Another feature of StreamSamp lies in the fact that since the granularity
of the samples is a function of the stream speed and not of a fixed algorithm
parameter or a function of time; the amount of samples stored is thus more
pertinent. At a time when the stream has a speed burst, meaning that more
information and probably of a different kind is going through, more samples will
be taken than at times when the stream runs at an average speed. This insures
that even for old samples, active parts of the stream will be more accurately
represented, which counters to some point the problem of aging samples.

Finally StreamSamp has a very small number of parameters that need to
be set beforehand for the on-line part. Only the sample rate, the maximum
size of each sample and the maximum number of samples of each order is to
be set according to the expected speed of the sampled stream and the size of
the available memory storage. This is in strong contrast to most other existing
algorithms whose on-line part have to be parametrized with a larger number
of parameters, most of them depending both on the stream’s speed and, more
importantly, on the nature of the data.

If it is rather to be compared with other stream sampling algorithms such as
for instance reservoir sampling [11] [12], StreamSamp offers a radically different
and more flexible approach. While former algorithm adapted to the content of the
stream by modifying the chance of an element in the sample to be updated while
maintaining the same weight for all the elements in the sample, StreamSamp
does the opposite by maintaining a constant sampling rate while changing the
weight of the sampled elements with time. This allows StreamSamp to produce
a sample of the whole stream or of only a selected portion of the stream whereas
former algorithms could only maintain a sample of the whole stream.

3 Conclusion

In this paper, StreamSamp, a new algorithm for data stream clustering and
stream data analysis has been presented. Its performance have been assessed for
clustering tasks and it has been shown to outperform the CluStream algorithm

135

10

in terms of both clustering accuracy and execution speed. Thus proving it to
be a particularly well suited stream clustering algorithm for high speed data
streams of large elements, offering an attractive alternative to other existing
stream clustering algorithms. Furthermore, the summaries obtained are highly
versatile and can be used off-line for any other kind of statistical processing
which can be applied to a weighted sample.

References

1. Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Quicksand: Quick sum-
mary and analysis of network data. Dimacs technical report, Department of Com-
puter Science, Brown University (2001)

2. Cortes, C., Fisher, K., Pregibon, D., Rogers, A.: Hancock: a language for extracting
signatures from data streams. In: Proceedings of the 2000 KDD Conference. (2000)
9–17

3. http://www.traderbot.com: (Traderbot home page)
4. Carney, D., Cetinternel, U., Cherniack, M., Convey, C., Lee, S., , Seidman, G.,

Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams - a new class of dbms
applications. Technical Report CS-02-01, Department of Computer Science, Brown
University (2002)

5. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:
IEEE Symposium on Foundations of Computer Science, IEEE (2000)

6. Aggarwal, C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data
streams. In: Proceedings of the 29th VLDB Conference, Berlin, Germany (2003)

7. Zhang, T., Ramakrishnan, R., Livny, M.: Birch an efficient data clustering method
for very large databases. In: SIGMOD, Montreal, Canada, ACM (1996)

8. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L., Meyerson, A.: Streaming-
data algorithms for high quality clustering. In: Proceedings of the 18th ICDE 2002
Conference, IEEE (2002)

9. Jin, H., Wong, M., Leung, K.: Scalable model based clustering by working on data
summaries. In: Proceedings of the 3rd ICDM 2003 Conference, IEEE (2003)

10. Park, N.H., Lee, W.S.: Statistical grid based clustering over data streams. In:
SIGMOD Record. Volume 33., ACM (2004)

11. Vitter, J.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1)
(1985) 37–57

12. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, San Francisco, California, ACM SIAM, ACM Press (2002)
633–634

136

Structural Analysis of the Web

Pratyus Patnaik1, Sudip Sanyal1

1 Indian Institute of Information Technology, Allahabad, India
pratyus@ug.iiita.ac.in, ssanyal@iiita.ac.in

Abstract. World Wide Web has evolved exponentially since its inception.
Today, it has become important for the algorithms of the web applications like
searching, web-crawling, community discovery to exploit the information
hidden in the hyperlink graph of the Web. This is the main driving force of the
webmining community. We present in this paper an extensive analysis of the
web, purely, based on the graph analysis algorithms. Prior works in the graph
based analysis of the Web have been based on certain criteria and themes. But,
we believe, for the web, which has evolved stochastically, only a pure graph
based analysis can give us the true insights. We have carried out our analysis on
isomorphic subgraphs of the Web to arrive at our conclusions. We reaffirm that
the Web, is indeed a Fractal. Each structurally isomorphic subgraph shows the
same characteristics as the Web and follows the classical Bow-tie model.

