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Privacy Case

• Nydia Velázquez (1982)

Three weeks after Nydia Velázquez won the New 
York Democratic Party's nomination to serve in the 
U.S. House of Representatives, somebody at St. 
Claire Hospital in New York faxed Velázquez's 
medical records to the New York Post. The records 
detailed the care that Velázquez had received at 
the hospital after a suicide attempt--an attempt 
that had happened several years before the 
election. 

Database Nation: The Death of Privacy in the 21st Century, Simson

Garfinkel, Jan 2000, 1-56592-653-6
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Source: http://www.privacyinternational.org/issues/foia/foia-laws.jpg
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Source: http://www.privacyinternational.org/survey/dpmap.jpg
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National Laws

• USA 

n HIPAA for health care

◆ Passed August 21, 96

◆ lowest bar and the States are welcome to enact more stringent rules
s California State Bill 1386

n Grann-Leach-Bliley Act of 1999 for financial institutions

n COPPA for childern’s online privacy

n etc.

• Canada

n PIPEDA 2000

◆ Personal Information Protection and Electronic Documents Act

◆ Effective from Jan 2004

• European Union (Directive 94/46/EC)

n Passed by European Parliament Oct 95 and Effective from Oct 98. 

n Provides guidelines for member state legislation

n Forbids sharing data with states that do not protect privacy 
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Mining vs. Privacy

• Data mining
n The goal of data mining is summary results (e.g., classification, 

cluster, association rules etc.) from the data (distribution)

• Individual Privacy
n Individual values in database must not be disclosed, or at least no 

close estimation can be got by attackers

n Contractual limitations:  privacy policies, corporate agreements

• Privacy Preserving Data Mining (PPDM)
n How to transform data such that

◆ we can build a good data mining model (data utility)

◆ while preserving privacy at the record level (privacy)?
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Two Approaches

• Distributed

n Suitable for multi-party 

platforms

n Secure multi-party computation

n Tolerated disclosure: 

computationally private

• See some other excellent 
tutorials

• Randomization

n Perturb data to protect privacy 

of individual records.

n Preserve intrinsic distributions 

necessary for modeling.

n Tolerated disclosure: 

statistically  private

• Our focus
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Other Tutorials on PPDM 

• Privacy in data system, Rakesh Agrawal, PODS03

• Privacy preserving data mining, Chris Clifton, PKDD02, 
KDD03

• Preserving privacy in database systems, Johann-Chrostoph
Freytag, WAIM06

• Models and methods for privacy preserving data publishing 
and analysis, Johannes Gehrke, ICDM05, ICDE06, KDD06

• Cryptographic techniques in privacy preserving data mining, 
Helger Lipmaa, PKDD06
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Scope

Part I:  focus
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Part II: 

focus on  Random Response
.
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Outline (Part I)

Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

n Condensation or modeling based

Attacking Method

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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Additive Noise Randomization Example
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Assumption of Additive Noise

• In this tutorial, we assume the additive noise E is 
independent with the original data X.

• If E is correlated with X, it may significantly affect data 

utility although it may better preserve privacy.

n See Huang, Du and Chen SIGMOD05
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Additive Randomization (Z=X+Y) 
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...
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Algorithm
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Age

• R.Agrawal and R.Srikant SIGMOD 00
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Reconstruction Problem

• Original values x1, x2, ..., xn

n from probability distribution X (unknown)

• To hide these values, we use  y1, y2, ..., yn

n from probability distribution Y

• Given

n x1+y1, x2+y2, ..., xn+yn

n the probability distribution of Y

 Estimate the probability distribution of X.
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Intuition (Reconstruct single point) 

• Use Bayes' rule for density functions

10 90
Age

V

Original distribution for Age

Probabilistic estimate of original value of V
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Intuition (Reconstruct single point)

Original Distribution for Age

Probabilistic estimate of original value of V

10 90
Age

V

• Use Bayes' rule for density functions
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Reconstruct the Distribution

• Combine estimates of where point came from for all the 
points:

n Gives estimate of original distribution.
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• Converges to maximum likelihood estimate
n Agrawal and Aggarwal PODS 01

• Extension to muti-variate case 
n Domingo-Ferrer et al. PSD04

Distribution Reconstruction  Alg.

