Cryptographic Techniques in Privacy-Preserving Data Mining

Helger Lipmaa

University College London

ECML/PKDD 2006 Tutorial

Helger Lipmaa

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer

Disclaimer: I am not a data miner.

Helger Lipmaa

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Privacy-Preserving Data Mining: Motivation

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data

World I: Data Mining

- Goal: to model data
- Many methods are efficient only with "real data" that has redundancy, good structure etc
 - Data compression, many algorithms of data mining, special methods of machine learning...
 - Random data cannot be compressed and does not have small-sized models
- Conclusion: world I is data dependent
 - Look at the disclaimer

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

World II: Cryptography

- General goal: secure (confidential, authentic, ...) communication
- Subgoal: to hide properties of data
- For example, oblivious transfer:
 - Alice has input $i \in [n]$, Bob has n strings D_1, \ldots, D_n
 - Alice obtains D_i
 - Cryptographic goal: Alice obtains no more information. Bob obtains no information at all
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive

World II: Cryptography

- Cryptography is usually inefficient with large amount of data
- Example:
 - Information retrieval. It is a "trivial" task to retrieve the *i*th element D_i of a database D
 - Oblivious transfer:
 - Database server's computation is $\Omega(|D|)$
 - "Proof": If she does not do any work with the *j*th database element then she "knows" that *i* ≠ *j*. QED.

Helger Lipmaa Cryp

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Cryptographic PPDM: A Weird Coctail

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public
 - I.e., database owner must not get to know X
- Another example: find 10 most frequent itemsets in the data
- In PPDM, data mining provides objectives, cryptography provides tools

Cryptographic PPDM: Good, Bad and Ugly

- Good: companies and persons may become more willing to participate in data mining
- Bad: already inefficient data mining algorithms become often almost intractable
 - Simpler tasks can still be done
- There is no ugly: it's a nice research area ©
 - At this moment far from being practical, and thus offers many open problems

Helger Lipmaa

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Randomization Approach

- Much more popular in the data mining community, see Srikant's SIGKDD innovation award talk in KDD 2006, Gehrke's tutorial in KDD 2006, Xintao Wu's tutorial in ECML/PKDD 2006
- There are significant differences between cryptographic and randomization approaches!
- ... and they are studied by completely different communities

Randomization Approach: Short Overview

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person
 - It is allowed to get to know the average age of say any three persons
- Untrusted publisher model: clients perturb their data and send their perturbed version to miner who mines the results
- Trusted publisher model: clients send original data to a TP, who perturbs it and sends the results to miner who mines the results

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Cryptographic Approach: Short Overview

- Assume there are *n* parties (clients, servers, miners) who all have some private inputs x_i , and they must compute some private outputs $y_i = f_i(\vec{x})$
 - *f_i* etc are defined by the functionality we want to compute by data miners
- Build a cryptographic protocol that guarantees that after some rounds, the *i*th party learns y_i and nothing else— with probability 1ϵ

Cryptographic vs Randomization Approach: Differences

• Who owns the database:

- Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties
- Cryptographic: depends on applications
 - Data is kept by a server, and the miner queries the server
 - Data is shared by several miners, who can only jointly mine it
 - . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Cryptographic vs Randomization Approach: Differences

• Correctness:

- Randomization:
 - Client "owns" a perturbed database, and must be able to compute (an approximation to) the desired output from it
- Cryptographic:
 - Client can usually compute the precise output after interactive communicating with the server

Cryptographic vs Randomization Approach: Differences

- Privacy:
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected
 - E.g., in Randomized Response Technique, variance depends on the size of the population
 - Interval privacy, k-anonymity, ...
 - Cryptographic: one can guarantee that only the desired output will become known to the client
 - Protect everything as much as possible

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Cryptographic vs Randomization Approach: Differences

- Definitional:
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)
 - Cryptographic:
 - A lot of effort has been put into formalizing the definitions of privacy, the definitions and their implications are well understood
 - Cryptographic community has invested dozens of man years to come up with correct definitions!

