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Tutorial overview

I. Machine Learning <= Natural Language
Processing
—  State of the art in NLP
— The marriage with ML
— ML driven by NLP
2. Language data challenges
—  The curse of modularity
— Very very large corpora
— Zipf and Dirichlet
3. Issues in ML of NL
— Eager - Lazy dimension; Forgetting exceptions is harmful
— Methodological problems
— Search in features x algorithm space




Machine Learning <=
Natural Language Processing

— State of the art in NLP
— Why NLP and language technology?
— Typical modules
— Typical applications

— The marriage with ML

— ML driven by NLP

Why Natural Language
Processing?

* Language
— is the main medium for knowledge representation and
knowledge transfer
* Access to unstructured and semi-structured data
(text, text fields in databases, ...)
— is a potential goldmine for knowledge discovery and
decision making

* Solving the information overload bottleneck
* Solving the multilinguality bottleneck




Something to think about:

* Estimates by the Gartner Group

— predict that unstructured information doubles every
three months (!?)

— The amount of new information doubles every year

* Even if exaggerated, this means that soon nobody will
have a complete overview of anything important

Natural Language Processing

* Applications

— Question Answering, Information Extraction, Ontology
learning from text, ...

* Modules and Data
— Tagging, parsing, semantic role assignment, word sense
disambiguation, ...
— Computational lexicons, (annotated) corpora (with
annotation protocols), ...
* Real Applications

— Human Resources, Enterprise Information Management,
Biomedical data mining and visualization, Intelligence, ...
* Includes (invisible) embedded NLP applications and modules




LT Modules Text Applications

Lexical / Morphological Analysis OCR
Tagging Spelling Error Correction
Chunking Grammar Checking

] 1 ieval
Syntactic Analysis nformation retrieva

Word Sense Disambiguation Document Classification

Grammatical Relation Finding Information Extraction

Summarization
Named Entity Recognition
4 g Question Answering

Semantic Analysis Ontology Extraction and Refinement

Reference Resolution \/ Dialogue Systems

Discourse Analysis

Machine Translation

Meaning

Machine Learning in NLP

To train modules
— E.g. parser, WSD-module, ...

To construct / adapt LT applications

— E.g. Information Extraction rules, statistical
Machine Translation (SMT)

* To achieve Text Data Mining

To model language acquisition




<!DOCTYPE MBSP SYSTEM 'mbsp.dtd"™>
<MBSP>
<S cnt="s1">
<NP rel="SBJ" of="s1_1">
<W pos="DT">The</W>
<W pos="NN" sem="cell_line">mouse</W>
<W pos="NN" sem="cell_line">lymphoma</W>
<W pos="NN">assay</W>
</NP>
<W pos="openparen">(</W>
<NP>
<W pos="NN" sem="cell_line">MLA</W>
</NP>
<W pos="closeparen">)</W>

<VPid="sl _1">
<W pos="VBG">utilizing</W>
</VP>

<NP rel="OBJ" of="s1_1">
<W pos="DT">the</W>
<W pos="NN" sem="DNA_part">Tk</W>
<W pos="NN" sem="DNA_part">gene</W>
</NP>

<VP id="s1_2">
<W pos="VBZ">is</W>
<W pos="RB">widely</W>
<W pos="VBN">used</W>
</VP>
<VPid="sl 3">
<W pos="TO">to</W>
<W pos="VB">identify</W>
</VP>
</VP>
<NP rel="OBJ" of="s1_3">
<W pos="JJ">chemical</W>
<W pos="NNS">mutagens</W>
</NP>
<W pos="period">.</W>
</S>
</MBSP>

Example: Text Data Mining
(Discovery)

* Find relevant information

— Information extraction
— Text categorization

* Analyze the text

— Tagging - Parsing - Named Entity Classification -

Semantic Roles, ...