• Bootstrapping Algorithm
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Works well
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More Example
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Why privacy is preserved?

• Cannot reconstruct individual values accurately.

• Can only reconstruct distributions.

• Noise ↑ ⇒ quality of the distribution reconstruction ↓

Individual value reconstruction methods EXIST
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Simple Multiplicative Noise

• the value for the i-th individual’s j-th attribute.

• denotes the noise where all    ‘s for a given j follow the same 

distribution   

• It turns out to be additive noise by taking logarithms on both sides.

ijijij exy =

ijx

ije

Ni ,,1L= pj ,,1L=

),(
2

jjN σµ
ije

More details, See Kim and Winkler, 2003
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Outline

Part I:  Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Part II: Attacking Method

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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Rotation Randomization Example 
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Why R is orthonormal?

• When R is an orthonormal matrix (RTR = RRT = I)

n Vector length:  |Rx| = |x|

n Euclidean distance: |Rxi - Rxj| = |xi - xj|

n Inner product : <Rxi ,Rxj> = <xi , xj>

• Many clustering and classification methods are 

invariant to this rotation perturbation.

n Classification,  Chen and Liu, ICDM 05

n Distributed data mining, Liu and Kargupta, TKDE 06
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Rotation Example
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Rotation-Invariant Classifiers

• The classifier trained with the rotation perturbed dataset 
delivers the same accuracy as that trained with the the 
original dataset

• Examples
n KNN, Kernel methods (distance)

n SVM classifiers with three popular kernels

◆ Polynomial kernel & neural network kernel (inner product)

◆ Radial basis kernel (distance)

n Hyperplane-based classifiers (hyperplane)

Chen and Liu, ICDM 05
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Is Y=RX Secure?

• Can we get X from Y=RX when only Y is 
available?

n It seems Independent Component Analysis can help.

n X    =   AS ICA noise-free Model
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Outline

Part I:  Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Part II: Attacking Method

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

◆ Challenging problems

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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Linear Transformation Example
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R can be any random matrix
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General Linear Transformation

• Y = R X + E

n When R = I:      Y = X + E (Additive Noise Model)

n When RRT  = RTR = I and E = 0:     Y = RX (Rotation Model)

n R can be an arbitrary rotation matrix

• Is Y=RX +E more secure?

n Will be discussed in part II
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Condensation/modeling

• Idea

n Build some statistical model from the original data

n Apply model built to generate data

• Skipped due to time constraints
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Outline

Part I:  Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Part II: Attacking Methods

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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Motivation

• The goal of additive randomization-based perturbation

n To hide the sensitive data by randomly modifying the data values

using some additive noise

n To keep the aggregate characteristics or distribution remain 

unchanged or recoverable

• Do those aggregate characteristics or distribution contain 

confidential information which may be exploited by 

snoopers to derive individual’s sensitive data?

private information

More details, See Guo, Wu and Li, PDM 2006
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1αx 2αx

Inter-Quantile Range (IQR)

• Inter-Quantile Range                   is 

defined as                                        

while                        denotes the 

confidence.

• IQR measures the amount of 

spread and variability of the 

variable. Hence it can be used by 

attackers to estimate the range of 

each individual value.

],[ 21 αα xx

%)( 21 cxxxP ≥≤≤ αα

12 αα −=c

1αx 2αx
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Comparison with other Privacy definitions

• Interval privacy (Agrawal and Srikant, SIGMOD00)

n If the original value can be estimated with c% confidence to lie in 

the interval [a, b], then the interval width (b-a) defines the amount 

of privacy at c% confidence level

• Mutual Information (Aggarwal and Agrawal, PODS01)

• Reconstruction privacy (Rizvi & Haritsa, VLDB02)

• privacy breach (Evfimievski et al. PODS03)βα -to-
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Disclosure Measure
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•• contains the original valuecontains the original value
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specified privacy interval specified privacy interval 
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Extend to Multivariate Cases

• In practice, the distribution of multiple numerical 
attributes are often modeled by one multivariate normal 
distribution, N(μ,Σ)

• The ellipsoid {z : (z − µ)T Σ−1(z − µ) ≤ χ2
p(α)} contains a 

fixed percentage, (1 −α)100% of data values.