Cryptographic vs Randomization Approach: Differences

- Efficiency:
 - Randomization: randomizing might be difficult but it is done once by the server; client's work is usually comparable to her work in the non-private case
 - Better efficiency, but privacy depends on data and predicate
 - Cryptographic: privatization overhead every single time when a client needs to obtain some data
 - Better privacy, but efficiency depends on predicate

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Cryptographic vs Randomization Approach: Differences

• Communities:

- Randomization: bigger community, people from the data mining community
 - Too many results to even mention...
 - Randomization is an optimization problem: tweak and your algorithm might work for some concrete data
- Cryptographic: small community
 - Cryptographic approach is seen to be too resource-consuming and thus not worth the research time
 - Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright and students, myself and Sven Laur, ...

Private Information Retrieval Scalar Product Computation

Private Information Retrieval

- Alice (client) has index i ∈ [n], Bob (database server) has database D = (D₁,..., D_n)
- Functional goal: Alice obtains D_i , Bob does not have to obtain anything
- Cryptographic privacy goal I: Bob does not obtain any information about *i*
 - "Private information retrieval"
- Cryptographic privacy goal II: Alice does not obtain any information about D_i for any $j \neq i$
 - PIR + goal II = ("relaxed" secure) oblivious transfer
- Cryptographic security/correctness goal III: the string that Alice obtains is really equal to D_i
 - goal I + II + III = fully secure oblivious transfer

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

PIR: Computational vs Statistical Client-Privacy

- Privacy can be defined to be statistical or computational
- Statistical client-privacy:
 - Alice's messages that correspond to any two queries i₀ and i₁ come from similar distributions
 - Then even an unbounded adversary cannot distinguish between messages that correspond to any two different queries
 - Even if the queries i_0/i_1 are chosen by the adversary
- Well-known fact: communication of statistically client-private information retrieval with database D is at least |D| bits.
- I.e., the trivial solution Bob sends to Alice his whole database, Alice retrieves D_i — is also the optimal one

Private Information Retrieval Scalar Product Computation

PIR: Computational Client-Privacy (Intuition)

- Computational client-privacy: no computationally bounded Bob can distinguish between the distributions corresponding to any two queries i_0 and i_1
- I.e., the distributions of Alice's messages $A(i_0)$ and $A(i_1)$ corresponding to i_0 and i_1 are computationally indistinguishable

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

PIR: Formal Definition of Client-Privacy

- Consider the next "game":
 - B picks two indices i_0 and i_1 , and sends them to A
 - A picks a random bit $b \in \{0, 1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'
- *B* is successful if b' = b
- PIR is (ε, τ) -computationally client-private if no τ -time adversary *B* has better success than $|\varepsilon 1/2|$
- If B tosses a coin then it has success 1/2 and thus is a $(0, \tau)$ -adversary for some small τ
- IND-CPA security: INDistinguishability against Chosen Plaintext Attacks

Private Information Retrieval Scalar Product Computation

OT: Formal Definition of Server-Security

- Difference with client-privacy:
 - Client obtains an output D_i and thus can distinguish between databases D, D' with $D_i \neq D'_i$
 - This must be taken into account
 - We can achieve statistical server-privacy
 - With communication $\Theta(\log |D|)$
 - Since server gets no output, server-privacy=server-security
 - Recall goal III

Helger Lipmaa

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

OT: Formal Definition of Server-Security

- Consider the next ideal world with a completely trusted third party *T*:
 - A sends her input *i* to *T*, *B* sends the database *D* to *T* (secretly, authenticatedly)
 - *T* sends *D_i* to *A* (secretly, authenticatedly)
- This clearly models what we want to achieve!
- A protocol is server-secure if:
 - For any attack that A can mount against B in the protocol, there exists an adversary A* that can mount the same attack against B in the described ideal world
- Technical differences: real world is always asynchronous, but it does not matter here

Private Information Retrieval Scalar Product Computation

Note on Security Definitions

- Security definitions are uniform and modular, and remain the same for most protocols
- The previous definitions work for any two-party protocol where on client's input *a* and server's input *b*, client must obtain an output *f*(*a*, *b*) for some *f*, and server must obtain no output
- Computational client-privacy: client's messages corresponding to any, even chosen-by-server, inputs *a* and *a*' must be computationally indistinguishable
- Statistical server-security: consider an ideal world where client gives a to T, server gives b to T and T returns f(a, b) to client. Show that any attacker in real protocol can be used to attack the ideal world with comparable efficiency.

