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Supervised vs. Supervised vs. 
Unsupervised LearningUnsupervised Learning

Unsupervised learning (clustering)Unsupervised learning (clustering)

The class labels of training data are unknown

Given a set of measurements, observations, etc. establish the 

existence of clusters in the data

Supervised learning (classification)Supervised learning (classification)

Supervision:Supervision: The training data (observations, measurements, etc.) 

are accompanied by labels indicating the class of the observations

New data is classified based on the training set

SemiSemi--supervised clusteringsupervised clustering

Learning approaches that use user inputuser input (i.e. constraints or labeled 

data) 

Clusters are defined so that user-constraints are satisfied

ClusteringClustering
(Unsupervised Learning)(Unsupervised Learning)
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Clustering  DataClustering  Data

The The clustering problemclustering problem:

Given a set of objects, find groups of similar objects

Cluster:Cluster: a collection of data objects

Similar to one another within the same cluster

Dissimilar to the objects in other clusters

What is similar?What is similar?
Define appropriate metrics  

Applications inApplications in
marketing, image processing, biology
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Clustering Methods
KK--Means and KMeans and K--medoidsmedoids algorithmsalgorithms

PAM, CLARA, CLARANS [Ng and Han, VLDB 1994] 

Hierarchical algorithmsHierarchical algorithms

CURE [Guha et al, SIGMOD 1998]

BIRCH [Zhang et al, SIGMOD 1996]

CHAMELEON [IEEE Computer, 1999]

Density based algorithmsDensity based algorithms

DENCLUE [Hinneburg, Keim, KDD 1998]

DBSCAN [Ester et al, KDD 96]

Subspace ClusteringSubspace Clustering

CLIQUE [Agrawal et al, SIGMOD 1998]

PROCLUS [Agrawal et al, SIGMOD 1999]

ORCLUS: [Aggarwal, and Yu, SIGMOD 2000] 

DOC: [Procopiuc, Jones, Agarwal, and Murali, SIGMOD, 2002]
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PartitionalPartitional Algorithms: Basic ConceptAlgorithms: Basic Concept

PartitionalPartitional method:method:

Partition the data set into a set of kk disjoint 

clusters.

Problem Definition:Problem Definition:

Given an integer kk, find a partitioning of kk clusters 

that optimizes the chosen partitioning criterion
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KK--Means and KMeans and K--MedoidsMedoids algorithmsalgorithms

Minimizes the sum of  square distances of points to 

cluster representative

Efficient iterative algorithms (O(n))

E x mK k c x
k

k
= −∑ ( )

2
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1. Ask user how many clusters 
they’d like. (e.g. K=5) 

2. Randomly guess K cluster 
center locations

*based on slides by Padhraic Smyth UC, Irvine

Each data point finds out 
which center it’s closest to. 
(Thus each center “owns” a 
set of data points)

*based on slides by Padhraic Smyth UC, Irvine
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•• Redefine each center Redefine each center 
finding out the set of the finding out the set of the 
points it ownspoints it owns

*based on slides by Padhraic Smyth UC, Irvine
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Problems with KProblems with K--Means type algorithmsMeans type algorithms

Advantages Advantages 

- Relatively efficient: O(O(tkntkn))

- where n is the number of objects, k
is the number of clusters, and t is 
the number of iterations. 

Normally, k, t << nk, t << n..
- Often terminates at a local optimum.

ProblemsProblems

Clusters are approximately spherical

Unable to handle noisy data and 

outliers

High dimensionalityHigh dimensionality may be a 

problem

The value of k is an input parameter
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The KThe K--MedoidsMedoids Clustering MethodClustering Method

Representative algorithmsRepresentative algorithms

PAMPAM [Kaufmann & [Kaufmann & RousseeuwRousseeuw, 1987], 1987]

CLARACLARA [Kaufmann & [Kaufmann & RousseeuwRousseeuw, 1990], 1990]

CLARANS CLARANS [Ng & Han, 1994]: Randomized sampling[Ng & Han, 1994]: Randomized sampling

KK--medoidsmedoids approaches 

find representative objects, called medoidsmedoids, in clusters

are slower but more robust
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Hierarchical ClusteringHierarchical Clustering

Step 0 Step 1 Step 2 Step 3 Step 4

b

d
c

e

a a b

d e
c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

divisive

••Two basic approaches:Two basic approaches:
• merging smaller clusters into larger ones (agglomerative)(agglomerative),
• splitting larger clusters (divisive)(divisive)
• visualize both via ““dendogramsdendograms””

shows nesting structure
merges or splits = tree nodes 
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Hierarchical Clustering: ComplexityHierarchical Clustering: Complexity

Quadratic algorithmsQuadratic algorithms

Running timeRunning time can be 

improved using sampling 

[Guha et al, SIGMOD 1998] 

[Kollios et al, ICDE 2001]

or using the triangle 

inequality (when it holds)

*based on slides by Padhraic Smyth UC, Irvine
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Hierarchical Clustering AlgorithmsHierarchical Clustering Algorithms

BIRCHBIRCH (Zhang, Ramakrishnan & Livny, SIGMOD’96)

uses CF-tree and incrementally adjusts the quality of sub-
clusters

CF=(N, LinearSum, SquareSum)
CURECURE (S. Guha, R.Rastogi, K. Shim. SIGMOD’98)

is robust to outliers and identifies clusters of non-spherical 
shapes.

ROCKROCK (S. Guha, R. Rastogi & K. Shim, ICDE’99):

is a robust clustering algorithm for Boolean and categorical 
data. 
introduces two new concepts, that is a point's neighboursneighbours
and linkslinks

CHAMELEONCHAMELEON (G. Karypis, E.H. Han, and V. Kumar, IEE Computer’99 )

A two-phase algorithm
Use a graph partitioning algorithm
Use an agglomerative hierarchical clustering algorithm
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DensityDensity--based Algorithmsbased Algorithms

ClustersClusters are regions of 
space which have a high 
density of points

Clusters can have arbitrary arbitrary 
shapesshapes
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DensityDensity--based Clustering based Clustering 
AlgorithmsAlgorithms

ClusteringClustering based on density (local cluster criterion), such 
as density-connected points

Major features:Major features:

Discover clusters of arbitrary shape

Handle noise

Need density parameters as termination condition

Work for low dimensional spaces

Representative algorithms:

DBSCANDBSCAN: Ester, et al. (KDD’96)

DENCLUEDENCLUE: Hinneburg & D. Keim (KDD’98)
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Speeding up the clustering algorithms: Speeding up the clustering algorithms: 
Data ReductionData Reduction

Data Reduction:Data Reduction:

approximate the original dataset using a small 

representation

the representation must be stored in main memory

summarization, compression

The accuracy lossaccuracy loss must be as small as possible.

Use the approximation to run the clustering 

algorithms

Incremental, online algorithms
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Data Reduction: Random SamplingData Reduction: Random Sampling

Random SamplingRandom Sampling is used as a data reduction method

Idea:Idea: Use a random sample of the dataset and run the 

clustering algorithm over the sample

Used extensively for clusteringclustering [Ng and Han 94, Guha et al 98]

But:But:

For datasets that contain clusters with different 

densities, we may miss some sparse ones

For datasets with noise we may include significant 

amount of noise in our sample
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Biased SamplingBiased Sampling

In biased samplingbiased sampling, the probability that a point is 

included in the sample depends on the local density

We can oversample or undersample regions in our 

datasets depending on the DM task at hand

22M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

The Biased Sampling TechniqueThe Biased Sampling Technique

Basic idea:Basic idea:
First compute an approximation of the density function 

of the dataset

Use the density function to define the probability for 

including a point to the sample

[Palmer and Faloutsos, SIGMOD 2000]

[Kollios et al, ICDE 2001]
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Clustering High Dimensional DataClustering High Dimensional Data

Fundamental to all clustering techniques is the choice 

of distance measure between data points;

AssumptionAssumption:: All features are equally importantequally important;;

Such approaches fail in high dimensional spaces

Feature selection (Dy and Brodley, 2000)

Dimensionality Reduction

( ) ( )
2

1
, ∑

=

−=
q

k
jkikji xxD xx Squared Euclidean distanceSquared Euclidean distance
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Applying Dimensionality Reduction Applying Dimensionality Reduction 
TechniquesTechniques

Dimensionality reduction techniquesDimensionality reduction techniques (such as 

Singular Value DecompositionSingular Value Decomposition) can provide a solution 

by reducing the dimensionality of the dataset:

Drawbacks: Drawbacks: 

• The new dimensions may be difficult to interpret

• They don’t improve the clustering in all cases
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Different dimensions may be relevant to different 
clusters

In General: Clusters may exist in different subspaces, 
comprised of different combinations of features

Applying Dimensionality Reduction Applying Dimensionality Reduction 
TechniquesTechniques
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Subspace clusteringSubspace clustering

Subspace clusteringSubspace clustering addresses the problems that arise from high 

dimensionality of data

It finds clusters in subspaces: subsets of the attributes

Density based techniquesDensity based techniques

CLIQUE:CLIQUE: AgrawalAgrawal, , GehrkeGehrke, , GunopulosGunopulos, , RaghavanRaghavan

(SIGMOD(SIGMOD’’98)98)

DOC:DOC: ProcopiucProcopiuc, Jones, , Jones, AgarwalAgarwal, and , and MuraliMurali, (SIGMOD, 2002), (SIGMOD, 2002)

Iterative algorithmsIterative algorithms

PROCLUS:PROCLUS: AgrawalAgrawal, , ProcopiucProcopiuc, Wolf, Yu, Park (SIGMOD, Wolf, Yu, Park (SIGMOD’’99)99)

ORCLUS:ORCLUS: AggarwalAggarwal, and Yu (SIGMOD 2000)., and Yu (SIGMOD 2000).
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Subspace clusteringSubspace clustering

Density based clusters:Density based clusters:

find dense areas in subspaces

Identifying the right sets of 

attributes is hard

Assuming a global threshold 

allows bottom-up algorithms

Constrained monotone search 

in a lattice space 
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Locally Adaptive ClusteringLocally Adaptive Clustering

yxyx wwww 1111   ),,( > xyyx wwww 2222   ),,( >

Each cluster is characterized by different attribute weights
(Friedman and Meulman 2002, Domeniconi 2002)
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Locally Adaptive Clustering : ExampleLocally Adaptive Clustering : Example
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LACLAC
[[C. C. DomeniconiDomeniconi et alet al SDM04]
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A weight vector for each clusterA weight vector for each cluster
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Convergence of LACConvergence of LAC

The LAC algorithmLAC algorithm converges to a local minimum of the 
error function:    

subject to the constraints 
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BiBi--clusteringclustering

Clustering for biological data (Cheng, Church, 2000)

The concept of concept of biclusteringbiclustering corresponds to 
a subset of genes and a subset of conditions 

with a high similarity score.