* Discovery of new information
— Integrate different sources: structured and

unstructured
— Data mining




Don Swanson 1981: medical
hypothesis generation

* stress is associated with migraines

* stress can lead to loss of magnesium

* calcium channel blockers prevent some migraines
* magnesium is a natural calcium channel blocker

» spreading cortical depression (SCD) is implicated in some migraine
* high levels of magnesium inhibit SCD

* migraine patients have high platelet aggregability

* magnesium can suppress platelet aggregability

Magnesium deficiency

Text analysis OUtpUt implicated in migraine (?)

The move to ML

* Acquisition
OLD: Construct a (rule-based) model about the domain
of the transformation vs.
NEW: Induce a stochastic model from a corpus of
“examples” of the transformation
* Processing

OLD: Use rule-based reasoning, deduction, on these
models to solve new problems in the domain vs.

NEW: Use statistical inference (generalization) from the
stochastic model to solve new problems in the domain.




Deductive

Advantages

Inductive

« Linguistic knowledge ~ * Fast development of

and intuition can be

model

used * Good coverage
« Precision * Good robustness
(preference statistics)
* Knowledge-poor
* Scalable / Applicable
Problems
Deductive Inductive
* Representation of * Sparse data
sub/irregularity  Estimation of
* Cost and time of relevance statistical
model development events

* (Not scalable /
applicable)

* Understandability




Importance of language data for
Machine Learning

* Huge amounts of data

Data with interesting properties
— Distributions extraordinaire: Zipf, Dirichlet

— small disjuncts

Not a toy problem

Confrontation with efficiency, scalability,
and tractability issues

Tutorial overview

I.  Machine Learning <> Natural Language Processing
— State of the art in NLP
— The marriage with ML
— ML driven by NLP
2. Language data challenges
—  The curse of modularity
— Very very large corpora
— Zipf and Dirichlet
3. Issues in ML of NL
— Eager - Lazy dimension; Forgetting exceptions is harmful
— Methodological problems
— Search in features x algorithm space




Language data challenges

— The curse of modularity
— Cascading errors
— Very very large corpora
— Learning curve experiments
— Zipf and Dirichlet
— Many words are rare (Zipf)
— But once seen, they reoccur quickly (Dirichlet)

The curse of modularity (1)

Modularity: dividing one complex problem in
several subproblems

Adding intermediate representation levels

¢ Assumption or hope:

— Complexity of main problem = X
— Complexity of sub problem a = y
— Complexity of sub problem b = z

— x > y+z or not much smaller

Obvious benefits for non-linear problems:
— hidden layers in neural nets

— SVM feature space transforms




The curse of modularity (2)

+ Expert-based modularizations are often biased by
— Choice of formalism

— Strong interpretation of Minimal description length
principle: smaller theories are better

* Which can cause
— Spurious ambiguity
— Sequentiality where parallelism is needed
— Blocking of information

— Cascaded propagation of errors

The curse of modularity (3)

Imaginary 5-modular system in which error is
disjointly added:

performance
module # isolation cascaded
I 95% 95%
2 95% 90%
3 95% 86%
4 95% 81%
5 95% 77%
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The curse of modularity (4)

* Actual 5-modular system for English word
pronunciation (Van den Bosch, 1997):

— Morphological segmentation 94.9%
— Letter-grapheme conversion 98.6%
— Grapheme-phoneme conversion 96.3%
— Syllabification 99.5%
— Stress assignment 92.0%

— “worst case” phonemes plus stress  88.5%

* Combined phonemes plus stress:
— Plain propagation 85.9%
— Adaptive training 89.4%

The curse of modularity (5)

* 3-modular system for English word pronunciation

— Morphological segmentation 94.9%
— Letter-phoneme conversion 96.3%
— Stress assignment 92.0%

— “worst case” phonemes plus stress  88.5%

* Combined phonemes plus stress:
— Plain propagation 90.5%
— Adaptive training 92.1%




The curse of modularity (6)

* Non-modular system for English word
pronunciation:
Direct association of letters to stressed
phonemes

— Straight performance 92.6%
— (recall: 3 modules, adaptive training 92.1%)
— (recall: 5 modules, adaptive training 89.4%)

* Modularity is harmful

Case 2: PoS?