- *E* is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key *pk* and secret key *sk*
 - Encryption is probabilistic: $c = E_{pk}(m; r)$ for some random bitstring r
 - Decryption is successful: $D_{sk}(E_{pk}(m; r)) = m$
 - Semantical/IND-CPA security: Distributions corresponding to the encryptions of any m_0 and m_1 are computationally indistinguishable

Private Information Retrieval Scalar Product Computation

Tool: Additively Homomorphic Public-Key Crypto

• Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1;r_1)\cdot E_{pk}(m_2;r_2))=m_1+m_2$$
,

where plaintexts reside in some finite group \mathcal{M} and ciphertexts reside in some finite group \mathcal{C} .

- Thus also $D_{sk}(E_{pk}(m; r)^a) = am$
- Fact: such IND-CPA secure public-key cryptosystems exist and are well-known [Paillier, 1999]
 - There $\mathcal{M} = \mathbb{Z}_N$, $\mathcal{C} = \mathbb{Z}_{N^2}$ for some large composite N = pq
 - If you care: $E_{pk}(m; r) = (1 + mN)r^N \mod N^2$
 - **Theorem** Paillier cryptosystem is IND-CPA secure if it is computationally difficult to distinguish the Nth random residues modulo N^2 from random integers modulo N^2

Inputs: Alice has query $i \in [n]$, Bob has $D = (D_1, \ldots, D_n)$ where $D_i \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- Alice generates her message a ← E_{pk}(i; *) and sends
 A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, \ldots, n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(D_j;*)$
- Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $D_i = D_{sk}(b_i)$

[Aiello, Ishai, Reingold, Eurocrypt 2001]

Private Information Retrieval Scalar Product Computation

AIR PIR: Correctness/Security

• Bob does for every
$$j \in \{1, ..., n\}$$
:
• Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(D_j;*)$
• Since $a = E_{pk}(i;*)$,
 $b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(D_j;*)$
• Because E is additively homomorphic,
 $b_j = (E_{pk}(i-j;*))^* \cdot E_{pk}(D_j;*) = (E_{pk}(* \cdot (i-j);r)) \cdot E_{pk}(D_j;*)$
for some r
• If $i = j$ then
 $b_j = E_{pk}(0;r) \cdot E_{pk}(D_j;*) = E_{pk}(D_j;*)$
and thus $D_{sk}(b_j) = D_j$
• Thus Alice obtains D_i
Pager Lipma Cryptographic Techniques in Privacy-Preserving Data Minin

Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

AIR PIR: Correctness/Security

- Bob does for every j ∈ {1,...,n}:
 Set b_j ← (a/E_{pk}(j;1))* · E_{pk}(D_j;*)
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(D_j;*)$$

• Because E is additively homomorphic then

$$b_j = (E_{pk}(i-j;*))^* \cdot E_{pk}(D_j;*) = (E_{pk}(*(i-j);r)) \cdot E_{pk}(D_j;*)$$

for some r

• If gcd(i - j, N) = 1 then $* \cdot (i - j) = *$ is a random element of \mathbb{Z}_N and thus

$$b_j = E_{pk}(*;r) \cdot E_{pk}(D_j;*) = E_{pk}(*;*)$$
,

and thus $D_{sk}(b_j) = *$, i.e., b_j gives no information about D_j • Thus Alice obtains D_i and nothing else!

AIR 1-out-of-*n* PIR: Security Properties

- Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption
- Bob's database is statistically private: Alice sees an encryption of D_i together with n 1 encryptions of random strings
 - We can construct a simulator who, only knowing D_i and nothing else about Bob's database, sends

 $(E_{pk}(*;*),\ldots,E_{pk}(*;*),E_{pk}(D_i;*),E_{pk}(*;*),\ldots,E_{pk}(*;*))$

to Alice.

