Cryptographic Techniques in Privacy-Preserving Data Mining

Helger Lipmaa

University College London

ECML/PKDD 2006 Tutorial

Outline

1 Disclaimer

2 Motivation And Introduction

3 Some Simple PPDM Algorithms
 - Private Information Retrieval
 - Scalar Product Computation

4 Circuit Evaluation: Tool For Complex Protocols

5 Secret Sharing/MPC And Combining Tools

6 Conclusions
Disclaimer: I am not a data miner.

Privacy-Preserving Data Mining: Motivation

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data
World I: Data Mining

- Goal: to model data
- Many methods are efficient only with “real data” that has redundancy, good structure etc
 - Data compression, many algorithms of data mining, special methods of machine learning...
 - Random data cannot be compressed and does not have small-sized models
- Conclusion: world I is data dependent
 - Look at the disclaimer

World II: Cryptography

- General goal: secure (confidential, authentic, ...) communication
- Subgoal: to hide properties of data
- For example, oblivious transfer:
 - Alice has input $i \in \mathbb{N}$, Bob has n strings D_1, \ldots, D_n
 - Alice obtains D_i
 - Cryptographic goal: Alice obtains no more information. Bob obtains no information at all
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive
Cryptography is usually inefficient with large amount of data

Example:
- Information retrieval. It is a “trivial” task to retrieve the ith element D_i of a database D
- Oblivious transfer:
 - Database server’s computation is $\Omega(|D|)$
 - “Proof”: If she does not do any work with the jth database element then she “knows” that $i \neq j$. QED.

Goal: discover a model of the data, but nothing else
- Both “model” and “nothing else” must be well-defined!

Simplest example: find out average age of all patients (and nothing else)

More complex example: publish average age of all patients with symptom X, where X is not public
- I.e., database owner must not get to know X

Another example: find 10 most frequent itemsets in the data

In PPDM, data mining provides objectives, cryptography provides tools
Cryptographic PPDM: Good, Bad and Ugly

- **Good**: companies and persons may become more willing to participate in data mining
- **Bad**: already inefficient data mining algorithms become often almost intractable
 - Simpler tasks can still be done
- **There is no ugly**: it’s a nice research area 😊
 - At this moment far from being practical, and thus offers many open problems

Randomization Approach

- Much more popular in the data mining community, see Srikant’s SIGKDD innovation award talk in KDD 2006, Gehrke’s tutorial in KDD 2006, Xintao Wu’s tutorial in ECML/PKDD 2006
- There are significant differences between cryptographic and randomization approaches!
- ... and they are studied by completely different communities
Randomization Approach: Short Overview

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person
 - It is allowed to get to know the average age of say any three persons
- Untrusted publisher model: clients perturb their data and send their perturbed version to miner who mines the results
- Trusted publisher model: clients send original data to a TP, who perturbs it and sends the results to miner who mines the results

Cryptographic Approach: Short Overview

- Assume there are n parties (clients, servers, miners) who all have some private inputs x_i, and they must compute some private outputs $y_i = f_i(\vec{x})$
 - f_i etc are defined by the functionality we want to compute — by data miners
- Build a cryptographic protocol that guarantees that after some rounds, the ith party learns y_i and nothing else— with probability $1 - \epsilon$
Cryptographic vs Randomization Approach: Differences

- **Who owns the database:**
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties.
 - Cryptographic: depends on applications
 - Data is kept by a server, and the miner queries the server.
 - Data is shared by several miners, who can only jointly mine it.
 - ...

- **Correctness:**
 - Randomization:
 - Client “owns” a **perturbed** database, and must be able to compute (an approximation to) the desired output from it.
 - Cryptographic:
 - Client can usually compute the precise output after interactive communicating with the server.
Cryptographic vs Randomization Approach: Differences

- **Privacy:**
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected
 - E.g., in Randomized Response Technique, variance depends on the size of the population
 - Interval privacy, k-anonymity, ...
 - Cryptographic: one can guarantee that only the desired output will become known to the client
 - Protect **everything** as much as possible

- **Definitional:**
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)
 - Cryptographic:
 - A lot of effort has been put into formalizing the definitions of privacy, the definitions and their implications are well understood
 - Cryptographic community has invested dozens of man years to come up with correct definitions!
Cryptographic vs Randomization Approach: Differences

- **Efficiency:**
 - Randomization: randomizing might be difficult but it is done once by the server; client’s work is usually comparable to her work in the non-private case
 - Better efficiency, but privacy depends on data and predicate
 - Cryptographic: privatization overhead every single time when a client needs to obtain some data
 - Better privacy, but efficiency depends on predicate

- **Communities:**
 - Randomization: bigger community, people from the data mining community
 - Too many results to even mention...
 - Randomization is an optimization problem: tweak and your algorithm might work for some concrete data
 - Cryptographic: small community
 - Cryptographic approach is seen to be too resource-consuming and thus not worth the research time
 - Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright and students, myself and Sven Laur, ...
Private Information Retrieval