Keywords: Web Mining, Subgraph Isomorphism, Graphs, Fractals.

1 Introduction

The Web is an ever growing repository of large amount of information, spread across
several servers in a complicated network. With the advent of Peer2Peer, web
publishing every user is a disseminator of information. With every new webpage, a
new node and with every link, a new directed edge is added to the web graph.

This growth in the size of the web presents an important task of mining and
extracting relevant information from the hyperlink graph which can be exploited by
simple searching and crawling algorithms as well as by advanced web applications
such as web-scale data mining, community extraction, construction of indices,
taxonomies, and vertical portals. In the recent past many application have surfaced
which exploit the knowledge of the hyperlink structure of the web. Few such
applications are the advanced search applications [4, 5, 6], browsing and information
foraging [7, 8], community extraction [9], taxonomy construction [10].

Substantial amount of work has been carried out in the recent past [1, 2, 3]. [1] is
very theoretical, and proposes stochastic models to explain the hyperlink structure of
the Web. [3] talks about Small World Network and Scale Invariance in the structure
of the Webgraph. It also proposes the classical bow-tie structure based on the various
graph parameters (discussed in the next section). In [2], Kumar et. al. have extended
the above model and have shown the self-similarity in the Web i.e., each thematically
unified region displays the same characteristics as the Web at large. They have

137

characterized sub graphs as collections of Web pages that share a common attribute
like keyword, content, location and some randomly generated subgraphs.

But, we believe to capture the true insights on the structure of the web, which has
evolved stochastically over the period of its existence, we need to make use of pure
graph based sub graph isomorphism algorithms. We applied iterative subgraph
isomorphism algorithm on the webgraph to get the subgraphs. We then calculated
various graph analysis parameter for those subgraphs. We found that each structurally
similar subregion shows the same characteristic as the web and this holds for a
number of parameters.

In the subsequent sections we have described our experiments, our results and
finally the conclusions. But before delving deeper into the experiment, in the next
section we briefly discuss the hyperlink webgraph, the graph parameters and the
subgraph isomorphism algorithm.

2 Terminologies and Algorithm

2.1 Web Graph

Our view of the Web as a graph is same as [2] i.e. we ignore the text and other
content in pages, focusing instead on the links between pages. In the terminology of
graph theory [11], we refer to pages as nodes, and to links as edges. In this
framework, the Web is a large graph containing over a billion nodes, and a few billion
edges.

2.2 Graph Terminologies

A directed graph consists of a set of nodes, denoted as V and a set of edges, denoted
as E. Each edge is an ordered pair of nodes (u, v) representing a directed connection
from u to v. The outdegree of a node u is the number of distinct edges (u, v1), ,
(u, vn) (i.e., the number of links from u), and the indegree is the number of distinct
edges (v1, u), . . . , (vn, u) (i.e. the number of links to u). A path from node u to node
v is a sequence of edges (u, u1), (u1, u2), . . . , (un, v). As the graph is directed, a path
from u to v does not imply vice-versa. The distance from u to v is n+1, for the
smallest value of n. If no path exists, the distance from u to v is infinity. If (u, v) is an
edge, then the distance from u to v is 1.

2.3 Graph Analysis Parameters

A brief description of the parameters we have used in the analysis of the Web graph:

138

Characteristic Path Length and Diameter. The characteristic path length defines
the typical distance from every node to every other node. The diameter represents the
maximum possible distance between all the pair of reachable nodes. The
Characteristic path length is calculated by finding the median of the means of the
shortest paths from each node to every other node.