 Simulator's output is the same as honest Bob's output and was constructed, only knowing D_i⇒ protocol is statistically private for Bob

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

AIR PIR: Full Server-Security Proof

Proof.

We must assume that simulator is unbounded (this is ok since the attacker may also be unbounded, and thus simulator may need a lot of time to check his work). Alice sends (pk, a) to Bob. Unbounded simulator finds corresponding sk and computes $i^* \leftarrow D_{sk}(a)$. If there is no such sk or a is not a valid ciphertext then simulator returns "reject". Otherwise, simulator sends i^* to T. Bob sends D to T. T sends D_{i^*} to simulator. Simulator sends

 $(E_{pk}(*;*),\ldots,E_{pk}(*;*),E_{pk}(D_i;*),E_{pk}(*;*),\ldots,E_{pk}(*;*))$

to Alice.Clearly in this case, even a malicious Alice sees messages from the same distribution as in the real world. $\hfill \Box$

Private Information Retrieval Scalar Product Computation

AIR PIR: Security Fineprints

- It takes some additional work to ascertain that the protocol is secure if *i* is chosen maliciously such that for some *j* ∈ [*n*], gcd(*i* − *j*, *N*) > 1.
- We have a relaxed-secure oblivious transfer protocol: privacy of both parties is guaranteed but Alice has no guarantee that b_i decrypts to anything sensible

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

AIR 1-out-of-n PIR: Efficiency

- Alice's computation: one encryption at first, and one decryption at the end. Good
- Bob's computation: 2n encryptions, n exponentiations, etc.
 Bad but cannot improve to o(n)!
- Communication: Alice sends 1 ciphertext, Bob sends *n* ciphertexts, in total *n* + 1 ciphertexts. Bad, can be improved.
- One encryption \approx one exponentiation
 - On 1024-bit integers, ≈ 512 1024-bit multiplications or $\approx 512^2$ additions

Private Information Retrieval Scalar Product Computation

AIR PIR: Lessons

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
- With a well-constructed protocol, proofs can become straightforward
 - Existing designs can be (hopefully?) explained to non-specialists
- Even for really simple tasks, computational overhead can crash the party

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Private Information Retrieval Scalar Product Computation

More Efficient PIRs: Computation

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Simple idea [Naor, Pinkas]: every database element is masked by pseudorandom sequence and then transferred to Alice. Alice obtains log n symmetric keys needed to unmask D_i by doing log n 1-out-of-2 PIR-s with Bob.
- Needs *n* symmetric-key operations and log *n* public-key encryptions

Private Information Retrieval Scalar Product Computation

More Efficient PIRs: Communication

- In non-private information retrieval, Alice sends i to Bob and Bob responds with D_i. I.e., log n + length(D_i) bits.
- Also in PIR, the communication is lower bounded by log n + length(D_i) bits.
- [Lipmaa, 2005]: A PIR with communication
 O(log² n + length(D_i) log n)
- [Gentry, Ramzan, 2005]: communication
 O(log n + length(D_i)) but much higher Alice-side computation
- Open problem: construct a PIR with sublinear communication

 o(n) where server does ≪ n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

- Goal: Given Alice's vector $a = (a_1, \ldots, a_n)$ and Bob's vector $b = (b_1, \ldots, b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing
- Scalar product is another subprotocol that is often needed in data mining
 - Finding if a pattern occurs in a transaction is basically a scalar product computation
 - Etc etc
- Many "private" scalar product products have been proposed in the data mining community, but they are (almost) all insecure

Private Information Retrieval Scalar Product Computation

GLLM04 Private Scalar Product Protocol

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a = (a_1, \ldots, a_n)$, Bob has $b = (b_1, \ldots, b_n)$
- For $i \in \{1, \ldots, n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_{\mathcal{K}}(0; *)$ and sends B to Alice
- Alice decrypts B
- Correct: $B = \prod A_i^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_i; *)^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_ib_i; ...) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; ...) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; *)$
- Since B is a random encryption of $\sum a_i b_i$, then this protocol is also private
- See [Goethals, Laur, Lipmaa, Mielikäinen 2004] for more