* Everyone agrees: POS is an abstraction
level in (shallow) parsing

The delegation left withouta  warning .
DET NOUN  VERB PREP DET NOUN PUNC

* Computed in almost every parsing system

12



Could words replace PoS!?

Simple intuition:

* PoS disambiguate explicitly
suspect-N vs suspect-V vs suspect-A

* Context words disambiguate implicitly
... the suspect ...
... We suspect ...

Case study: setup

* Task that involves PoS

— Shallow parsing of English
* Select input:

— use gold-standard POS

— use words only

— use both

* Learn the task with increasing amounts of training

data

— which learning curve is higher?

— which learning curve grows faster?
— do they meet or cross?

13



Step |: get parsed sentence

((S (ADVP-TMP Once)
(NP-SBJ-1 he)
(VP was
(VP held
(NP *-1)
(PP-TMP for
(NP three months))
(PP without
(S-NOM (NP-SBJ *-1)
(VP being
(VP charged)
))))) )

Step 2: flatten

[ADVP Once-ADVP-TMP]
[NP he-NP-SBJ] [VP was held-VP/S]

[PP for-PP-TMP] [NP three months-NP]
[PP without-PP]

[VP being charged-VP/SNOM]

14



Step 3: make instances

.._Oncehe... [-ADVP - ADVP-TMP
... Once he was ... [-NP - NP-SBJ

... he was held ... [-VP - NOFUNC
... was held for ... [-VP - VP/S

... held for three ... [-PP - PP-TMP

.. for three months ... [-NP - NOFUNC
... three months without ...  |-NP - NP

... months without being ...  |-PP - PP

... without being charged ... [-VP - NOFUNC
... being charged . ... [-VP - VP/S-NOM
.. charged . _ ... O - NOFUNC

Case study: details

experiments based on Penn Treebank
(WSJ, Brown, ATIS)

— 74K sentences, 1,637,268 tokens (instances)
— 62,472 unique words, 874 chunk-tag codes

| 0-fold cross-validation experiments:

* Split data 10 times in 90% train and 10% test
* Grow every training set stepwise

precision-recall on correct chunkings with
correct type tags in test material

15



Case study: Extension

Word attenuation (after Eisner 96):
— Distrust low-frequency information (<10)

— But keep whatever is informative (back-off)
— Convert to MORPH-[CAP|NUM|SHORT ss]

A Daikin executive in charge of exports when the high-purity
halogenated hydrocarbon was sold to the Soviets in 1986 received a
suspended |0-month jail sentence .

A MORPH-CAP executive in charge of exports when the MORPH-ty
MORPH-ed MORPH-on was sold to the Soviets in 1986 received a
suspended MORPH-th jail sentence .

Results: learning curves (1)
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Results: learning curves (2)
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Discussion

* Learning curve experiments
— (cf. Banko & Brill O1)

— Important dimension in experimental space
next to feature/parameter selection

 More data, better statistics
— Increased numbers of seen words
— Improved frequencies of known words

* Given optimal attenuation, explicit PoS
information close to unnecessary
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Zipf

* George Kingsley Zipf (1902-1950)
— The psycho-biology of language (1935)
— Human behavior and the principle of least effort (1949)

» Zipfs Law

— Family: power laws (e.g. Pareto distribution)
— Refinements: Ferrer i Cancho (2005)

a
P =1/n
— where P, is the frequency of a word ranked nth and a

is almost |.

WSJ, first 1,000 words
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WS, first 2,000 words
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WSJ, first 5,000 words
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# types

WS], first 10,000 words
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# types
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WS], first 50,000 words
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# types
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WS, all 1,126,389 words

100000

10000 4

1000

# types

100

10 4

10000

Chasing Zipf’s tail

* More data brings two benefits:
— More observations of words already seen.