• The projection of this ellipsoid on axis zi has bound:

1λc
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1
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1Z
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Outline(Part I)

Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Attacking Methods

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ AK-ICA
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Individual Value Reconstruction (Additive Noise)

• Methods

n Spectral Filtering,  Kargupta et al. ICDM03

n PCA, Huang, Du, and Chen SIGMOD05

n SVD, Guo, Wu and Li, PKDD06

• All aim to remove noise by projecting on lower 
dimensional space.

n PCA is similar to SF except SF focus more on small data sets

n PCA is equivalent to SVD in some sense

• Let us focus on how PCA works first
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Preliminary

• F-norm and 2-norm

• Some properties
n and 

n

n ,the square root of the largest eigenvalue of ATA

n If A is symmetric, then                           ,the largest eigenvalue of A
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PCA Revisited

• Idea

n Given data points in n-dimensional space, project into 
lower k-dimensional space while preserving as much 

information as possible

n In particular, choose projection that minimizes the 

squared error in reconstructing original data
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EVD
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PCA Example

2nd principal vector

1st principal vectororiginal signal 1-d projection
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Data vs. Noise

Original data are correlated Noise are not correlated

2nd principal vector

1st principal vectororiginal signal noise
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PCA on Randomized Data

perturbed 1-d projection
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1-d vs. 2-d Estimation

original signal

Perturbed2-d estimation1-d estimation
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Why it works?

Original Data

• Correlated

• When we remove the 2nd

component, the actual 

information loss is smaller

Noise

• Uncorrelated

• Variance evenly distributed in 

the space

• When remove the 2nd

component, 50% noise is 

removed
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PCA Reconstruction Alg. (Up=U+V)

• Applying PCA on covariance matrices of Up and V

• Determining the first k components         based on

• Reconstructing the data:

T

pppp kk
QQUPUU == χ

ˆ

kpQ

vup Λ+Λ≈Λ

T

pppp

T

p QQUU Λ= T

vvv

T
QQVV Λ=
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Two Problems

• Problem 1

n How to determine k?

• Problem 2

n How accurate can we achieve?
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P1: Determining k

• Strategy 1:

n

• Strategy 2:

n

n The estimated data using                                 is approximate 

optimal 

1}2
~

|min{ −<= Viik λλ

}
~

|max{ Viik λλ ≥=

T

kkQQUPUU
~~~~ˆ

~ == χ
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Why strategy 2 is better?

• Strategy 2:

n The estimated data using                             is 

approximate optimal when 1}2
~

|min{ −<= Viik λλ

T

kkQQUPUU
~~~~ˆ