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

- For $i \in \{1, \ldots, n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- **2** Bob computes $B \leftarrow E_{\mathcal{K}}(0; *) \cdot \prod_{i=1}^{n} A_i^{b_i}$ and sends B to Alice
- 3 Alice decrypts *B*

Alice does n + 1 decryptions Bob does n exponentiations One can optimize it significantly, see [GLLM04]

Private Information Retrieval Scalar Product Computation

Homomorphic Protocols: SWOT Analysis

- Bad:
 - Applicable mostly only if client's/server's outputs are affine functions of their inputs:
 - E.g., scalar product
 - Some additional functionality can be included:
 - PIR uses a selector function: Client gets back some value if her input is equal to some other specific value
- Good:
 - "Efficient" whenever applicable
 - Security proofs are standard and modular, client's privacy comes directly from the security of the cryptosystem, sender's privacy is also often simply proven
 - Easy to implement (if you have a correct implementation of the cryptosystem)

Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

The Need For More Complex Tools

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) adatron algorithm
- Condition a > 0 can be checked by using affine operations but it is cumbersome and relatively inefficient
- Thus, in many protocols we need tools that make it possible to efficiently implement non-affine functionalities
- Circuit evaluation: a well-known tool that is efficient whenever the functionality has a small Boolean complexity

Setting: Recap

- Two parties, Alice and Bob, have inputs *a* and *b*, correspondingly
- Functionality: Alice learns A(a, b), Bob learns B(a, b)
- Neither party learns more in the semihonest model, i.e., when Alice and Bob follow the protocol but try to devise new information from what they see
- Can decompose: First run a protocol where Alice learns A(a, b) and Bob learns nothing, then a second protocol where Bob learns B(a, b).
- Thus we will consider the case where $B(a, b) = \bot$
- Wlog, A(a, b) : $\{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\} / * \text{ run } x \text{ protocols}$ in parallel if output is longer */

- Every function A: {0,1}^m × {0,1}ⁿ → {0,1} can be decomposed as a Boolean circuit
- Idea:
 - Bob garbles the Boolean circuit for *A*, together with his inputs, and handles the circuit to Alice
 - Alice obtains from Bob the key that corresponds to one possible Alice's input
 - Alice "runs" this circuit on this key
 - Alice obtains from Bob the real output, corresponding to the garbled output
- Bob garbles the circuit, corresponding to his concrete input b
- Alice should not be able to obtain Bob's input b or run the circuit on two different inputs a, a'

Example

- Millionaire's problem: Who has more toys?
- I.e., A(a,b) = 1 iff a > b in $\mathbb{Z}_{2^{\ell}}$
- Boolean way:

$$(a_{\ell-1} = 1 \wedge b_{\ell-1} = 0) \vee (a_{\ell-1} = b_{\ell-1} \wedge a_{\ell-2} = 1 \wedge b_{\ell-2} = 0) \vee \dots$$

Helger Lipmaa Cry

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Obtaining The Input Key

- Alice has *m* inputs *a_i*.
- Bob generates 2m keys K_{i0} and K_{i1} , $\forall i \in [m]$
- For $i \in [m]$, Alice uses an $\binom{2}{1}$ -OT to obtain $K_{i\alpha_i}$

Obtaining The Output Key

- After running the circuit, Alice has exactly one output key K_{out}
- Assume that Bob has before also transferred E_{Kⁱ_{out}} (answer_i) for all possible output keys/corresponding answers

Helger Lipmaa

Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Garbling The Circuit

- Every gate ψ is constructed so that if you know input keys then you get to know output keys
- E.g., \land gate:
 - Alice gets to know the key $K_{out,1}^{\psi}$ corresponding to 1 if both his keys correspond to the 1-input keys $K_{1,1}^{\psi}$, $K_{2,1}^{\psi}$ of this gate
 - Otherwise, Alice gets to know the key corresponding to 0
 - Alice should not get to know to what does the new key correspond
- Basic idea: encrypt K_{out}^{ψ} by using K_1^{ψ} , K_2^{ψ} . Store a randomly ordered table table that corresponds to $E_{K_{1,i}^{\psi}, K_{2,i}^{\psi}}(K_{out,i \wedge j}^{\psi})$ for