— More new words become known (the tail)
* This effect persists, no matter how often

the data is doubled.
* But, there will always be unseen words.
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Word prediction

“Archetypal problem of NLP” (Even-Zohar,
Roth, Zelenko, 1999)

Different from word completion

Predict what?
— the next word

— the missing word

The word itself, or a set of possible words,
with probabilities

A special problem

* Examples abound in huge quantities

— n-gram models in language modeling for speech
recognition: “there’s no data like more data”

* When viewed as prediction task to be
learned by predictors/classifiers,
— issue of extremely many outcomes,
— having same (Zipfian) distribution as input,
— underlying problem is cosmic.
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Big numbers

There’s no end to the amount of examples one
can gather
— millions, billions

Each example contains several word positions to
the left and right

— restricted to some local context

Each position easily carries

— thousands to hundreds of thousands of values (the given
context words)

The prediction is also among

— thousands to hundreds of thousands of values (the word
to be predicted)

Some ML algorithms are out

* Support vector machines
— Complicated handling of multi-class spaces
* Rule learning and decision trees

— Number of classes and feature values are
serious components of learning procedures

25



Some may be in, but...

* Hyperplane / probabilistic classifiers
— Maximum-entropy models, MEMM, CRF
— Perceptron, Winnow

* But:

— Classes and feature values are
* the dimensions of the probability matrices

* the layers in the network architecture

— Training (convergence) will be very slow

Insensitive to # classes

* n-gram models
— As known from decades of research
* k-Nearest neighbor classification!

— Totally impervious to number of classes
* Learning (=storing): O(n*f)
* But classification also O(n*f)
* where n = # examples, f = # features + | class

26



Fast approximation of k-NN

* IGTree (Daelemans, Van den Bosch, and
Weijters, 1997)
— Stores instances in trie (Knuth, 1973)

— = decision tree, with fixed order of feature tests (i.e.
much simpler than C4.5)

* Efficient and still impervious to number of classes:

— Storage: O(n) (k-NN: O(n*f) )
— Learning: O(n Ig(v) f) (k-NN: O(n*f))
— Classification: O(f Ig(v))  (k-NN: O(n*f) )
— v: average # arcs fanning out of nodes

— here: n very large, f small, Ig(v) small

| say so
you say soO
he says so
she says so
it says so
we say Sso
they say so

27



linkerwoord

| so || so H s0 H so H s0 || 50 || so | rechterwoord

oo ooS




Means: predict say, unless left word is he,
she, or it; in that case predict says

Relation with n-gram models

* Close relation to back-off smoothing in n-gram
models (used for discrete prediction)

— “Similarity for smoothing”, Zavrel and Daelemans, ACL
1997

— Use estimates from more general patterns if specific
patterns are absent

* n-gram language models
— generate probability distributions typically measured
through perplexity
* IGTree

— is simply quick, compressed access to discrete
outcomes of back-off smoothed n-gram models
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Data

Number
Data set Source Genre
of tokens
. Reuters Corpus .
Train-Reuters |~ newswire | 130,396,703
Reuters Corpus .
Test-Reuters |~~~ newswire 100,000
Alice’s
Alice Adventures in fiction 33,361
Wonderland

Brown (Penn mixed 453,446

Brown Treebank)

Task

* Predict middle word in local context of
— 7 words to the left
— 7 words to the right

once or twice she had peeped into ? book her sister was reading , but the
or twice she had peeped into the ? her sister was reading , but it book
twice she had peeped into the book ? sister was reading , but it had her
she had peeped into the book her ? was reading , but it had no sister
had peeped into the book her sister ? reading , but it had no pictures was

30



Experiments

* Learning curve

Increasing amount of learning material

— Direction: from recent to past

* What to expect!?