Similarity Similarity 
a measure of the coherence of the genes and conditions in the 
bicluster. 

Projecting Projecting biclustersbiclusters onto the dimension of genes or conditions, we 
can see the result 

as clustering of either genes or conditions, into possibly 
overlapping groups.
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Biological processes annotated 
in one cluster generated by the 

LAC algorithm

There exists a number of cell cycle 
genes. The terms for cell cycle 
regulation all score high. As with all 
cancers, BRCA1-BRCA2-related 
tumors involve the loss of control 
over cell growth and proliferation. 
Thus, the presence of strong cell-
cycle components in the clustering is 
expected.
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Spectral Clustering (I)Spectral Clustering (I)

Algorithms that cluster points using eigenvectorsAlgorithms that cluster points using eigenvectors of 

matrices derived from the data

Obtain data representation in the low-dimensional space

that can be easily clustered

Variety of methods that use the eigenvectors differently

[Ng, Jordan, Weiss.  NIPS 2001]
[Belkin, Niyogi, NIPS 2001]
[Dhillon, KDD 2001]
[Bach, Jordan NIPS 2003]
[Kamvar, Klein, Manning. IJCAI 2003]
[Jin, Ding, Kang, NIPS 2005]
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Spectral Clustering (II)Spectral Clustering (II)

Empirically very successful

Authors propose different Authors propose different apprachesappraches::

Which eigenvectors to use

How to derive clusters from these 

eigenvectors

Two general methods
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Spectral Clustering methodsSpectral Clustering methods

Method #1Method #1

Partition using only one eigenvector at a time

Use procedure recursively

Example:Example: Image Segmentation

Method #2Method #2

Use kk eigenvectors (kk chosen by user)

Directly compute kk-way partitioning

Experimentally it has been seen to be “better”

([Ng, Jordan, Weiss.  NIPS 2001][Bach, Jordan, NIPS ’03]).
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KernelKernel--based kbased k--means clusteringmeans clustering
((DhillonDhillon et al., 2004)et al., 2004)

Data not linearly separablelinearly separable

Transform data to highTransform data to high--dimensional spacedimensional space using kernel

φ a function that maps X to a high dimensional space

Use the kernel trick to evaluate the dot products

cluster kernel similarity matrix using weighted kernel Kweighted kernel K--
Means. Means. 

The goal is to minimize the following objective function:
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FuzzyFuzzy ClusteringClustering

•• CrispCrisp clustering,clustering, meaning that a data point either belongs to a 
class or not. 

•• Fuzzy ClusteringFuzzy Clustering a data point may belong to more than one 
clusters with different degrees of belief

Representative fuzzy clustering algorithm: Fuzzy C-Means(FCM).

[Bezdeck et. al Computers and Geoscience, 1984]

FCMFCM objective function:objective function:
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SemiSemi--supervised learningsupervised learning
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IntroductionIntroduction

ClusteringClustering is applicable in many real life scenarios 

there is typically a large amount of unlabeled dataunlabeled data
available. 

The use of user inputuser input is critical for

the success of the clustering process

the evaluation of the clustering accuracy. 

User inputUser input is given as

Labeled data

Constraints

Learning approachesLearning approaches that use 
labeledlabeled data/constraints/constraints + unlabeledunlabeled data 

have recently attracted the interest of researchers
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Motivating semiMotivating semi--supervised learning (I)supervised learning (I)

Data are correlated.Data are correlated. To recognize clusters, a distance 
function should reflect such correlations.

Different attributes may have different degree of Different attributes may have different degree of 
relevancerelevance depending on the application / user requirements

A clustering algorithm does not provide the criterion to be 
used. 

SemiSemi--supervised algorithms: supervised algorithms: Define clusters taking into 

account

•• labeledlabeled data or constraintsor constraints

if we have ““labelslabels”” we will convert them to ““constraintsconstraints””
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Motivating semiMotivating semi--supervised learning (II)supervised learning (II)

The notion of good clusteringgood clustering is strictly related to the related to the 

application domainapplication domain and the users perspectivesusers perspectives. 

Traditional clustering methodsTraditional clustering methods fail leading to meaningless meaningless 

resultsresults in the case of high-dimensional data 

??
lack of clustering tendency in a part of the defined 

subspaces or

the irrelevance of some data dimensions (i.e. attributes) 

to the application aspects and user requirements
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Clustering under constraintsClustering under constraints

Use constraintsconstraints to

learn a distortion/distance function

Points surrounding a pair of must-

link/cannot-link points should be close to/far 

from each other

guide the algorithm to a useful solutionguide the algorithm to a useful solution

Two points should be in the same/different clusters
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SemiSemi--supervised learning frameworksupervised learning framework

−40
−20

0
20

−0.5

0

0.5
−1

−0.5

0

0.5

1

Cluster 1 

Cluster 2 

Cluster 3 

Learn the space Learn the space 
where the where the best best 
partitioningpartitioning
according to the according to the 
user constraintsuser constraints
can be definedcan be defined

ConstraintsConstraints

−40
−20

0
20

−0.5

0

0.5
−1

−0.5

0

0.5

1

A 

B 

C 

Data setData set
Original spaceOriginal space

SemiSemi--supervised supervised 
learning Frameworklearning Framework

46M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Defining the constraintsDefining the constraints

A set of points X = {x1, …, xn} on which sets of mustmust--link(Slink(S))
and cannotcannot--link link constraints(Dconstraints(D)) have been defined. 

MustMust--link constraintslink constraints

S:S: {(xi, xj) in X }: xi and xj should belong to the same 
cluster

CannotCannot--link constraintslink constraints

D:D: {(xi, xj) in X} : xi and xj cannot belong to the same 
cluster

Conditional constraintsConditional constraints
δ-constraint and ε-constraint
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Clustering with constraints: Clustering with constraints: 
Feasibility issuesFeasibility issues

ConstraintsConstraints provide information that should be satisfied.

Options for constraintconstraint--based clusteringbased clustering

Satisfy all constraintsSatisfy all constraints

Not always possible:Not always possible: A with B, B with C, C not with A.

Any combination of constraints involving cannot-link constraints

is generally computationally intractable (Davidson & Ravi, ISMB 

2000),

Satisfy as many constraints as possibleSatisfy as many constraints as possible
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Feasibility under Feasibility under MustMust--link(MLlink(ML) ) and and 
CannotCannot--link(CLlink(CL) constraints) constraints

ML(x1,x3), ML(x1,x3), 
ML(x2,x3), ML(x2,x3), 
ML(x2,x4),ML(x2,x4),
CL(x1, x4)

Form the clusters implied by the ML={CC1 … CCr}
constraints Transitive closure of the ML constraints

Construct Edges {E} between Nodes based on CL

Infeasible: iff ∃h, k : eh(xi, xj) : xi, xj∈ CCk 

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

*S. Basu, I. Davidson, tutorial ICDM 2005
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Feasibility under Feasibility under ML ML and and εε

S’ = {x ∈ S : x does not have an ε neighbor}={s5, s6}
Each of these should be in their own cluster

Compute the Transitive ClosureTransitive Closure on ML={CC1 …
CCr} : O(n+m)

Infeasible:Infeasible: iff ∃i, j : xi∈ CCj, xi ∈ S’

ML(xML(x11,x,x22), ), 
ML(xML(x33,x,x44), ), 
ML(xML(x44,x,x55))

εε--constraint:constraint: Any node x should have an ε-neighbor in its 
cluster (another node y such that D(x,yD(x,y))≤≤ εε))

x1 x2
x3 x4 x5 x6

x1 x2
x3 x4 x5 x6

*S. Basu, I. Davidson,turorial ICDM 2005
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Clustering based on constraintsClustering based on constraints

Algorithm specific approachesAlgorithm specific approaches

Incorporate constraints into the clustering algorithmIncorporate constraints into the clustering algorithm

COP KCOP K--Means (Means (WagstaffWagstaff et al, 2001et al, 2001))

Hierarchical clustering (Hierarchical clustering (I. Davidson, S. I. Davidson, S. RaviRavi, 2005), 2005)

Incorporate metric learning into the algorithmIncorporate metric learning into the algorithm

MPCKMPCK--Means (Means (BilenkoBilenko et al 2004)et al 2004)

HMRF KHMRF K--Means (Means (BasuBasu et al 2004)et al 2004)

Learning a distance metric Learning a distance metric (Xing et al. (Xing et al. ’’02)02)

KernelKernel--based constrained clustering based constrained clustering ((KulisKulis et al.et al.’’05)05)
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COP KCOP K--Means (I)Means (I)
[[WagstaffWagstaff et al, 2001]et al, 2001]

Semi-supervised variants of K-Means

Constraints:Constraints: Initial background knowledge 

MustMust--linklink & CannotCannot--linklink constraints are 

used in the clustering process 

Generate a partition that satisfies all the given 

constraints

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background 
knowledge. In ICML, pages 577–584, 2001.
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COP KCOP K--Means (II)Means (II)

When updating cluster assignments,

we ensure that none of the specified constraints are violated. 