~ == χ

UUkf −= ˆ)(

VF

T

kk eeV λ≈++
2

11 ||~~|| 1

2

11 ||~~|| +++ ≈ kF

T

kk eeU λ
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T

kk eeUeeVkfkf 1111
~~~~)()1( ++++ +=−+

More details, See Guo, Wu and Li, PKDD 2006
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Experimental Results

• Artificial Dataset

• 35 correlated variables

• 30,000 tuples
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Strategy 1 vs. 2
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σ2=0.5

σ2=0.1

Effect of varying noise

σ2=1.0

||V||F/||U||F = 87.8%
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P2: How accurate we can achieve?

n

n When signal and noise are uncorrelated, for large number of 

observations: VTU ~ 0 and UTV ~ 0, 

n Hence,

n Result from Huang et al. SIGMOD05
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• from is not the same as      from

• More theoretical analysis from matrix perturbation  is needed

Other Factor

kp
Q

k
Q

Original principal

Perturbed principle

kQ
p

U U
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Spectral Filtering

• It can handle small data sets better.

• SF uses random matrix theory.

• When data size is small, eigenvalues of normal random 
matrix have semi-circle distribution with a thin range 

given by         and (Wigner’s law)minλ
maxλ
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Distribution of Noise Eigenvalues

• Let        be a random matrix whose entries are i.i.d. random 

variables with zero mean and variance . Let                              

be the eigenvalues of covariance matrix 

• The empirical c.d.f. of the eigenvalues
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SF vs. PCA

• In most data sets,  the number of tuples is much larger 
than that of attributes. 

• Hence,                    tends to be large

• So
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Vλλλ ≈≈ maxmin
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Why SVD?

• SVD is equivalent to PCA

n SVD works directly on data

n PCA works on covariance matrix of data

• Its Schmidt Theorem can help determine the lower bound 

of reconstruction accuracy
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SVD Revisited

= x x

1σ
2σ

nσ

nm × nm ×

nn × nn ×

U DL RT

singular value ( σ
k

)

left singular vector ( lk )

right singular vector ( rk
T)

kσ

∑
=

=
n

k

T

kkk rlU
1

σ



•32

ECML/PKDD06 Tutorial                                            
63

Theorem

• Theorem (Weyl)

• Theorem (Mirsky)

• Theorem (Schmidt)

n The matrix Uk is a matrix of rank k that is nearest U

ni            Vii ,,1,|||||~| 2 K=≤− σσ
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Perturbation
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SVD vs. PCA

• The singular values of U are the square roots of the 
eigenvalues of UTU or UUT

• Rows of R are eigenvectors of UTU

• LD gives coordinates of rows of U in the space of 

principal components

TTTTTTTTT RDDRLDRLRDLDRLDRUU )()()( ===

TT
QQUUA Λ== TLDRU =
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SVD Reconstruction 

Input:        , a given perturbed data set

, a noise data set 

Output:       , a reconstructed data

BEGIN

1 Apply SVD on        to get 

2 Apply SVD on      and assume          is the largest singular value 

3 Determine the first k components of       by                    

4 Reconstructing the data as

END
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SVD vs. PCA Reconstruction

• Equivalence of methods

• Equivalence of determining k
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Challenging Questions

• Previous work on individual reconstruction are only 
empirical

n Attacker question:  How close the estimated data using SF is from 

the original one?

n Data owner question: How much noise should be added to 

preserve privacy at a given tolerated level? 

21 ||ˆ|| ττ ≤−≤ UU
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Upper Bound

• The upper bound of                  in terms of  V

n The upper bound determines how close the estimated data 

achieved by attackers is from the original one 

n It imposes a serious threat of privacy breaches

FUU ||ˆ|| −
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Upper Bound

• Given

Let        be the estimation obtained from the SF/PCA, then 

where                                       is the derived perturbation on 
the original covariance matrix A = UTU

VUU +=~

Û
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Special Cases

• When the noise matrix is generated by i.i.d. Gaussian 

distribution with zero mean and known variance

• When the noise is completely correlated with data

F

Fk

F
FPF Vnk
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V
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More details, See Guo and Wu, SAC06
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Lower Bound

• The lower bound represents the best estimate the 
attacker can achieve by the spectral filtering 
technique

• Hard problem --- it could not be derived by matrix 
perturbation theory
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Lower Bound

• The lower bound of SVD reconstruction

is

where

• The lower bound of SVD is the lower bound of PCA since 
SVD reconstruction is proved to be equivalent to PCA.

FFk UUUU ||ˆ|||||| −≤−

T

kkkk RDLUU
~~~~ˆ ==

1}2~|min{ −<= Viik σσ

More details, See Guo, Wu and Li, PKDD 2006
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How much noise be added?