— Constant improvement with doubling of

training examples (Banko and Brill, 2001)?

word prediction accuracy

Word prediction accuracy

50

Reuters

40

30 4

20

T T T T T T
100 1,000 10,000 100,000 1,000,000 10,000,000
30,000,000
examples
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Results

* Same-genre train-test combination works
best (trivial result)

— 42.2% accuracy on Reuters at 30M training
examples

— 12.6% on Alice, 15.6% on Brown
* Roughly log-linear increase

— On Reuters, every |0-fold yields an extra 8%

Numbers of nodes

30

all words s
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Numbers of nodes

* Less than one node added per example
* At 30M training examples, 16M nodes
* With 20 bytes per node, only 305 Mb

Speed

Brown i

Alice sssssss

Reuters s
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Speed

 Average branching factor (fin O(f Ig(v) ) is
3.27 at 30M examples; fis 14
* Indeed, classification speeds are OK

— Still over a hundred predictions per second
with largest tree

— No exponential slowdown
— Roughly same speed with different genres

Word burstiness

* Even if a word is
rare, if it occurs, it
tends to re-occur
for a while

* Hype words

— Sign o’ the times

AN

=
o
"
&
| e
2]

— News

e
A . &
E—1 \
i w*h'-él'—-t
|

* Domain, register,
genre, author, ...
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Dirichlet distribution

* Johann P.G. Lejeune Dirichlet (1805-1859)

* Conjugate prior of parameters of multinomial
distribution
— discrete distribution giving the probability of
choosing a given collection of m items from
a set of n items with repetitions

* Can model word burstiness

— Applicable to words (Madsen, Kauchak, & Elkan,
ICML 2005)

— Latent Dirichlet Allocation (LDA) (Blei, Ng, &
Jordan, JMLR 2003; Blei & Lafferty, ICML 2006)

LDA and Dynamic Topic
Modeling (Blei et al.)

* LDA: Generative probabilistic model of a
natural language corpus
— Context: text classification, information
retrieval, topic segmentation
* Documents are
— random mixtures over latent topics
* Following Dirichlet distribution

— each topic is characterized by a distribution
over words
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One more example: POS Tagging

Morphosyntactic disambiguation based on

— Properties of the word (attested POS tags in training
corpus, properties of wordform)

— Properties of local context
First step in many text analysis systems
Considered solved (at 97% accuracy on Penn

Treebank)

But:

— Bad transfer to other text genres and corpora
— Essential disambiguation often rather at the 90% level
or even below

POS Tagging

Brown WSJ Genia

Brown

96.0 94.8 92.9
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A lesson to keep in mind when

comparing ML systems

* What is the relevance of a 0.5 to 1%
increase in accuracy on a specific dataset
when accuracy drops > 3% when moving to
a different corpus!?

— As a motivation to use a particular ML
algorithm?

— As a motivation to use a particular
representation (feature set)?

Tutorial overview

I.  Machine Learning <> Natural Language Processing
— State of the art in NLP
— The marriage with ML
— ML driven by NLP
2. Language data challenges
—  The curse of modularity
— Very very large corpora
— Zipf and Dirichlet
3. Issues in ML of NL
— Eager - Lazy dimension; Forgetting exceptions is harmful
— Methodological problems
— Search in features x algorithm space
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Empirical ML: 2 Flavors

 Eager
— Learning
* abstract model from data
— Classification
* apply abstracted model to new data
* Lazy
— Learning
* store data in memory

— Classification
* compare new data to data in memory

Eager vs Lazy Learning

Eager: Lazy:
— Decision tree — k-Nearest Neighbour
induction « MBL, AM
* CART, C4.5 * Local regression
— Rule induction
* CN2, Ripper
— Hyperplane

discriminators
* Winnow, perceptron,
backprop, SVM
— Probabilistic

* Naive Bayes, maximum
entropy, HMM
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Eager vs Lazy Learning

Decision trees

— keep the smallest amount of informative decision boundaries (in
the spirit of MDL, Rissanen, 1983)

Rule induction

— keeps smallest number of rules with highest coverage and
accuracy (MDL)

Hyperplane discriminators
— keep just one hyperplane (or vectors that support it)

Probabilistic classifiers
— convert data to probability matrices

k-NN

— retains every piece of information available at training time

Eager vs Lazy Learning

Minimal Description Length principle:
— Ockham'’s razor
— Length of abstracted model (covering core)

— Length of productive exceptions not covered by core

(periphery)
— Sum of sizes of both should be minimal

— More minimal models are better
“Learning = compression” dogma

In ML, length of abstracted model has been focus;
not storing periphery
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Eager vs Lazy Learning

+ abstraction
RULES
PROBABILITIES ‘
NEURAL NETWORKS
+ generalization - - generalization
TABLE
MEMORY-BASED
LEARNING v LOOKUP
- abstraction
* K-nn (also for symbolic features)
MEMORY-BASED * Adaptive similarity metrics

LANGUAGE * Feature and exemplar weighting
PROCESSING * Value clustering

* Similarity-based smoothing

Walter Daelemans and

Antal van den Bosch
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Properties of NLP tasks ...