Assign each point di to its closest cluster Cj. This will succeed unless a 
constraint would be violated. 

If there is another point d= that must be assigned to the same cluster as d, but that 
is already in some other cluster, or 

there is another point d≠ that cannot be grouped with d but is already in C, then d
cannot be placed in C. 

Constraints are never broken; if a legal cluster cannot be found for d, the 
empty partition (fg) is returned.

The algorithm takes in 
a data set (D)

•a set of mustmust--link link 
constraints (Con=)

•a set of cannotcannot--linklink
constraints (Con≠).

K-Means 
Clustering 
based on 
constraints

Clustering satisfying 
user constraints
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COP KCOP K--Means AlgorithmMeans Algorithm
[[WagstaffWagstaff et al]et al]
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Hierarchical Clustering based on constraintsHierarchical Clustering based on constraints
[I. Davidson, S. [I. Davidson, S. RaviRavi, 2005], 2005]

Question:Question: Can we create a dendrogram for S so that all 

the constraints in C are satisfied? 

Instance:Instance: A set S of nodes, the (symmetric) 

distance d(x,y)d(x,y)≥≥00 for each pair of nodes x and y 

and a collection C of constraints

Davidson I. and Ravi, S. S. “Hierarchical Clustering with Constraints: Theory and Practice”, In PKDD 2005



28

55M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Constraints and Irreducible Constraints and Irreducible ClusteringsClusterings

A feasible clustering C={Cfeasible clustering C={C11, C, C22, , ……, C, Ckk}} of a set S is irreducible if 

no pair of clusters in C can be merged to obtain a feasible clustering 

with k-1 clusters.

X={xX={x11, x, x22, , ……, , xxkk}, }, 
Y={yY={y11, y, y22, , ……, , yykk}, }, 
Z={zZ={z11, z, z22, , ……, , zzkk}, }, 
W={wW={w11, w, w22, , ……, , 
wwkk}}

CLCL--constraintsconstraints

∀{xi, xj}, i≠j
∀{wi, wj}, i≠j
∀{yi, zj}, i≤j, j ≤k

Feasible clustering with 2k clusters: Feasible clustering with 2k clusters: 
{x{x11, y, y11}, {x}, {x22, y, y22}, }, ……, {, {xxkk, , yykk}, {z}, {z11, , 
ww11}, {z}, {z22,w,w22}, }, ……, {, {zzkk, w, wkk}}

But then get stuck

Alternative is: 
{x1, w1, y1, y2, …, yk}, {x2, w2, z1, z2, …, zk}, 

{x3, w3}, …, {xk, wk}

If mergers are not 
done correctly, the 

dendrogram may stop 
prematurely

If mergers are not 
done correctly, the 

dendrogram may stop 
prematurely
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Using constraints for Using constraints for 
hierarchical clusteringhierarchical clustering
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MPCKMPCK--MeansMeans
[[BilenkoBilenko et al 2004]et al 2004]

Incorporate metric learning directly into the Incorporate metric learning directly into the 

clustering algorithmclustering algorithm

Unlabeled data influence the metric learning process

Objective functionObjective function

Sum of total square distances between the points and 

cluster centroids

Cost of violating the pair-wise constraints

M. Bilenko, S. Basu, R. Mooney. “Integrating Constraints and Metric Learning in Semi-supervised clustering. In 
Proceedings of the 21st ICML Conference, July 2004.
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Unifying constraints and Metric learningUnifying constraints and Metric learning
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i
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∑

∈∈

∈

µ

Generalized K-means 
distortion function

Violation mustViolation must--link link 
constraintsconstraints

Violation cannotViolation cannot--link link 
constraintsconstraints

Penalty Penalty 
functionsfunctions
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MPCKMPCK--Means approachMeans approach

Initialization:Initialization:
Use neighborhoods derived from constraints to initialize 
clusters

Repeat until convergence:Repeat until convergence:

1. EE--step:step:

AssignAssign each point x to a cluster to minimize

distance of xx from the cluster centroid + constraint 
violations

2. MM--step: step: 

Estimate Estimate cluster centroids C  as means of each cluster

ReRe--estimateestimate parameters A (dimension weights) of DA to 
minimize constraint violations
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Probabilistic framework for SemiProbabilistic framework for Semi--
Supervised Clustering Supervised Clustering [BasuBasu et al 2004]et al 2004]

Hidden Markov Random Fields:Hidden Markov Random Fields: Unified 

probabilistic model that

incorporate incorporate pairwisepairwise constraintsconstraints along 

with an underlying distortion measure
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Bayesian Approach: Bayesian Approach: HMRF HMRF 

Goal of constrained 
clustering: maximize 
P(L,X) on HMRF

P(L,X) = P(L)⋅P(X|L)

l1

l2

l4 l5

l3

l6

x1

x2

x4 x5

x3

x6

Observed dataObserved data

Hidden MRFHidden MRF

Hidden RVs Hidden RVs 
of cluster of cluster 
labels: labels: LL

P(L):P(L): Probability 
distribution of hidden 
variables

P(X/L):P(X/L): Conditional 
probability of the 
observation set for a given 
configuration

S. Basu, M. Bilenko, R. Mooney. “A Probabilistic Framework for Semi-Supervised Clustering”. in Proceedings 
of the 22th KDD Conference, August 2004.
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Constrained Clustering on HMRFConstrained Clustering on HMRF
[BasuBasu et al 2004]et al 2004]
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constrained 
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MRF potentialMRF potential

Generalized Potts potential:
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HMRFHMRF--KMeans: Objective FunctionKMeans: Objective Function
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HMRFHMRF--KMeans: AlgorithmKMeans: Algorithm

Initialization:Initialization:
Use neighborhoods derived from constraints to 
initialize clusters

Till convergence:Till convergence:
1. Point assignment:

Assign each point s to cluster h* to minimize both both 
distance and constraint violations distance and constraint violations 

2. Mean re-estimation: 

Estimate cluster centroids C as means of each cluster

Re-estimate parameters A of DA to minimize 
constraint violations
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HMRFHMRF--KMeans: ConvergenceKMeans: Convergence

Theorem:Theorem:

HMRF-KMeans converges to a local minimum of 

JJHMRFHMRF

Distortion measuresDistortion measures

BregmanBregman divergencesdivergences D (e.g., KL divergence, 
squared Euclidean distance) or 

Directional distancesDirectional distances (e.g., Pearson’s distance, 
cosine distance)



34

67M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Learning a distance metric based on Learning a distance metric based on 
user constraintsuser constraints

In semisemi--supervised clusteringsupervised clustering the requirement is :

learn the distance measurelearn the distance measure to satisfy user user 

constraintsconstraints.

Learning a distanceLearning a distance measure different weightsweights are 

assigned to different dimensionsdifferent dimensions

Map data to a new space where user constraints are 

satisfied

68M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Goal:Goal: Learn a distance metricLearn a distance metric between the points in X 

that satisfies the given constraints

The problem reduces to the following optimization optimization 
problem :problem :

∑
∈

−
ML)x,x(

2

AjiA
ji

xxmin

0A   1xx
CL)x,x(

Aji
ji

≥≥−∑
∈

given that

Distance Learning as Convex OptimizationDistance Learning as Convex Optimization
[Xing et al. [Xing et al. ’’02]02]

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-
information. In NIPS, December 2002.
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Learning Learning MahalanobisMahalanobis distancedistance

MahalanobisMahalanobis distancedistance ==

Euclidean distance parameterized by matrix AEuclidean distance parameterized by matrix A

)yx(A)yx(||yx|| T2
A −−=−   

Typically AA is the covariance matrix, but we can also 

learn it given constraints
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Example:Example: Learning Distance FunctionLearning Distance Function

Cannot-link

Must-link

Space Space 
Transformed by Transformed by 
Learned FunctionLearned Function
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The Diagonal The Diagonal AA CaseCase

Considering the case of learning a diagonala diagonal A

we can solve the original optimization problemoptimization problem using 

Newton-Raphson to efficiently optimize the following 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−= ∑∑

∈∈ CL)x,x(
Aji

ML)x,x(

2

Aji
jiji

xxlogxx)A(g

Use Newton Newton RaphsonRaphson TechniqueTechnique: 

x’ = x – g(x)/g’(x)

g(A’)=A-g(A).J-1(A)
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Full Full AA Case: Alternative FormulationCase: Alternative Formulation

Equivalent optimization problemoptimization problem
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Optimization Algorithm Optimization Algorithm -- Full Full AA CaseCase

Solve optimization problem using combination of
gradient ascent:gradient ascent: to optimize the objective

iterated projection algorithm:iterated projection algorithm: to satisfy the constraints

Minimizing a quadratic 
objective subject to single 
linear constraint O(n2)

Gradient 
step

Project A 
into sets 
C1 and C2

Space of all positive 
semi definite matrices
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Kernel Kernel basedbased SemiSemi--supervised clusteringsupervised clustering

The user gives constraints 

The appropriate kernel is created 
based on constraints
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MLx,x

ij

k
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k
1c wwm)x(J

Reward for 
constraint 

satisfaction

A nonnon--linear transformation,linear transformation, φ
• maps data to a high dimensional space
• the data are expected  to be more separable
• a kernel function k (x, y)k (x, y) computes φφ((xx))⋅⋅φφ((y)y)