Input: privacy threshold τ

Output: variance of the noise

BEGIN

n Determine k: 

n Add i.i.d noise and let the eigenvalues of              satisfy: 

n Output

END

22

1|||||||| nkFkF UUU σστ ++=−≤ + L

)1/()( −= mVVar Vλ

}||||/)(|max{ 22

1 Fni Uik σστ ++≤= + L

kVk λλλ ≤<+1

VV T
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Outline (Part I)

Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Attacking Methods

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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ICA Revisited

• ICA Motivation

n Blind source separation:  separating unobservable or latent 

independent source signals when mixed signals are observed 

◆ Cocktail-party problem 

• What is ICA

n ICA is a statistical technique which aims to represent a set of 

random variables as linear combinations of statistically 

independent component variables

n ICA is a process for determining the structure that produced a 

signal
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ICA
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ICA Direct Attack?

• Can we get X from Y = RX when only Y is available?

n It seems Independent Component Analysis can help.

Y    =   R    X Rotation Model

X    =   A    S Noise-free ICA Model
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Restriction of ICA

• Restrictions:

n All the components si should be independent;

They must be non-Gaussian with the possible exception of one 

component.

n The number of observed linear mixtures m must be at least as 

large as the number of independent components n.

n The matrix A must be of full column rank

• Can we apply the ICA directly?  No

n Correlations among attributes of X

n More than one attributes may have Gaussian distributions

Y = RX

X = AS
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General Linear Transformation

• We can not apply noisy ICA direct attack either

Y    =   R    X     +      E General Linear Perturbation Model

X    =   A    S     +      N Noisy ICA Model
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Outline(Part I)

Randomization based PPDM

n Additive noise

n Rotation 

n General Linear Transformation

Attacking Methods

n Additive noise

◆ IQR (from distribution) 

◆ Spectral Filtering, PCA, SVD

n Rotation and General Linear Transformation

◆ ICA

◆ A-priori Knowledge Based Attack
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A-priori Knowledge Attack

• Privacy can be breached when a small subset of 
the original data X , is available to attackers

• Assumption is reasonable!

Willing to provide data

17%
27%

56%

Refuse

No concern

Privacy concern

Understanding net users' attitude about online privacy, April 99Understanding net users' attitude about online privacy, April 99
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A-priori Knowledge Based Attack

• For rotation Y =  RX, RRT=I, it is straightforward

1. If Rank(X) = d, we assume at least d points in X are known by 

attackers, denoting this subset as 

2. Locate the corresponding points in Y based on their preserved 

lengths, denoting this subset as 

3. Find the linear transformation (R) by applying multivariate linear 

regression analysis on      and 

X
~

Y
~

X
~

Y
~

BYX

XYYYB
TTT
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= −

ˆ

~~
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Why easy for rotation?










−
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A-priori Knowledge Based Attack

• For General Linear Transformation Y =  RX  +  E

n It is not straightforward since we can not find matched pairs 
(due to distance is not preserved).

n AK-ICA 
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A-priori Knowledge based ICA (AK-ICA) 
Attack
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Correctness of AK-ICA

• We prove that J exists such that

n J represents the connection between the distributions of       and X
S ~

YS

XJSAX yx ≈= ~
ˆ

More details, See Guo and Wu, 2006
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Experimental Results

• Reconstruction error vs. Sample size
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Experimental Results (cont’d)

• Y = RX + E

n R = I

n RRT  = RTR = I

n R1: Random matrix   det(R1) = 0.444      and ||R1||F = 3.167

n R2: Random matrix  det(R2) = 2.48 x109 and ||R2||F = 281.8

• Reconstruction error vs. Noise 

• Robust with R

noise
big small
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AK-ICA vs SF

Y = X + EY = RX + EApplicable 

Model

Big Noise

Small Noise

Cumulants

Assumption Covariance matrix of the 

noise 

A small subset of 

original data

Better

Better

second-orderfourth-order 

Spectral FilterAK-ICA

noise
big small
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Challenging Questions (Part I)

• Additive noise vs. Reconstruction accuracy

n How much noise should be at least added to preserve privacy?

n What kind of noise is better for a given dataset?

n How does additive noise affect accuracy of data mining results? 