* In a mapping between linguistic levels,

— similar representations at one level correspond to
similar representations at the other level

 Zipfian and Dirichlet distributions (burstiness)
— Sparse data
* Complex interaction of

— (sub)regularities and exceptions (high disjunctivity,
polymorphic concepts, pockets of exceptions)

... fit the bias of MBL

Similarity-based reasoning

Uniform modeling of regular / irregular /
exceptional

— keeps all data

Similarity-based smoothing

* No assumptions about global distributions
— local learning

41



History memory-based approach

« Statistical pattern recognition: rule of nearest
neighbor |-NN, k-NN

This “rule of nearest neighbor” has considerable
elementary intuitive appeal and probably corresponds to
practice in many situations. For example, it is possible
that much medical diagnosis is influenced by the doctor's
recollection of the subsequent history of an earlier patient
whose symptoms resemble in some way those of the
current patient. (Fix and Hodges, 1952, p.43)

Memory-based learning and
classification

* Learning:

— Store instances in memory
* Classification:

— Given new test instance X,

— Compare it to all memory instances
» Compute a distance between X and memory instance Y
* Update the top k of closest instances (nearest neighbors)

— When done, take the majority class of the k nearest
neighbors as the class of X
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Similarity / distance

* Distance determined by

— Feature weighting (Information Gain, Gain
Ratio, Chi Square, Shared Variance, ...)

— Value weighting (mvdm)
— Exemplar weighting

— Distance-weighted class voting

The MVYDM distance function

e Estimate a numeric “distance”
between pairs of values

[{Pgl]

— “e” is more like “i” than like “p” in a phonetic
task

— “book’ is more like “document” than like
“the” in a parsing task

— “NNP” is more like “NN” than like VBD in a
tagging task
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The MVYDM distance function

AXY) =Y wo(x,.y,)
i=1

8(x,,y,) = E‘P(C x)=P(C,1y)

j=1

Distance weighted class voting

* Increasing the value of k is similar to
smoothing

* Subtle extension: making more distant
neighbors count less in the class vote
— Linear inverse of distance (w.r.t. max)
— Inverse of distance

— Exponential decay
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Comparative experiments

* Ripper
— Cohen, 95
— Rule Induction
— Algorithm parameters: different class ordering
principles; negative conditions or not; loss ratio values;
cover parameter values
. TiMBL
— Daelemans/Zavrellvan der Sloot/van den Bosch, 98
— Memory-Based Learning
— Algorithm parameters: overlap, mvdm; 5 feature
weighting methods; 4 distance weighting methods;
values of k

Datasets

* GPLURAL

— Formation of plural of German nouns
Kind (child) — Kind-er
Example = word

Features
* Syllable structure of last two syllables
* Gender
— Class
* 8 plural formation types (includes Umlaut)

— 50%-50% split train - test
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Datasets

DIMIN
— Formation of diminutive of Dutch nouns
— ring (ring) — ringetje

— Example = word

Features

* Syllable structure of last three syllables (with stress marker)
— Class
* 5 diminutive formation types

— 90%-10% split train - test

Datasets

MORPH

— Morphological analysis of Dutch words

— [abnormaal], [iteit] 5 _x [en]
(abnormalities) -
— Example = window over word
— Features
* Spelling symbols
— Class

» 3831 symbols indicating complex segmentation / pos tagging /
spelling variation decisions at positions in word

— 90%-10% split train - test

plural
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Datasets

PP

— English (WS)), prepositional phrase attachment
(Ratnaparkhi data)