[[KulisKulis et al.et al.’’05]05]
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SemiSemi--Supervised KernelSupervised Kernel--KMeansKMeans
[Kulis et al.[Kulis et al.’’05]05]

Algorithm:Algorithm:

Constructs the appropriate kernel matrix from data and 

constraints

Runs weighted kernel K-Means 

Input of the algorithm:Input of the algorithm: Kernel matrix

Kernel function on vector data or

Graph affinity matrix

Benefits:Benefits:

HMRF-KMeans and Spectral Clustering are special cases

Fast algorithm for constrained graph-based clustering

Kernels allow constrained clustering with non-linear cluster 

boundaries
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Kernel for HMRFKernel for HMRF--KMeans with squared KMeans with squared 
Euclidean distanceEuclidean distance
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GraphGraph--based constrained clusteringbased constrained clustering

Constrained graph clustering:Constrained graph clustering:

minimize cut in input graph while 
maximally respecting a given set 
of constraints
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Kernel for Constrained NormalizedKernel for Constrained Normalized--Cut Cut 
ObjectiveObjective
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SemiSemi--supervised clustering with supervised clustering with 
metric learningmetric learning

Metric weightsMetric weights are trained to 

minimize the distance between must-linked instances 

and maximize cannot-linked instances

Limitation:Limitation:

Assume a single metric for all clusters

preventing clusters from having different shapes
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SemiSemi--supervised clustering using supervised clustering using 
local weightslocal weights

Solution:Solution:
Allow a separate weight matrix, AAhh, for each cluster h

Cluster h is generated by a Gaussian with covariance 

matrix Ah
-1

Generalized version of K-Means using different weights 

per cluster:
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Integrating Constraints and Integrating Constraints and 
Metric LearningMetric Learning
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MPCKMPCK--Means with local weightsMeans with local weights
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Cluster validity criteria and Cluster validity criteria and 
SemiSemi--supervised learningsupervised learning

Objective validity criteriaObjective validity criteria : evaluate the validity of 

clustering results using structural/statistical properties of the 

data (i.e. density distribution, variance).

Structural/statistical properties do not guaranteedo not guarantee the 

interestingness and usefulness of clustering results for the 

user

AApproaches that take into account users’ capability to tune 

the clustering process are needed

Subjective validity criteria.Subjective validity criteria.
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Objectives of the approach using cluster Objectives of the approach using cluster 
validity criteriavalidity criteria

Two challenges:Two challenges:

Learning an appropriate distanceLearning an appropriate distance metricmetric to 

satisfy the constraints

Determining the best clusteringDetermining the best clustering w.r.t the 

defined distance metric.
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Define dimension weights, W, 
based on constraints

Optimize weights based on 
user constraints and validity 
criteria (Hill climbing)
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Cluster 3 
Present 
results to 
user

User 
constraints

Cluster data in the 
new space

Final clustering

Original data

An iterative semiAn iterative semi--
supervised learning supervised learning 
approachapproach
[Halkidi et.al, ICDM 2005]

User constraints
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Initializing dimension weights based on Initializing dimension weights based on 
user constraintsuser constraints

Learn the distance measureLearn the distance measure to satisfy user constraintsuser constraints

(must(must--link and cannotlink and cannot--link)link).

Different weightsweights are assigned to different dimensionsdifferent dimensions

Learn a diagonala diagonal matrix A using Newton-Raphson to 

efficiently optimize the following equation [Xing et al, 2002]
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Best weighting of data dimensionsBest weighting of data dimensions

W:W: set of different weightings defined for a set of d data set of different weightings defined for a set of d data 

dimensions.dimensions.

WWj ∈∈ WW best weighting for a given datasetbest weighting for a given dataset

ifif the clustering of data in the the clustering of data in the dd−−dimensionaldimensional space defined space defined 

byby

WWj = [w= [wj1j1, . . . , , . . . , wwjdjd] (] (wwjiji > 0)> 0)

optimizesoptimizes the quality measure:the quality measure:

QoCQoCconstrconstr(C(Cjj) = ) = optimoptimii=1,...,=1,...,mm{QoC{QoCconstrconstr(C(Cii)})}

given that Cj is the clustering for the Wj weighting vector.
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Defining dimension weightsDefining dimension weights

Clustering quality criterion (measure) :Clustering quality criterion (measure) : evaluates a 

clustering, Ci, of a dataset in terms of

its accuracy accuracy w.r.tw.r.t. the user constraints. the user constraints (ML & CL) 

its validity based on wellvalidity based on well--defined cluster validity criteriadefined cluster validity criteria. 

QoCQoCconstrconstr(C(Ci) = ) = ww··AccuracyAccuracyML&CL(C(Ci) + ) + ClusterValidity(CClusterValidity(Ci))

% of constraints 
satisfied in Cj

Ci’s cluster 
validity.

significance of the 
user constraints 
w.r.t. the cluster 
validity criteria
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Hill climbing procedure:Hill climbing procedure:
Defining dimension weightsDefining dimension weights

Initialize dimension weights to satisfy MLML and CLCL,

WWcurcur = {= {WWii | i = 1, . . . , d}| i = 1, . . . , d}

Clcur clustering of data in space defined by Wcur.

For each dimension i

1.1. UpdatedUpdated Wcur Increase or decrease the i-th

dimension of Wcur

2. Clcur Cluster data in new space defined by Wcur.

3. Quality(Wcur) QoCconstr(Clcur)

If there is improvement to Quality(Wcur) Go to stepGo to step

1

Wbest weighting resulting in ‘best’ clustering (correspond to 

maximum QoCconstr(Clcur))

90M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Cluster Validity criteriaCluster Validity criteria

S_DbwS_Dbw validity of clustering results in terms of 

objective criteria

ClusterValidityClusterValidity((CCii) = (1+) = (1+S_DbwS_Dbw((CCii))))−−11

Our approach aims to optimize the following form:

QoCQoCconstrconstr(C(Cii) = ) = ww··AccuracyS&D(CAccuracyS&D(Cii)+ )+ ClusterValidityClusterValidity((CCii))(1+S_Dbw(C(1+S_Dbw(Cii))))−−11))
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Current Data Set Features

Large volume / high dimensionality

Heterogeneity

Dynamics

Motion

availability?

Frequent changes

Huge query loads

Examples: Web, P2P systems

94M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Requirements 

Managing data 

On the absence of 

Full knowledge about the data

Central coordinating authority

Limited resources for query processing 

(i.e. messages over the net)

Importance ranked answer list
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Dimensionality Reduction -
Objectives 

Let a multidimensional data set

X = (x1, . . . , xn),  xi € Rd,

Aim: find a “credible” mapping of the n vectors to Rk , 

k<<d 

Credible:

Maintain: variation / distances

In a lower dimensional space clustering-structure is 

maintained and “amplified”

similarity queries are much faster
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Why ?

What is dimensionality reduction?
A methodology that attempts to project a set of high dimensional vectors
to a lower dimensionality space while retaining metrics among them.

Why is it necessary?
Curse of dimensionality (exponentially increasing data to represent 
adequately a pattern)
Empty space phenomenon (longest/shortest distances converge).
Clustering becomes infeasible 
In distributed environments: Transmitted data.

Why is it feasible ?
Some coordinates do not contribute to the data representation.
Subsets of the dimensions may be highly correlated. 

When is it applied?
When the cost of dim. reduction application is worth the expected benefit.
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Dimensionality reduction –
fundamentals…

Dimensionality Reduction Methodology
N vectors in Rn.
Projection space is Rk.
Must find a transformation Wkxn such that : X(k)= W(kxn)X(n).

Linear dimensionality reduction algorithms
All data lay in a globally linear space. [1]

Non linear dimensionality reduction algorithms
All data lay in a locally linear subspace. [1]

Multidimensional Scaling (MDS)
All data are randomly projected to a lower dimensionality space.
Minimization of the stress criterion through the iterative application of 
numerical analysis methods 

Stress = ∑(f(dij)-dij’)2/∑ f(dij)2

Algorithmic Complexity Ο(N3)
Result: A new representation of data in a lower dimensionality space 
characterized by the fact that distances among them are well preserved.

[1] “A Survey of Dimension Reduction Techniques”, I.K. Fodor, US Department Of Energy, 2002
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Dim. Reduction – Algorithms I

Singular Value Decomposition
A technique for matrix decomposition.
Transforms a single matrix in a product of three matrixes 
Α(mxn)=U(mxm)Σ(mxn)V(nxn)

T

Latent Semantic Indexing (LSI)
SVD on matrix Α.
Seeks for the latent structure of data

Eigenvalue decomposition
Specialization of SVD
Principal Components Analysis (PCA)

Eigenvalue decomposition application on the data covariance matrix.

Landmark Multi-Dimensional Scaling (LMDS) [1]
An alternative to classic MDS for large datasets.
Random choice of a set of initial points.
Projection of the aforementioned points with classic MDS
Projection of the rest of the points with the use of triangulation techniques

IsoMap & C-IsoMap [2]
Used in special cases where Euclidean metric does not apply

[1] “Sparse Multidimensional Scaling Using landmark points”, Vin de Silva, Joshua B. Tenenbaum, 2004
[2] “Global versus local methods in nonlinear dimensionality reduction”, Vin de Silva, Joshua B. Tenenbaum, NIPS 2003
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Dim. Reduction–Eigenvectors

A nxn table

eigenvalues λ: |Α-λΙ|=0

Eigenvectors x : Ax=λx

Table order: number of linearly independent rows or 
columns

A real symmetric table Α nxn can be expressed as: 
A=UΛUT

U’s columns are Α’s eigenvectors

Λ’ diagonal contains Α’s eigenvalues

Α=UΛUT=λ1x1xT
1+λ2x2xT

2+…+λnxnxT
n

x1xT
1 represents projection via x1 (λi eigenvalue, 

xi eigenvector)
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Singular Value Decomposition 
(SVD)

• Decomposition into eigen values and eigenvectors is 

applied to square matrices. Data tables are usually non 

square, in these case we apply Singular Value 

Decomposition.