Clustering Coefficient. It is defined as the mean of the clustering indices of all the
nodes in the graph. To find it, we find the neighbors of the node and then find the
number of existing links amongst them. The ratio of the number of existing links to
the number of possible links gives the clustering index of the node.

Centrality and Centralization. The degree centrality for a node is defined as:

where a (pi, pk) is 1 iff pi and pk are directly connected in the direction from pi to
pk. The degree centrality of a point is useful as an index of a potential communication
ability.

Degree Centralization. The centralization of a network is calculated as the ratio of
the centrality of each node of the network with a star network of the same size.

Betweenness Centrality. It is based upon the frequency with which a point falls
between pairs of other points on the shortest or geodesic paths connecting them.

Closeness Centrality. It is related to the control of communication in a somewhat
different manner. A point is viewed as central to the extent that it can avoid the
control potential of others.

2.4 Web Graph Characteristics

As mentioned earlier Small World Network and Scale Invariance are two important
characteristics reported in earlier works [1, 2, 3].

139

Small World Network. It is a complex network in which the distribution of
connectivity is not confined to a certain scale, and where every node can be reached
from every other by a small number of hops or steps. The Web was shown to exhibit
this characteristic first by [3], since then many have reinforced this assertion.

Scale Free Networks. Scale-free Networks, are the outcome of random construction
processes. One of their common property is that the vertex connectivities follow a
scale free power-law distribution. Power-law distribution states that for a positive
integer, the probability of the value i is directly proportional to i^(-k) for a small
positive number k. Scale free Networks are generic and are preserved under random
degree preserving rewiring. They are Self Similar and Domain Independent [12].
 Scale-free networks usually contain centrally located and interconnected high
degree nodes, which influence the way the network operates. For example, random
node failures have very little effect on a scale-free network's connectivity or
effectiveness; but deliberate attacks on such a node can lead to a complete break
down [12].

2.5 Subgraph isomorphism Algorithm

Although, graph isomorphism is a classical problem, this NP hard problem has no
foolproof algorithm yet. Algorithms that we considered for our analysis were FSG
[13], gFSG [14], gSPAN [15], GREW [16] and SUBDUE [17]. All these graph
algorithms, except the last one, cannot handle graphs of more than 1000 nodes.

SUBDUE is heuristics based and hence is able to work on large unlabeled graphs.
But, it gives an approximate result. Input to the SUBDUE system was the single web
graph. SUBDUE outputs substructures that best compress the input dataset according
to the Minimum Description Length (MDL) [18] principle. MDL has the fundamental
idea that any regularity in a given set of data can be used to compress the data, i.e. to
describe it using fewer symbols than needed to describe the data literally [17]. Since
we wanted to select the hypothesis that captures the most regularity in the data, we
looked for the hypothesis with which the best compression can be achieved.

SUBDUE performs a computationally-constrained beam search which begins from
substructures consisting of all vertices with unique labels. The substructures are
extended to generate candidate substructures. Candidate substructures are then
evaluated according to how well they compress the Description Length (DL) of the
dataset. Compression takes place by replacing all the subgraph instances by a single
vertex. The DL of the input dataset G using substructure S can be calculated using the
following formula,

I(S) + I(G|S)
where, S is the substructure used to compress the dataset G. I(S) and I(G|S) represent
the number of bits required to encode S and dataset G after S compresses G. This
procedure repeats until all substructures are considered or user-imposed
computational constraints are exceeded. At the end of the procedure SUBDUE reports
the best compressing substructures. This can also be carried out iteratively.

140

3 Experimental Details

We crawled webdata using WebMine [19]. We collected a hyperlink graph of
websites of 1 million nodes and nearly 2 million edges. We have restricted our
analysis to website graph because of the limitation of the SUBDUE algorithm in
handling very large graphs. The graph was partitioned to make sample graphs of size
ranging from 30K nodes to 100K nodes. Then SUBDUE algorithm was used to
generate subgraphs of the sample graphs and also the complete webgraph. SUBDUE
iteratively ran thrice for each sample to generate subgraphs at three levels of
compression. WebMine tool was again used to compute various graph analysis
parameters for the web graph.