• Sample  vs. Reconstruction accuracy

n How many records are sufficient to allow attackers breach the 

security?

n What kind of datasets are more prone to privacy breaching?

n What happens if sample is biased?

• How about some attributes are known to attackers?

• How about combinations of confidential attributes?

n Is total income = Bal + Income + IntP secure?
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Scope
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69% unique on zip and birth date
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SDC etc.
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Outline(Part II)

Randomization Response (Survey)

n Model

◆ One Dichotomous Attribute

◆ One Polychotomous Attribute

◆ Multi Attribute 

n Disclosure Analysis
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What is left out?

• Microdata generalization 

n K-anonymity, L-diversity, (alpha,k)-anonymity

n Some recent developments (skipped, see Gehrke’s tutorial)

• Privacy in market basket 0-1 data

n Data swapping

n Item randomization

n Frequent itemsets or rule hiding

n Inverse frequent itemset mining 
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Randomized Response History

• Survey sampling

n The Warner Model, 1965

n Extension to polychotomous attribute

n Extension to multi-attribute

• Statistical databases

n Reinvented as PRAM by Statistics Netherland (1997)

n Applied to microdata

• Introduced to KDD community

n Du kdd04
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One Dichotomous Attribute

A

P

1-P

Do you belong to A?

Do you belong to     ?A

)1)(1( PP AA −−+= ππλ

λ
Aπ

Randomization device

• Warner Model

n Each respondent belongs to a sensitive 

group A or its complement 

n A randomization device is given to the 

respondent to choose one of the two 

questions.

• Problem

n Given     ,the prob, of observing a “yes”

answer and P, estimate       ,the true 

prob. of respondents in A 
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Analysis

nP

n

P

P
AW

)12(12

1
ˆ 1

−
+

−
−=π

n

AA
AD

)1(
)ˆvar(

πππ −=









−

−
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4

1

)5.0(16

11)1(
)ˆvar(

2
Pnn
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AW

πππ

nnAD 1
ˆ =π

is the number of “yes” response in sample n1n

Direct response (DR) Model:

Randomized response (RR) Warner Model
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One Polychotomous Attribute

0.500.100.150.054

0.300.700.150.153

0.100.200.500.202

0.100.000.200.601

4321

j

i

§A sensitive attribute has t classes 

§A respondent belonging to the i th class                    will report j                         

with respective probabilities                         ,  tiii ppp ,...,, 21 1
1

=∑
=

t

j

jip

),...,1( ti =

§E.g. If a respondent belonging to the 2nd category , he will report 

category 3 with 0.15 probability . 

),...,1( tj =

))(( jipP =
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Vector Response 

§ is the true proportions of the population

§ is the observed proportions in the survey

§ is the randomization device set by the interviewer.                      

),...,( 1
′= tπππ

))((
ji

pP =

),...,( 1
′= tλλλ
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Analysis

)()ˆ( 1 λλλλ δ ′−= −ndisp 111 )()ˆ( −−− ′′−= PPndisp λλλπ δ

πλ P= λπ ˆˆ 1−= P

)( 111 ππλδ ′−′= −−−
PPn

21 Σ+Σ=

)(1

1 πππ δ ′−=Σ −
n

111

2 )( −−− ′′−=Σ PPPPn
δδ πλ

the dispersion matrix of the regular survey estimation 

nonnegative definite, represents the components of 

dispersion associated with RR experiment

diagonal matrix with elements λ
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PRAM

• Post RAandomisation Method

n Developed by Statistics Netherland (1997)

n Applied to categorical microdata

• Similar to vector response model except

n PRAM assumes micro data is a-priori known 

n It may also incorporate invariant matrix 
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Multi Polychotomous Attributes

,,...,, 21 mAAA§m sensitive attributes:                     each has      categories:

§ denote the true proportion corresponding to the combination

be vector with elements ,arranged 

lexicographically.