• Let Α mxn table, can be expressed Α=ULV’

• U: mxm, its columns are A*A’ eigenvectors.

• L: mxn contains A’s singular values, equal to square roots 

of A*A’ eigenvalues

• V : nxn, its colums are A’*A eigenvectors
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Principal Components AnalysisPrincipal Components Analysis

The main concept behind Principal Components AnalysisPrincipal Components Analysis is 
dimensionality reduction, maintaining as much as possible 
data’s variance. 

variance: V(X)=σ2=Ε[(Χ-µ)2]

Let Ν objects, with mean value, m, it is approximated as: 

In a sample of Ν objects with unknown mean value:
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Dimensionality reduction based on 
variance maintenance

Axis 
maximizing 
variance 
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Principal Components AnalysisPrincipal Components Analysis

Let n dimensional data, with dimensions: x1,…,xn

The objective is to projects the data to k dimensions 
via some linear decomposition:  

y1=a1*x1+…+an*xn

………

yk=b1*x1+…+bn*xn

the should maintain the variance of the original data
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PCA, algorithm  (1)PCA, algorithm  (1)

Χ nxp data table, lines are the objects, columns the 

Initially data values are transformed such that µ=0

10

11

objects

attributes

0-0.5

00.5
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PCA, algorithmPCA, algorithm (2)(2)

Let p attributes Χ1,...,Χp

a the px1 vector with the projection weights with ||a||=1

Pra(x)=<a,x>

The projection variance:

σa
2 =(1/n)*(X*a)T(X*a)=aT*V*a

V the covariance matrix of the sample (sample covariance).

Each element (i,j) in V will be defined by the covariance 
between Xi,Xj

Cov(Xi,Xj)=(1/n)* Σk(xi(k)-µi)(xj(k)-µj)
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PCA, algorithmPCA, algorithm (3)(3)

It can be easily proved that the projection weight 

vectors maximizing the variance can be found by 

solving: 

(V-λΙ)a=0

The first principal component is the 

eigenvector corresponding to the largest V’s 

eigenvalue etc.
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PCA, algorithmPCA, algorithm (4)(4)

Assuming the top k principal components, the 

deviation of the new variance to the original one is 

given by:

[Σp
j=k+1 λj]/[Σp

j=1 λj] [1]

Termination criterion: when the deviation [1] is 

smaller than a threshold set.
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PCA, examplePCA, example

Axis corresponding to the 
first principal component

Axis corresponding to the 
second principal component
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PCA ApplicationsPCA Applications

Preprocessing step preceding the application of data 

mining algorithms (such as clustering).

Data Visualization.

Noise reduction.
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PCA, variationsPCA, variations

There are variations on the definition of V 

generating the projection vectors.

V may be defined as:                                 

(1/n-1)* Σk(xi(k)-µi)(xj(k)-µj) (instead of 1/n). 

It can easily be proved that the two definitions 

result in exactly the same principal components.
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PCA, synopsisPCA, synopsis

It is a dimensionality reduction method

Nominal complexity Ο( np^2+p^3)
n: number of data points

p: number of initial space dimensions 

The new space maintains sufficiently the data 
variance. 
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Latent Structure in documents (I)

• Documents are represented based on the Vector 

Space Model 

• Vector space model consists of the keywords contained 

in a document.

• In many cases baseline keyword based performs poorly –

not able to detect synonyms.

•Therefore document clustering is problematic



57

113M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Latent Structure in documents (II)

Example where of keyword matching with the query:

“IDF in computer-based information look-up”

Doc1

Doc2

Doc3

access document retrieval information theory database indexing computer

x x x x x

x x x

x x x
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LSILSI

• Finding similarity with exact keyword matching is 

problematic.

• Using SVD we process the initial document-term 

document.

• Then we choose the k larger singular values. The 

resulting matrix is of order k and is the most similar to the 

original one based on the Frobenius norm than any other 

k-order matrix.
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LSI

• The initial matrix is analyzed as: Α=ULV’

• Choosing the k larger singular values from L we have: έχουµε

Αk=UkLkVk’ , 

• Lk is square kxk containing the k larger eigenvalues of the 

diagonal in matrix L,

• Uk, the mxk matrix containing the first k columns in U,

• Vk’, the kxn matrix containing the first k lines of V’

Typical values for κ~200-300 (empirically chosen based on 

experiments appearing in the bibliography)
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LSI capabilitiesLSI capabilities

• Term to term similarity: 

ΑkΑ k’=UkLk
2Uk’

• document-document similarity: Αk’Α k=VkLk
2Vk’

• term document similarity (as an element of the 

transformed – document matrix)

• Extended query capabilities transforming initial query 

q to qn : qn=q’UkLk
–1  

• Thus qn can be regarded a line in matrix Vk
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LSI LSI –– an examplean example

• LSI application on a term – document matrix

C1: Human machine Interface for Lab ABC computer application

C2: A survey of user opinion of computer system response time

C3: The EPS user interface management system

C4: System and human system engineering testing of EPS

C5: Relation of user-perceived response time to error measurements

M1: The generation of random, binary unordered trees

M2: The intersection graph of path in trees

M3: Graph minors IV: Widths of trees and well-quasi-ordering 

M4: Graph minors: A survey

• The dataset consists of 2 classes, 1st: “human – computer 
interaction” (c1-c5) 2nd: related to graph (m1-m4). After feature 
extraction the titles are represented as follows.
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LSI LSI –– an examplean example

110000000Minors

111000000Graph

011100000Trees

100000010Survey

000001100EPS

000010010Time

000010010Response

000002110System

000010110User

000000011computer

000000101Interface

000001001human

M4M3M2M1C5C4C3C2C1
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LSI LSI –– an examplean example

A=ULV’

110000000

111000000

011100000

100000010

000001100

000010010

000010010

000002110

000010110

000000011

000000101

000001001

A=
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LSI LSI –– an examplean example

A=ULV’

-0.05-0.020.28-0.170.080.07-0.430.110.27

0.180.680.340.28-0.30-0.010.140.450.03

0.23-0.680.160.11-0.070.000.220.620.04

-0.230.25-0.29-0.390.590.030.230.490.01

-0.58-0.04-0.470.08-0.54-0.03-0.180.270.21

-0.17-0.020.030.270.110.190.33-0.140.30

-0.05-0.020.28-0.170.080.07-0.430.110.27

0.270.03-0.17-0.21-0.160.330.36-0.170.64

0.010.000.000.380.330.10-0.340.060.40

0.490.06-0.30-0.25-0.11-0.59-0.160.040.24

-0.11-0.01-0.070.500.28-0.550.14-0.070.20

-0.41-0.060.52-0.34-0.11-0.410.29-0.110.22

U=

000

000

000

000

000

000

000

000

000

000

000

000
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LSI LSI –– an examplean example

A=ULV’

L=

000000000

000000000

000000000

0.3600000000

00.560000000

000.85000000

0001.3100000

00001.500000

000001.64000

0000002.3500

00000002.540

000000003.34
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LSI LSI –– an examplean example

A=ULV’

V=

-0.45-0.070.040.36-0.60-0.030.080.530.08

0.520.450.250.000.150.010.250.620.02

0.02-0.76-0.15-0.210.350.020.190.440.01

-0.620.45-0.34-0.300.390.020.100.190.00

-0.26-0.060.670.030.330.15-0.510.110.28

-0.08-0.020.26-0.37-0.210.270.57-0.230.54

0.020.01-0.240.720.380.040.21-0.130.46

0.240.05-0.43-0.26-0.21-0.03-0.500.170.61

-0.06-0.010.18-0.080.05-0.950.11-0.060.20
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LSI LSI –– an examplean example

Choosing the 2 largest singular values we have

Lk= 2.540

03.34

0.110.27

0.450.03

0.620.04

0.490.01

0.270.21

-0.140.30

0.110.27

-0.170.64

0.060.40

0.040.24

-0.070.20

-0.110.22

Uk= Vk’=

0.530.620.440.190.11-0.23-0.130.17-0.06

0.080.020.020.000.280.540.460.610.20
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LSILSI ((2 2 singular values)singular values)

0.620.710.500.220.15-0.21-0.100.25-0.04Minors

0.850.980.690.310.20-0.30-0.150.34-0.06Graph

0.660.770.550.240.14-0.27-0.140.23-0.06Trees

0.420.440.310.140.270.210.230.530.10Survey

-0.11-0.20-0.14-0.070.240.630.510.550.22EPS

0.220.190.130.060.280.420.380.580.16Time

0.220.190.130.060.280.420.380.580.16Response

-0.05-0.21-0.15-0.070.561.271.051.230.45System

0.190.120.080.030.390.700.610.840.26User

0.120.090.060.020.240.410.360.510.15Computer

-0.04-0.10-0.07-0.030.160.400.330.370.14Interface

-0.09-0.16-0.12-0.050.180.470.380.400.16human

M4M3M2M1C5C4C3C2C1

Αk =
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LSI Example

• Assume the query: “human computer interaction” we 

retrieve documents: c1,c2, c4 but not c3 and c5. 

• If we submit the same query (based on the 
transformation shown before) to the transformed matrix 
we retrieve (using cosine similarity) all c1-c5 even if c3

and c5 have no common keyword to the query. 