— Eat pizza with sister — V

— Example = VP NP PP

Features
« VNI PN2
— Class
* Binary (V or N attachment)

Ratnaparkhi split

Datasets

CHUNK
— English (WSJ), chunking data (CoNLL shared task)

— [Hel,; [reckons]; [the current account deficit]
[will narrow],s [to]pp [only $ 1.8 billion], - [in]pp
[September]

— Example = window of words and tags

— Features

* Words and tags

— Class
* Extended IOB tag (Inside, Between or Outside XP)

— CoNLL shared task data
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Datasets

 NER

— English (Reuters) named entity recognition (CoNLL
shared task)

— [U.N.], ganization Official [Ekeus] heads for
[Baghdad]location'

— Example = window of words and tags

— Features

* Words and tags
— Class

* Extended |OB tag (Inside, Between or Outside NER-type)
— CoNLL shared task data

DATA properties

Number of Range of number Number of
Task Examples Features of values classes
GPLURAL 12,584 7 8 -81 8
DIMIN 2,999 12 2-69 5
MORPH 2,888,255 7 49 - 55 3,831
PP 20,801 4 66 - 5,451 2
CHUNK 211,727 14 44-19,122 22
NER 203,621 14 45— 23,623 8
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Eager (ripper) never
outperforms Lazy (timbl)

Performance Generalization performance (%)

Task metric IB1 IGTREE RIPPER
GPLURAL accuracy 94.0 94.3 91.0
DIMIN accuracy 97.6 96.6 96.7
MORPH F-score 70.1 69.9 38.4
PP accuracy 80.7 76.7 76.1
CHUNK F-score 91.9 87.6 89.5
NER F-score 77.2 66.6 55.5

Abstraction hurts

German plural

Accuracy

20

Dutch diminutives

Increasing coverage
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Cumulative percentage

How can we measure

70

disjunctivity!?
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Comparative experiments

* “No free lunch” theorems and the problem of
induction (Hume)

— No inductive algorithm is universally better than any
other

— A posteriori justification needed (empirical)

highly specialized algorithm

. A
pcrformancc general-purpose algorithm

average

type of problem

(From Wikipedia)

Methodology

* Evaluate appropriateness of the bias of different ML
methods for some NLP task
— SVM or CRF for NER?
* Evaluate role of different information sources,
training data sizes, ...
— Keywords or only local context for WSD?
* Supported by

— CoNLL shared tasks, Pascal challenges, NIST
competitions etc.

* Often contradictory and unreliable results
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Standard (good) ML
methodology

* Cross-validation

* Confusion matrix based evaluation metrics
— accuracy, precision, recall, F-score, ROC, AUC

* Appropriate statistical significance testing

— McNemar, paired t-tests

* Learning curve experiments

* Feature selection

 Algorithm parameter optimization

What leads to “reversals” in ML
experiments!?

* Information sources
— feature selection

— feature representation
(data transforms)

 Algorithm parameters
* Training data
— sample selection

— sample size (Banko & Brill,
Van den Bosch & Buchholz)

¢ |nteractions

Algorithm parameters and
sample selection
Algorithm parameters and
feature representation
Feature representation and
sample selection

Sample size and feature
selection

Feature selection and
algorithm parameters
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100 -
95
90
85
80
75
70 -
65 -

60

The Eric Brill model

Opﬁnﬁzaﬁon,Mgorhhnlbhs,kaﬂueenghweﬁng,”.|

—

Vs

—algo 1
algo 2
algo 3

1076

1079

Eager vs. Lazy: Dutch Diminutive:

reversal
Ripper TiMBL
Default 96.0
Feature
selection 96.7 (-11) 97.2 (-30)
Parameter 97.3 (-27) 97.8 (-45)
optimization
Joint 97.6 (-35) (-48)
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Comparative Methodology
problem

* Cannot completely be solved and is also inherent
in other fields
— e.g. psycholinguistics