§ e.g., if m =2, t1 =2 and  t2=3

jt
jjtj AA ,...,1

mii ,...,1
π

),,...,(
11 mmii AA π

mii ,...,1
π ),..,1( jj ti =

)',,,,,( 232221131211 πππππππ =



•52

ECML/PKDD06 Tutorial                                            
103

Simultaneous Model

• Consider all variables as one compounded variable and 
apply the regular vector response RR technique

• Can preserve structural zeros, e.g., a man can not be 

pregnant.
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Sequential Model

§Each respondent makes m independent RR trials, one for each 

attribute.

§ is the probability of getting a response

§A unbiased estimate of           is

πλ )...( 21 mPPP ⊗⊗⊗=

λπ ˆ)...(ˆ 11

1

−− ⊗⊗= mPP

stands for Kronecker product

mµµλ ,...,1 ),...,( 1 mµµ

⊗
π
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Kronecker Product Example

2221

1211

aa

aa

⊗

333231

232221

131211

bbb

bbb

bbb

=

222221

212211

PaPa

PaPa
=

332232223122332132213121

232222222122232122212121

132212221122132112211121

331232123112331132113111
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:1P :2P

1P 2P
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Analysis

)()ˆ( 111 ππλπ δ ′−′= −−−
PPndisp

πλ )( 1 mPP ⊗⊗= L λπ ˆ)(ˆ 11

1

−− ⊗⊗= mPP L

Similarly, the dispersion matrix can be decomposed to two parts: one 

corresponds to  that of the regular survey estimation and the other 

corresponds to  the components of dispersion associated with RR 

experiment
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Attributes Correlation

• Association is preserved

• The problem of testing the null hypothesis of complete independence 

of the sensitive attributes 

where        is the vector of marginal proportion corresponding to

is equivalent to                                           where  

,,...,, 21 mAAA

)()1(

0 : m
H πππ ××= L

)()1(

0 : m
H λλλ ××=′ L

)( jπ

)()( j

j

j P πλ =

jA
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Disclosure Analysis with RR

R: Typical response which is “yes” (  ) or “no” (  )

Posterior probabilities: 

yy

)()1()(

)(
)(

ARPARP

ARP
RAP

AA

A

ππ
π

−+
= )(1)( RAPRAP −=

R is regarded as jeopardizing with respect     or       if:     AA

ARAP π>)( or ARAP π−>1)(

,           are conditional probabilities set by investigators)( ARP )( ARP
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Efficient Estimation vs. Privacy Protection

)(

)(
)(

ARP

ARP
ARg =

)(

)(1

)(

)(

ARP

ARP

RAP

RAP

A

A =−
π

π

Disclosure measure (Warner 1976):
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1
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No disclosure if and only if: 

1)( =ARg

But it’s impossible to get an Unbiased Estimate  for 
Aπ
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Disclosure Analysis

Risks of suspicion: 

1)( 2 <≤ ξRAP 11)( 1 <−≤ ξRAP

21 )( ξξ ≤≤ RAP

2

2

1

1
)(

ξ
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π
π

−
−≤

A

AAyg

1

11

1
)(

ξ
ξ

π
π −
−

≤
A

AAyg

So:
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Risk Disclosure with RR

• Some Generalities

n X    be a variable of interest with unknown distribution parameter

n Y    be a response variable through an RR device

n be Fisher’s information per unit observation on Y

n be Fisher’s information per unit observation on X if X is observable

n The loss of information is defined as

n as a measure of protection of privacy for a given y

n as an overall measure of protection of privacy

)()( YIXI >

θ

)(

)(
1

XI

YI
L −=

)|var( yYX =
))|(var( YXE

)(YI

)(XI
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Summary

• We only touched the surface. PPDM is

n Practical

n Fun

n Challenging!

• Some general open problems

n Tradeoff of utility vs. privacy

n How to handle mixing attributes together?

n Theory and application of various reconstruction methods

n Formalization of background knowledge

n Optional randomization (horizontal, vertical)

n Etc.
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