• According to the transformation for the queries we 

have:
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Query transformation 

q=

0Minors

0Graph

0Trees

0Survey

0EPS

0Time

0Response

0System

0User

1computer

0Interface

1human

query

0

0

0

0

0

0

0

0

0

1

0

1
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Query transformation

000000000101q’=

0.110.27

0.450.03

0.620.04

0.490.01

0.270.21

-0.140.30

0.110.27

-0.170.64

0.060.40

0.040.24

-0.070.20

-0.110.22

Uk= Lk
-1= 0.390

00.3

qn=q’UkLk
-1= -0.02730.138
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Query transformation

VkLk=

0.530.08

0.620.02

0.440.01

0.190.00

0.110.28

-0.230.54

-0.130.46

0.170.61

-0.060.20

2.540

03.34
=

1.350.27

1.570.07

1.120.03

0.480.00

0.280.94

-0.581.80

-0.331.54

0.432.04

-0.150.67

qnLk = -0.02730.138
2.540

03.34
= -0.0690.46
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Query transformation

0.5           1             1.5             2

-0.5

1.5

1

0.5

C1

C2

C3
C4

C5
q

m1

m3

m2
m4
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Query transformation

• Comparison of the transformed query to the new 

document vectors based on cosine similarity, where the 

similarity is computed as: Cos(x,y)=<x,y>/||x||.||y||

Where x=(x1,…,xn), y=(y1,…,yn)

<x,y>=x1*y1+…+xn*yn

||x||=sqrt(<x,x>)
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Query transformation

0.05

-0.11

-0.13

-0.14

0.90

0.99

0.99

0.94

0.99

query

M4 

M3

M2

M1

C5

C4

C3

C2

C1

• The cosine similarity matrix of query vector to the 

documents is:
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FastMap (Faloutsos et al. 1995)
Projects all data to a 
hyperplane perpendicular to 
the line defined by the two 
most distant points of the 
dataset.
One of the fastest available 
methods
Algorithmic complexity: Ο(Nk)

Piecewise Aggregate 
Approximation – PAA 
(E.Keogh et al.2001)

Replace a set of coordinates 
with their mean value.
Algorithmic complexity Ο(n)

Dim. Reduction – Algorithms II

Π

Α

Β

C

D

D’ C’

Dorig

Dnew

X

√(Dold
2 –Dnew

2)

x10x9x8x7x6x5x4x3x2x1

x9+ x10/2x7+ x8/2x5+ x6/2x3+ x4/2x1+ x2/2

d

c
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Distributed Dimensionality Reduction

Distinct features
Lack of global knowledge about the data. 

Requirements
Each point is projected independently from the rest.
Distances between points are preserved in all cases, even 
when points do not belong to the same node. 

Most of the algorithms require global knowledge.
The projection of a point is influenced by the rest of the 
corpus.

SVD: The addition of a new point necessitates no abduction of 
singular values and lot of computations .

Exception: When data representations are orthogonal

PAA promising..
However it is rather insecure due to it’s dependency on the 
rolling window size.
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Distributed Dimensionality Reduction 
Approaches

Distributed FastMap [1]
Objective: Decentralized computation of the global pivot set.
Distributed OneTime FastMap:

Each node generates its local pivots set
All local sets are aggregated and the application of FastMap
generates the global pivots set 

Distributed Iterative FastMap:

Each node generates pivots on iteration basis.

Based on choose-distant-points heuristic, global pivots per 
iteration are selected.

Distributed Principal Components Analysis [2]
Objective: Assemblage of the covariance matrix
Each node contributes with a part of its principal components set.

[1] Faisal N.Abu-Khzam, Nagiza Samatova, George Ostrouchov, Michael A.Langston, Al Geist, “Distributed
Dimension Reduction Algorithms for Widely Dispersed Data” PDCS 2002, pp. 167-174
[2] Yongming Qu, George Ostrouchov, Nagiza Samatova, Al Geist, “Principal Component Analysis for
Dimension Reduction in Massive Distributed Data Sets”, 5th International Workshop on High Performance Data Mining, 2002
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Distributed Dimensionality Reduction 
Approaches

Distributed LMDS [1]
Application of classic MDS on a subset of points
Projection of each point separately through distance 
based triangulation

Assessment

[1] P. Magdalinos, C. Doulkeridis and M. Vazirgiannis, “A Novel Effective Distributed Dimensionality Reduction
Algorithm”, In Workshop on Feature Selection for Data Mining (FSDM'06), pp.18-25, Bethesda, Maryland, 2006.

0O(1)O(n)O(d)PAA

O(fn + fk)O(kf)O(f(n+k)) or
O(f(n+k) + f2)O(kfdi+f2+ f3)Distributed

LMDS

O(skn + k2)O(k)O((k+n)di+di
2)O(di k) or

O(di k + sk2)
Iterative
D.FastMap

O(skn + k2)O(k)O((k+n)di+di
2)O(di k) or

O(di k+ sk2)
One-Time
D.FastMap

---O(k)O((k+n)d+d2)O(dk)FastMap

O(nsk)O(kn)O(n2 + ndi)O(n2di + n3)DPCA

---O(kn)O(n2 + nd)O(n2d + n3)PCA

Network
Load

Addition of
new point

Memory 
Requirements

Algorithmic 
Complexity

Notation:
d: number of total points
di: number of local points
k: dimensionality of projection space
s: number of nodes
f : number of selected points
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Recent contribution - K-Landmarks 
[PKDD 2006]

Problem:
Input: d vectors in Rn distributed in a network of p nodes. Each node 
holds di vectors
We want to find a distributed dimensionality reduction algorithm that 
produces as output N vectors in space Rk

Assumption: The existence of some kind of network organization 
scheme.

An aggregator node is elected.

The algorithm
1. k points are chosen from the whole network. Each node selects ki points. 

All data are transmitted to the aggregator node.
• Random selection of initial points.
• Selection of most distant points
• Use of clustering (only centralized execution)

2. Application of FastMap on the set L of landmark points.
• Projection has zero Stress All distances are preserved.

3. Results are communicated to the rest of the nodes.
4. Each resource, when projected must have equal distance from the 

landmark points both in the original and in the projection space.
• The problem is solved with the use of the Newton method
• Convergence criterion: min[∑k{|distanceorig - distancenew|}] 

|| x(k) - li(k) || = || x(n) - li(n) || for i=1..k.
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K-Landmarks - I

Geometric interpretation
Equation ||x(k) - l(k)|| = D = 
||x(n) - l(n)|| represents a 
hypersphere in Rk with center in 
l(k) radius D.
The algorithm searches for the 
common trace of the k 
hyperspheres.

The algorithm always converges 
if the Euclidean metric holds true 
in the original space.

Criterion of non convergence:
||Α’Β’ ||>||CΑ ||+||CΒ ||  

or
||Α’Β’ ||<||CΑ ||-||CΒ ||    

Projection with zero stress:
||Α’Β’ ||=||ΑΒ ||

The criterion of non-convergence 
in never satisfied

Α

Β

CD

x

y

z

DAB

DDA

DDB
DBC

DAC

y

x

Β’

Α’

D’AB

DAC

DBC

Π1

Π2

C’

C’
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K-Landmarks II

Computational Cost:
Choice of ki points from each node: 

Random: Ο(ki) 
Heuristic based : Ο(diki)

Distances’ calculation between landmark points:
O(k2) – cost for the aggregator node only.

FastMap execution: 
O(k2) - cost for the aggregator node only.

Calculation of the distances of the remaining di -ki points from the landmark 
points: 

Ο{(di -ki)k}
Solution of (di -ki) non-linear equations system:

Ο{(di -ki)k3/3}
Eventually:

Ο{(di -ki)k3/3} for each node

Network stress:
Communication of k vectors of dimensionality n: Ο(nk)
Communication of the aforementioned vectors and their projections in the k 
dimensions space: Ο(nk + k2) 
Eventually:Ο(nk + k2)

O(nk + k2)O(k3/3)O(kn+k2)Ο((di-ki) k3/3)K-Landmarks

Network 
Load

Addition of 
new point

Memory
Requirements

Algorithmic
Complexity
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ExperimentsExperiments

Experiments with a selection from UCI datasets
Projection from 2% up to 10% of original dimensions

We measure:
Stress: distance preservation while projecting

Relative clustering quality preservation: discovering clusters before vs. after 
projecting 

F-Measure-k /F-Measure-n

Datasets:

Randomly generated data ([1]).660600Synthetic control

Outdoor images segments. 7192000Segmentation

Medical observations. 28768P.I.Diabetes

Molecules descriptions. 2166476Musk

Letters of the alphabet.266171559Isolet5

Radar observations.234351Ionosphere

DescriptionClassesDimensionsObjectsDataset Name

[1] Alcock R.J. and Manolopoulos Y, “Time-Series Similarity Queries Employing a Feature-Based Approach”, 7th

Hellenic Conference on Informatics. August 27-29. Ioannina,Greece 1999.
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Segmentation Synthetic Control

Remarks
KLandmarks exhibits high clustering quality preservation and low 
stress value
Distributed LMDS proves rather unstable, with extremely high 
stress value
Although PAA retains clusters it fails in distances preservation

DistributedDistributed Clustering Clustering 
approachesapproaches
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Introduction to Distributed ClusteringIntroduction to Distributed Clustering

Data are distributedData are distributed to different sites connected through a 
network.

Each site knows only its local informationsite knows only its local information

A local clustering can be defined at each site

How can we combine local local clusteringsclusterings to define a globalglobal one.

Requirements:Requirements:
Low communication costLow communication cost

Restrictions of the continuous exchange of information

AccuracyAccuracy

– Clustering using global data
≈

∪ilocal clusteringi
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Distributed clustering based on kDistributed clustering based on k--windows windows 
algorithmalgorithm

Entire dataset XX is distributed among m sitesm sites

Each site stores Xi , X = X = ∪∪i=1,i=1,……,m,m XXii

Central site O holds the final clustering results

kk--windowswindows algorithm is executed over the Xi datasets

All the final windows from each site are collected to the 

central node O.