* More careful methodology is feasible

— Incorporating more optimization in comparative
methodology
* wrapped progressive sampling (paramsearch) / GA
— Claims about learning algorithm should be supported
by results on many datasets (CoNLL benchmark test)
— Claims about information sources should be
demonstrated with different learning methods

GA for Optimisation in ML of
NL

* Use chromosome to encode
— Algorithm parameters
— Sample selection
— Feature selection

* Every individual is an n-fold cv experiment
design

* Define fitness of individual in terms of
efficiency, feature construction cost, accuracy

or a weighted combination of these
Don’t try this with CRFs (yet) :-)
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Genetic Algorithms

chromosome fitness

sample %03 ture selection

algorithm parameter settings

l

EXPERIMENT

Accuracy in
Cross-validation

Real Case Study: Word Sense
Disambiguation

* Decide on the contextually appropriate word
sense given local information
— collocations, keywords, pos tags, syntactic structure,

* Supervised ML methods outperform knowledge-
based and unsupervised learning approaches

— Senseval-|, Senseval-2 lexical sample and all-word
tasks, different languages

* Which information sources!?
* Which machine learning method?
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Comparative research

Mooney, EMNLP-96
— NB & perceptron > DL > MBL ~ Default
— Only one word, no algorithm parameter optimization, no feature
selection, no MBL feature weighting, ...
Ng, EMNLP-97
- MBL > NB
— No cross-validation
Escudero, Marquez, & Rigau, ECAI-00
- MBL > NB
— No feature selection
Escudero, Marquez, Rigau, CoNLL-00
— LazyBoosting > NB, MBL, SNoWV, DL

Lee & Ng, EMNLP-02
State-of-the-art comparative research
Studies different knowledge sources and different learning algorithms
and their interaction
Senseval-1 and senseval-2 data (lexical sample, English)
All knowledge sources better than any |
SVM > Adb, NB, DT
BUT:
No algorithm parameter optimization
No interleaved feature selection and algorithm parameter
optimization
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Experiment |

* Investigate the effect of
— algorithm parameter optimization
— feature selection (forward selection)
— interleaved feature selection and parameter
optimization
* ... on the comparison of two inductive
algorithms (lazy and eager)

* ... for Word Sense Disambiguation

WSD (line)

Similar: little, make, then, time, ...

Ripper TiMBL
<€
Default AN 218 20.2
Optimized parameters 22.6 27.3
Optimized features 20.2 344
Optimized parameters + FS VY 33.9 38.6




Generalizations!?

* In general, best features or best parameter
settings are unpredictable for a particular
task and for a particular ML algorithm

 Accuracy landscape is not well-behaved

Experiment 2

* Investigate the effect of
— algorithm parameter optimization

* ... on the comparison of different knowledge
sources for one inductive algorithm (TiMBL)
s ... for WSD

— Local context
— Local context and keywords
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TiMBL-WSD (do)

Similar: experience, material, say, then, ...

Local Context| + keywords
Default 49.0 47.9
Optimized parameters LC 60.8 59.5
Optimized parameters 60.8 61.0

<€

Interpretation!?

* Exhaustive interleaved algorithm parameter optimization
and feature selection is in general computationally

intractable

* There seem to be no generally useful heuristics to prune
the experimental search space
* In addition, there may be interaction with sample
selection, sample size, feature representation, etc.

* Are we taking comparative machine learning experiments too
seriously? (compare results Banko & Brill for large datasets)
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General Conclusions

The use of inductive techniques in NLP has been a
breakthrough toward practical application

— A lot more progress still needed (semantics)

Properties of language tasks (extraordinary distributions)

have to be acknowledged better

— Can ML solve problem of adaptation to domains?
Comparative experiments can help finding learning
algorithms with the right bias for language

— However, comparison is inherently unreliable

— GAs are useful for optimisation of other ML techniques

More information

SIGNLL

— http://www.aclweb.org/signll

Conll shared task datasets

— http://ilps.science.uva.nl/~erikt/signll/conll/
CNTS

— http://www.cnts.ua.ac.be

ILK

— http://ilk.uvt.nl
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