4 Results and Interpretation.

We present our results in the tables below:

Table 1. Results for indegree and outdegree exp. coefficients for the power law
equation.

Indegree ex. Coeff. (k) Outdegree ex. Coeff.(k)Sample Num
ber of
Nodes I1 I2 I3 I1 I2 I3

Sample1 100K 2.17 2.16 2.16 2..23 2.21 2.18
Sample2 80K 2.09 2.06 2.04 2.11 2.07 2.07
Sample3 70K 2.11 2.08 2.06 2.15 2.13 2.12
Sample4 50K 2.06 2.06 2.05 2.12 2.11 2.11
Sample5 30K 2.13 2.13 2.10 2.13 2.12 2.12

Table 1 shows the coefficient of the power law for indegree and outdegree. I1, I2 and
I3 represents the iteration level of SUBDUE. We see that the sample graphs and their
subgraphs adhere to the power law, which is a property of Scale free Graph. And the
value of the Degree coefficient is near about 2.1, conforming to the earlier
calculations [2, 3].

141

Fig. 1. Graph diameter Vs Number of nodes

Figure 1 shows the graph for Diameter Vs Number of nodes in the graph. Diameter
was calculated for the sample graphs and their respective subgraphs. We can see it
follows nearly a logarithmic increment. For the Web graph of 100K nodes it was 18.
The diameter saturates near the value 17. This again reaffirms the scale free nature of
the web.

Table 2 gives the range of values of parameters for all the samples’ three iterative
subgraphs, formed after the compression in SUBDUE, gave the following values for:

Table 2. Graph Parameter values.

Parameter Range
Clustering Coefficient 0.13-0.15

Betweenness Centralization 0.03-0.04
Closeness Centralization 0.36-0.41

The range of value of clustering index clearly indicates that the samples’ subgraphs
are much clustered and, so, exhibit small world network. The value range of
Betweenness Centralization indicates that there are a few nodes in the sample graphs
that lie in the path of most of the pairs and, hence have a significant influence over the
communication of the other nodes. This indicates the presence of a core inside the
subgraphs. The value range of closeness centralization indicates that there are a few
nodes that are close to most of the other nodes in the subgraphs and, thus again,
indicates towards the existence of a core in the sample graph.

Another interesting parameter that we evaluated was the compression quotient
after every iteration level of SUBDUE.

142

Q = (Vf+Ef)/ (Vi+Ei)

Where, Vf and Ef are number of Vertices and Edges in the compressed graph and Vi
and Ei are the respective numbers in the original graphs.

Table 3. Results for compression Quotient

Sample Number
of nodes

Q1 Q2 Q3

Sample1 100K 0.931 0.847 0.863
Sample2 80K 0.891 0.871 0.875
Sample3 70K 0.953 0.941 0.949
Sample4 50K 0.924 0.911 0.918
Sample5 30K 0.956 0.892 0.922

We notice that the compression is more at the last level of SUBDUE iteration, which
also supports the scale invariance in the sample webgraphs.

5 Conclusion.

We have carried out a pure graph based analysis of the web. And we have concluded
from an entirely structural point of view that the Web is a fractal - It has cohesive sub-
regions, at various scales, which exhibit the similar characteristics as the web for a lot
of parameters. Each isomorphic subgraph nearly follows the classical Bow-Tie
structure, with a robust core. This scalefree structural self similarity in the Web holds
the key to building the theoretical models for understanding the evolution of the
World Wide Web [2]. And further, this knowledge can be exploited while addressing
the issues like security and routing measures for data streams, searching the internet
aand also e-marketing.

References

1. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal,
“Stochastic models for the web graph”, In Proc. 41st FOCS, pages 57–65, 2000.

2. S. Dill, R. Kumar, K.S. Mccurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins, “Self-
similarity in the web”, ACM Trans. Inter. Tech., 2(3):205--223, 2002.

3. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. L. Wiener, “Graph structure in the web”, In Proc. 9th WWW, pages 309–320, 2000.

4. S. Chakarbarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan and S. Rajagopalan,
“Automatic resource compilation by analyzing hyperlink structure and associated text”, In
Proceedings of the 7th WWW/Comput. Netw. 30, 1–7, 65–74, 1998.

143

5. S. Chakarbarti, B. Dom, D. Gibson, S. Ravi Kumar, P. Raghavan, S. Rajagopalan and A
Tomkins, “Experiments in topic distillation”, In SIGIRWorkshop on Hypertext Information
Retrieval on the Web, 1998.

6. K.Bharat and M. Henzinger, “Improved algorithms for topic distillation in hyperlinked
environments”, In Proceedings of the 21st SIGIR, 104–111, 1998.

7. R.A. Botafogo and B. Shneiderman, “Identifying aggregates in hypertext structures”, In
Proceedings of the 3rd Hypertext Conference, 63–74, 1991.

8. J.Carriere, and R. Kazman, “WebQuery: Searching and visualizing the web through
connectivity”, In Proceedings of the 6th WWW 29, 8–13, 1257–1267, 1997.

9. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, “Trawling the web for cyber
communities”, In Proceedings of the 8th WWW/Comput. Netw. 31, 11-16, 1481–1493,
1999.

10. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, “Extracting large scale
knowledge bases from the web”, In Proceedings of the Conference on Very Large Data
Bases, 639–650, 1999.

11. F. Harary, “Graph Theory”, Addison Wesley, 1975.
12. L. Li, D. Alderson, R. Tanaka, J.C. Doyle, W. Willinger, ”Towards a Theory of Scale-Free

Graphs: Definition, Properties, and Implications”, 2005.
13. M. Kuramochi, and G. Karypis, “Discovering Frequent Subgraphs”, 2001
14. M. Kuramochi, and G. Karypis, “Discovering Frequent Geometric Subgraphs”, 2002
15. X. Yan and J. Han, ”gSpan: Graph-Based Substructure Pattern Mining”, 2002.
16. M. Kuramochi, and G. Karypis, ”GREW—A Scalable Frequent Subgraph Discovery

Algorithm”, 2003.
17. Cook Holder, et. al., “Subdue: Compression-based Frequent Pattern Discovery in Graph

Data”, Proceedings of the ACM KDD Workshop on Open-Source Data Mining, 2005.
18. P. Grunwald, “Tutorial Introduction to the Minimum Description Length Principle”.
19. S. Suman and S. Aggarwal, “WebMine: A tool to uncover the web”, 2005.

144

Author Index

Baena-Garcia, Manuel.77
Bifet, Albert . 77
Blekas, Konstantinos 47
Calders, Toon 87
Campo-Ávila, José del 57,77
Clerot, Fabrice 127
Csernel, Baptiste.127
Dexters, Nele 87
Fidalgo-Merino, Raúl 77
Gama, João 23,57
Gavaldá, Ricard.77
Goethals, Bart 87
Habich, Dirk . 67
Hébrail, Georges 127
Hinneburg, Alexander 67
Ivantysynova, Lenka 3
Jaroszewicz, Szymon 3
Kakoliris, Andreas 47
Kargupta, Hillol1
Karnstedt, Marcel67

Katakis, Ioannis 107
Kim, Yongdai 33
Menasalvas, Ernestina 117
Morales-Bueno, Rafael 57,77
Moreno, Carlos Ruiz 117
Park, Cheolwoo 33
Patnaik, Pratyus 137
Pedersen, Rasmus 97
Phuong, Nguyen Viet 13
Ramos-Jiménez , Gonzalo 57
Rodrigues, Pedro Pereira 23
Sanyal, Sudip 137
Scheffer, Tobias 3
Song, Moon Sup 33
Spiliopoulou, Myra.117
Tsoumakas, Grigorios 107
Vlahavas, Ioannis 107
Washio, Takashi.13
Yeon, Kyupil . 33

145