Central nodeCentral node is responsible for the final merging

Two overlapping windows are considered to belong to the 

same cluster

* Tasoulis, Vrahatis. “Unsupervised Distributed Clustering”, PRL 2005
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Unsupervised kUnsupervised k--windows algorithmwindows algorithm

Tries to place a dd--dimensional window containing all 
patterns that belong to a single cluster.

Two step approach based on

sequential movementmovement and enlargementsenlargements of 

windows

Windows aim to capture patterns that belong to the 
same cluster

After the clustering procedureclustering procedure

windows that share a sufficiently large number of 

patterns are merged to form a single cluster
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Unsupervised kUnsupervised k--windows algorithmwindows algorithm

11stst step.step.

The windows are moved to the Euclidean 
space without altering their size.

Each window is moved by setting its center 
to the mean of the patterns currently 
included.

Termination:Termination: further movement does not 
increase the number of patterns included

2nd step.2nd step.

The size of windows enlarged to capture as 

many patterns of the cluster as possible

Termination:Termination: the number of patterns 

included in the window no longer increases.
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SummarySummary

Unsupervised clusteringUnsupervised clustering
Fundamental concepts 

Representative algorithms

SemiSemi--supervised clusteringsupervised clustering
Feasibility constraints

Algorithms for constrained clustering

Cluster validity criteria and SemiCluster validity criteria and Semi--supervised learningsupervised learning

Distributed dimensionality reduction techniquesDistributed dimensionality reduction techniques
Low stress

High clustering quality preservation

Low network load
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DBDB--NET @ AUEBNET @ AUEB
http://www.db-net.aueb.gr/

Database lab @ UCRDatabase lab @ UCR
http://dblab.cs.ucr.edu/



75

149M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

References References ––Unsupervised learning (1)Unsupervised learning (1)

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. "Automatic Subspace Clustering of High 

Dimensional Data for Data Mining Applications", in Proceedings of the SIGMOD Conference, 1998.

Aggarwal, C. C., and Yu, P. S., Finding generalized projected clusters in high dimensional spaces. In 

SIGMOD, 2000.

Aggarwal C.C., Procopiuc, C., Wolf, J.L., Yu, P.S., and Park, J.S. "Fast Algorithms for Projected 

Clustering", in Proceedings of the ACM SIGMOD, 1999.

C. Aggarwal and P. S. Yu, "Finding generalized projected clusters in high dimensional spaces", in 

Proceedings of the ACM SIGMOD International Conference on Management of Data, 2000.

Bezdeck J.C, Ehrlich R., Full W., "FCM: Fuzzy C-Means Algorithm", Computers and Geoscience, 1984. “

C. Alpert and S. Yao, Spectral partitioning: the more eigenvectors the better. In Proceedings of 32nd 

ACM/IEEE Design Automation Conference, 1995, pp. 195-200. 

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics, Spinger-

Verlag, New Work, 1980.

F.R. Bach and M.I. Jordan. Learning spectral clustering. Neural Info. Processing Systems 16(NIPS 2003),

2003.

M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, 

Advances in Neural Information Processing Systems 14 (NIPS 2001), pp: 585-591, MIT Press, Cambridge, 

2002. 

150M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Unsupervised learning (2)Unsupervised learning (2)

M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering. Int'l 

Workshop on AI & Stat (AI-STAT 2003), 2003. 

Cheng Y., Church G. “Biclustering of expression data”. Int’l conference on intelligent systems 

for molecular biology, 2000.

I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. 

Proc. ACM Int'l Conf Knowledge Disc. Data Mining (KDD), 2001. 

I. Dhillon, S. Mallela and D. Mohda, Information Theoretic co-clustering, SIGMOD 2003

C. Ding and X. He. K-means Clustering via Principal Component Analysis. In  Proc. of Int'l 

Conf. Machine Learning (ICML 2004), pp 225-232. July 2004

Chris Ding and Xiaofeng He. Linearized Cluster Assignment via Spectral Ordering 

Proc. of Int'l Conf. Machine Learning (ICML 2004).

C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma. “Subspace Clustering of High 

Dimensional Data”, SDM 2004.

Ester, M., Kriegel, H-P., Sander, J., Xu, X. "A Density-Based Algorithm for Discovering 

Clusters in Large Spatial Databases with Noise", Proceedings of 2nd Int. Conf. On Knowledge 

Discovery and Data Mining, Portland, pp. 226-23, 1996.

M. Ester, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer,  Xiaowei Xu. "Incremental 

Clustering for Mining in a Data Warehousing Environment", in Proceedings of 24th VLDB 

Conference, New York, USA, 1998.



76

151M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Unsupervised learning (3)Unsupervised learning (3)

S. Guha, R.Rastogi, K. Shim. "CURE: An Efficient Clustering Algorithm for Large Databases", 

in SIGMOD Conference, 1998.

S. Guha, R. Rastogi, K. Shim. "ROCK: A Robust Clustering Algorithm for Categorical 

Attributes", in Proceedings of the IEEE Conference on Data Engineering, 1999.

Ming Gu, Hongyuan Zha, Chris Ding, Xiaofeng He and Horst Simon. “Spectral Relaxation 

Models and Structure Analysis for K-way Graph Clustering and Bi-clustering”. Technical 

Report, 2001. 

J. Han, M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 

2001.

R. J. Hathaway, J. C. Bezdek, John W. Davenport. "On relational data versions of c-means 

algorithm", Pattern Recognition Letters, Vol. 17, pp. 607-612, 1996.

A. Hinneburg, D. Keim. "An Efficient Approach to Clustering in Large Multimedia Databases 

with Noise", in Proceedings of KDD Conference, 1998.

Z. Huang. "A Fast Clustering Algorithm to Cluster very Large Categorical Data sets in Data 

Mining", DMKD, 1997.

R. J. Hathaway, James C. Bezdek. "NERF c-Means: Non-Euclidean Relational Fuzzy 

Clustering", Pattern Recognition Letters, Vol. 27, No 3, pp. 428-437, 1994.

L. Parsons, E. Haque, and H.Liu. “Subspace clustering for high dimensional data: a review”. 

SIGKDD Explor. Newsl., 6(1):90105, 2004. 

152M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Unsupervised learning (4)Unsupervised learning (4)

R. Jin, C. Ding and F. Kang. “A Probabilistic Approach for Optimizing Spectral Clustering” in 

Proc 9th Annual Conf. on Neural Information Processing Systems (NIPS 2005) 

A.K Jain, M.N. Murty, P.J. Flyn. "Data Clustering: A Review", ACM Computing Surveys, Vol. 

31, No. 3, September 1999. 

S. Kamvar, D. Klein and C. Manning. “Spectral Learning”, In IJCAI, 2003

A. Y. Ng, M. I. Jordan, and Y. Weiss. “On spectral clustering: Analysis and an algorithm”.  In 

T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information 

Processing Systems 14, Cambridge, MA, 2002. MIT Press.

G. Karypis, Eui-Hong Han, V. Kumar. "CHAMELEON: A Hierarchical Clustering Algorithm 

Using Dynamic Modeling", IEEE Computer. Vol. 32, No. 8, 68-75, 1999.

G. Kollios, D.Gunopulos, Nick Koudas, Stefan Berchtold: Efficient Biased Sampling for 

Approximate Clustering and Outlier Detection in Large Data Sets. IEEE TKDE. 15(5), 2003

G. Kollios, D. Gunopulos, N. Koudas, Stefan Berchtold: An Efficient Approximation Scheme 

for Data Mining Tasks. ICDE 2001: 453-462.

J. Lin, M. Vlachos, E. Keogh, D. Gunopulos: Iterative Incremental Clustering of Time Series. 

EDBT 2004: 106-122.

J. H. Friedman, J. Meulman. “Clustering Objects on Subsets of Attributes”, 2002.



77

153M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Unsupervised learning (5)Unsupervised learning (5)

A. Nanopoulos, Y. Theodoridis, Y. Manolopoulos. "C2P: Clustering based on Closest 

Pairs", in Proceeding of the VLDB Conference, Roma, Italy, 2001.

R. Ng, J.Han. "Efficient and Effective Clustering Methods for Spatial Data Mining", in 

Proceedings of the VLDB Conference, Santiago, Chile, 1994.

Dimitris Papadopoulos, Carlotta Domeniconi, Dimitrios Gunopulos, Sheng Ma: 

Clustering gene expression data in SQL using locally adaptive metrics. DMKD 2003: 

35-41 

P. Perona and W. Freeman, "A factorization approach to grouping," in Proc. ECCV 

'98, vol. 1, 1998, pp. 655--670. 

Procopiuc, C. M., Jones, M., Agarwal, P. K., and Murali, T. M. A Monte Carlo 

algorithm for fast projective clustering. In SIGMOD, 2002. 

G. Scott and H. Longuet-Higgins. Feature grouping by relocalisation of eigenvectors 

of the proximity matrix. In British Conference on Machine Vision, pages 731--737, 

1990

C. Sheikholeslami, S. Chatterjee, A. Zhang. "WaveCluster: A-MultiResolution

Clustering Approach for Very Large Spatial Database", in Proceedings of 24th VLDB 

Conference, New York, USA, 1998.

154M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Unsupervised learning (6)Unsupervised learning (6)

Wei Wang, Jiorg Yang and Richard Muntz. "STING: A statistical information grid 

approach to spatial data mining", in proceedings of the VLDB Conference, 1997.

Tian Zhang, Raghu Ramakrishnman, Miron Linvy. "BIRCH: An Efficient Method for 

Very Large Databases", SIGMOD Rec. 25, 2, 103-114. 1996.