 $i,j \in \{0,1\}$

- Call this table a Yao gate
- Alice later tries to decrypt all four values \leftarrow It is needed that one can detect that $K^{\psi}_{vart in i}$ is correct

Construction

- Bob creates key pairs for all bits of all inputs and for each "wire" of the circuit
- Given these key pairs, Bob turns gates into Yao gates.
- Bob gives Alice all Yao gates, keys corresponding to his inputs.
- Alice obtains keys corresponding to her inputs.
- Alice computes Yao gate, until she gets the output keys.
- Alice converts output keys to correct answers.

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

Disclaimer Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

What if Bob cheats?

- Recent research (Katz-Ostrovsky, 2004) etc: it is possible to design two-party protocols, secure in the malicious model, for any "computable" A in five rounds
- However: is it practical?
 - Circuit evaluation is not even practical in semihonest model, except for functions of special type
 - For protocols, seen previously, homomorphic solutions are much more efficient
- Circuit evaluation is practical if the circuit is small: e.g., computing a XOR of two inputs etc.

Secret Sharing: Multi-Party Model

- Sharing a secret X: X is shared between different parties so that only legitimate coalitions of parties can reconstruct it, and any smaller coalition has no information about X
- Well-known, well-studied solutions starting from [Shamir 1979]
- Multi-Party Computation:
 - *n* parties secretly share their inputs
 - The protocol is executed on shared inputs
 - Intermediate values and output will be shared
 - Only legitimate coalitions can recover the output
- MPC: well-known, well-studied since mid 80-s

Helger Lipmaa

- Contemporary solutions quite efficient
- Needs more than two parties: 2/3rd fraction of parties must be honest ⁽²⁾

- Most algorithms are not affine and have a high Boolean complexity
- Many algorithms can be decomposed into smaller pieces, such that some pieces are affine, some have low Boolean complexity
- Solve every piece of the algorithm by using an appropriate tool: homomorphic protocols, circuit evaluation or MPC
- Internal states of the algorithm should not become public and must therefore be secretly shared between different participants
- All more complex cryptographic PPDM protocols have this structure, see [Pinkas, Lindell, Crypto 2000] or [Laur, Lipmaa, Mielikäinen, KDD 2006]

Cryptographic Techniques in Privacy-Preserving Data Mining

Combining Example: Private Kernel Perceptron

Kernel Perceptron

Input: Kernel matrix *K*, class labels $\vec{y} \in \{-1, 1\}^n$. Output: A weight vector $\vec{a} \in \mathbb{Z}^n$. Set $\vec{a} \leftarrow \vec{0}$. repeat for i = 1 to n do if $y_i \cdot \sum_{j=1}^n k_{ij} \alpha_j \le 0$ then $\alpha_i \leftarrow \alpha_i + y_i$ end for until convergence

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

- Cryptography and Data-Mining two different worlds
- Cryptographic PPDM: data itself is not made public, different parties obtain their values by interactively communicating with the database servers
- Security definitions are precise and well-understood
- Security guarantees are very strong: no adversary working in time 2^{80} can violate privacy with probability $\geq 2^{-80}$
- Computational/communication overhead makes many protocols impractical
- Constructing a protocol that is practical enough may require breakthroughs in cryptography and/or data mining

Further work?

- From cryptographic side:
 - Construct faster public-key cryptosystems
 - Superhomomorphic public-key cryptosystems that allow to do more than just add on ciphertexts
 - PIR with o(n) communication and o(n) public-key operations
- From data mining side:
 - Construct privacy-friendly versions of various algorithms that are easy to implement cryptographically
 - E.g.: a version of SVM algorithm that is faster than adatron but privacy-friendly

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining

 Slides will be soon available from http://www.adastral.ucl.ac.uk/~helger