M. Meila and J. Shi. A random walks view of spectral segmentation. Int'l

Workshop on AI & Stat (AI-STAT), 2001

M. Meila and L. Xu. Multiway cuts and spectral clustering. U. Washington Tech 

Report, 2003. 

H. Zha, X. He, C. Ding, M. Gu & H. Simon. Bipartite Graph Partitioning and Data 

Clustering, Proc. of ACM 10th Int'l Conf. Information and Knowledge Management 

(CIKM 2001), pp.25-31, 2001, Atlanta. 

Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments 

and analysis. Univ. Minnesota, CS Dept. Tech Report 01-40, 2001.

Yair Weiss. "Segmentation Using Eigenvectors: A Unifying View". ICCV, 1999.



78

155M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Cluster Validity (1)Cluster Validity (1)

Dave, R. N. "Validating fuzzy partitions obtained through c-shells clustering", Pattern 

Recognition Letters, Vol .10, pp613-623, 1996.

Davies, DL, Bouldin, D.W. "A cluster separation measure". IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 1, No2, 1979.

Bezdeck, J.C, Ehrlich, R., Full, W. "FCM:Fuzzy C-Means Algorithm", Computers and 

Geoscience, 1984. 

T. G. Dietterich. "Approximate Statistical Tests for Comparing Supervised Classification 

Learning Algorithms", Neural Computation, 10(7), 1998.

Dunn, J. C. "Well separated clusters and optimal fuzzy partitions", J.  Cybern. Vol.4, 

pp. 95-104, 1974.

P. Gago, C. Bentos. "A metric for selection of the most promising rules". In proceedings 

PKDD'98. Nantes, France, September 1998.

I. Gath and Geva. "Unsupervised Optimal Fuzzy Clustering". IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol.11, No7, July 1989.

156M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Cluster Validity (2)Cluster Validity (2)

M. Vazirgiannis, M. Halkidi, D. Gunopoulos. "Quality Assessment and Uncertainty 

Handling in Data Mining", Springer-Verlag, LNAI Series, 2003

M. Halkidi, Y. Batistakis, M. Vazirgiannis. "Cluster Validity Methods: Part II", in 

SIGMOD Record, Sept. 2002 "

Halkidi M, Vazirgiannis M., "A data set oriented approach for clustering algorithm 

selection", Proceedings of PKDD, Freiburg, Germany, 2001“.

M.Halkidi, M. Vazirgiannis. "Clustering validity assessment using multi 

representatives", Poster paper in the Proceedings of SETN Conference, April 

2002, Thessaloniki, Greece.

Halkidi, M., Vazirgiannis, M., Batistakis, I. "Quality scheme assessment in the 

clustering process", Proceedings of PKDD, Lyon, France, 2000.

Janikow C. Z., "Exemplar Learning in Fuzzy Decision Trees", In Proceedings of 

FUZZ-IEEE, pp1500-1505, 1996.



79

157M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

ReferencesReferences--Cluster Validity (3)Cluster Validity (3)

Krishnapuram, R., Frigui, H., Nasraoui. O. "Quadratic shell clustering algorithms 

and the detection of second-degree curves", Pattern Recognition Letters, Vol. 

14(7), 1993“

Milligan, G.W. and Cooper, M.C. "An Examination of Procedures for Determining 

the Number of Clusters in a Data Set", Psychometrika, Vol.50, pp.159-179, 1985.

Pal, N.R., Biswas, J. "Cluster Validation using graph theoretic concepts". Pattern 

Recognition, Vol. 30(6), 1997.

C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. "A monte carlo

algorithm for fast projective clustering", in   Proceedings of the ACM SIGMOD 

Conference on Management of Data, 2002.

R. Rezaee, B.P.F. Lelieveldt, J.H.C Reiber. "A new cluster validity index for the 

fuzzy c-mean", Pattern Recognition Letters, 19, pp. 237-246, 1998.

Sharma, S.C. Applied Multivariate Techniques. John Willey & Sons, 1996.

Smyth, P. "Clustering using Monte Carlo Cross-Validation". In Proceedings of KDD 

Conference, 1996. 

158M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

B. Anderson, A. Moore, and D. Cohn. A nonparametric approach to noisy and costly 
optimization. In ICML, 2000.

A. Bar-Hillel, T. Hertz, N. Shental, and D.Weinshall. Learning distance function using 
equivalence relations. In ICML, 2003.

S. Basu, M. Bilenko, and R. Mooney. “A probabilistic framework for semi-supervised 
clustering”. In KDD, August 2004.

M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in 
semi-supervised clustering. In ICML, 2004.

S. Basu, A. Banerjee and R. J. Mooney “Semi-supervised Framework by Seeding” in 
ICML, 2002.

P. Bradley, K. Bennet, and A. Demiriz, “Constrainted K-Means Clustering”, Microsoft 
research Technical report, May 2000.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In 
Conf. on Computational Learning Theory, pages 92 100, 1998.

A. Blum J. Laffety, M.R. Rwedebangria, R. Reddy, “Semi-Supervised Learning Using 
Randomized Mincuts”. In ICML, 2004.

M. Charikar, V. Guruswami and A. Wirth, “Clustering with Qualitative Information” in 
Proc. Of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.

ReferencesReferences-- SemiSemi--supervised learning (1)supervised learning (1)



80

159M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

H. Chang, D.Y. Yeug. “Locally linear metric adaptation for semi-supervised clustering”In
ICML 2004.

D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feedback. 
In Technical Report TR2003- 1892, 2003.

Davidson I. and Ravi, S. S. “Hierarchical Clustering with Constraints: Theory and 
Practice”, In, PKDD 2005

Davidson I. and Ravi, S. S. “Clustering under Constraints: Feasibility Results and the k-
Means Algorithm”, In SDM 2005.

D. Gondek, S. Vaithyanathan, and A. Garg. “Clustering with Model-level Constraints”In
SDM 2005.

M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, C. Domeniconi. “A Framework for 
Semi-supervised Learning based on Subjective and Objective Clustering Criteria”. in 
ICDM 2005 .

D. Klein, S. Kamvar and C. Manning. “From Instance-Level Constraintsto Space-Level 
Constraints: Making the Most of Prior Knowledge in Data Clustering” in ICML 2002. 

B. Kulis, S. Basu, I. Dhillon, R. Mooney. “Semi-sueprvised Graph Clustering: A Kernel 
Approach”, In ICML, 2005 

M. Law, A. Topchy, A. Jain. “Model-based clustering with Probabilistic Constraints”. In 
SDM 2005.

I. Dhillon, Y. Guan & Kulis. “Kernel k-means spectral clustering and normalized cuts”. In 
KDD, 2004

ReferencesReferences--SemiSemi--supervised learning (2)supervised learning (2)

160M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

Z. Lu, T. Leen. “Semi-supervised Learning with Penalized Probabilistic Clustering”, NIPS 2005.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, The 
art of Scientific Computing. Cambridge University Press, 1997.

E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and 
gene expression data. Bioinformatics, 19:264–272, July 2003.

B. Stein, S. M. zu Eissen, and F.Wibrock. On cluster validity and the information need of users. 
In AIA, September 2003.

Kiri Wagstaff and Claire Cardie. “Clustering with Instance-level Constraints”. In the 
Proceedings to the ICML Conference, Stanford, June 2000.

K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl. “Constrained K-Means Clustering with 
Background Knowledge”. In the Proceeding of the 18th ICML Conference, Massachusetts, June 
2001.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to 
clustering with side-information. In NIPS, December 2002.

Z. Zhang, J. Kwok, D. Yeung. “Parametric distance metric learning with label information”. In 
IJCAI, 2003

Y. Qu, S. Xu. “Supervised cluster analysis for microarray data based on multivariate Gaussian 
mixture” Bioinformatics, Vol 20, No 12, 2004.

M. Bilenko, S. Basu, R. Mooney. “Integrating Constraints and Metric Learning in Semi-
Supervised clustering”, In ICML 2004, Banff, Canada, July 2004

ReferencesReferences-- SemiSemi--supervised learning (3)supervised learning (3)



81

161M. Vazirgiannis, M. Halkidi, D. Gunopulos - PKDD 2006

References –
Distributed approaches, Dimensionality reduction

Vin de Silva, Joshua B. “Sparse Multidimensional Scaling Using landmark points”, 
Tenenbaum, 2004

Vin de Silva, Joshua B. Tenenbaum“Global versus local methods in nonlinear 
dimensionality reduction”,NIPS 2003

I.K. Fodor, “A Survey of Dimension Reduction Techniques”, US Department Of Energy, 
2002

Faisal N.Abu-Khzam, Nagiza Samatova, George Ostrouchov, Michael A.Langston, Al 
Geist, “Distributed Dimension Reduction Algorithms for Widely Dispersed Data” PDCS 
2002, pp. 167-174

Yongming Qu, George Ostrouchov, Nagiza Samatova, Al Geist, “Principal Component 
Analysis forDimension Reduction in Massive Distributed Data Sets”, 5th International 
Workshop on High Performance Data Mining, 2002

P. Magdalinos, C. Doulkeridis and M. Vazirgiannis, “A Novel Effective Distributed 
Dimensionality ReductionAlgorithm”, In Workshop on Feature Selection for Data Mining 
(FSDM'06), pp.18-25, Bethesda, Maryland, 2006.

Tasoulis, Vrahatis. “Unsupervised Distributed Clustering”, PRL 2005

M.N. Vrahatis, B. Boutsinas, P. Alevizos, G. Pavlides, “The new k-windows algorithm for 
improving the k-means clustering algorithm”, Journal of Complexity, 18:375-391, 2002

H. Kargupta, W. Huang, K. Sivakumar, E. Johnson. “Distributed clustering using 
collective principal component analysis”. Knowledge and Information Systems, 3(4), 
2001.