- Alice (client) has index $i \in [n]$, Bob (database server) has database $D = (D_1, \ldots, D_n)$
- Functional goal: Alice obtains D_i, Bob does not have to obtain anything
- Cryptographic privacy goal I: Bob does not obtain any information about i
 - "Private information retrieval"
- Cryptographic privacy goal II: Alice does not obtain any information about D_j for any $j \neq i$
 - PIR + goal II = ("relaxed" secure) oblivious transfer
- Cryptographic security/correctness goal III: the string that Alice obtains is really equal to D_i
 - goal I + II + III = fully secure oblivious transfer

PIR: Computational vs Statistical Client-Privacy

- Privacy can be defined to be statistical or computational
 - Statistical client-privacy:
 - Alice’s messages that correspond to any two queries i_0 and i_1 come from similar distributions
 - Then even an unbounded adversary cannot distinguish between messages that correspond to any two different queries
 - Even if the queries i_0/i_1 are chosen by the adversary
 - Well-known fact: communication of statistically client-private information retrieval with database D is at least $|D|$ bits.
- I.e., the trivial solution — Bob sends to Alice his whole database, Alice retrieves D_i — is also the optimal one
PIR: Computational Client-Privacy (Intuition)

- **Computational client-privacy**: no computationally bounded Bob can distinguish between the distributions corresponding to any two queries i_0 and i_1
- I.e., the distributions of Alice’s messages $A(i_0)$ and $A(i_1)$ corresponding to i_0 and i_1 are computationally indistinguishable

PIR: Formal Definition of Client-Privacy

- Consider the next “game”:
 - B picks two indices i_0 and i_1, and sends them to A
 - A picks a random bit $b \in \{0, 1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'
- B is successful if $b' = b$
- PIR is (ϵ, τ)-computationally client-private if no τ-time adversary B has better success than $|\epsilon - 1/2|$
- If B tosses a coin then it has success $1/2$ and thus is a $(0, \tau)$-adversary for some small τ
- **IND-CPA security**: INDistinguishability against Chosen Plaintext Attacks
OT: Formal Definition of Server-Security

- Difference with client-privacy:
 - Client obtains an output D_i and thus can distinguish between databases D, D' with $D_i \neq D'_i$
 - This must be taken into account
 - We can achieve statistical server-privacy
 - With communication $\Theta(\log |D|)$
 - Since server gets no output, server-privacy=server-security
 - Recall goal III

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database D to T (secretly, authenticatedly)
 - T sends D_i to A (secretly, authenticatedly)

- This clearly models what we want to achieve!
- A protocol is server-secure if:
 - For any attack that A can mount against B in the protocol, there exists an adversary A^* that can mount the same attack against B in the described ideal world
 - Technical differences: real world is always asynchronous, but it does not matter here
Note on Security Definitions

- Security definitions are uniform and modular, and remain the same for most protocols.
- The previous definitions work for any two-party protocol where on client’s input a and server’s input b, client must obtain an output $f(a, b)$ for some f, and server must obtain no output.
- **Computational client-privacy**: client’s messages corresponding to any, even chosen-by-server, inputs a and a' must be computationally indistinguishable.
- **Statistical server-security**: consider an ideal world where client gives a to T, server gives b to T and T returns $f(a, b)$ to client. Show that any attacker in real protocol can be used to attack the ideal world with comparable efficiency.

Tool: Additively Homomorphic Public-Key Crypto

- E is a semantically/IND-CPA secure public-key cryptosystem iff:
 - Every user has a public key pk and secret key sk.
 - **Encryption is probabilistic**: $c = E_{pk}(m; r)$ for some random bitstring r.
 - **Decryption is successful**: $D_{sk}(E_{pk}(m; r)) = m$.
 - **Semantical/IND-CPA security**: Distributions corresponding to the encryptions of any m_0 and m_1 are computationally indistinguishable.
Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2,$$

where plaintexts reside in some finite group \mathcal{M} and ciphertexts reside in some finite group \mathcal{C}.

Thus also $D_{sk}(E_{pk}(m; r)^a) = am$

Fact: such IND-CPA secure public-key cryptosystems exist and are well-known [Paillier, 1999]

- There $\mathcal{M} = \mathbb{Z}_N$, $\mathcal{C} = \mathbb{Z}_{N^2}$ for some large composite $N = pq$
- If you care: $E_{pk}(m; r) = (1 + mN)r^N \mod N^2$
- Theorem Paillier cryptosystem is IND-CPA secure if it is computationally difficult to distinguish the Nth random residues modulo N^2 from random integers modulo N^2

Simple PIR

Inputs: Alice has query $i \in [n]$, Bob has $D = (D_1, \ldots, D_n)$ where $D_j \in \mathbb{Z}_N$

1. Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
2. Alice generates her message $a \leftarrow E_{pk}(i; *)$ and sends $A(i) \leftarrow (pk, a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
3. Bob does for every $j \in \{1, \ldots, n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(D_j; *)$
4. Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $D_i = D_{sk}(b_i)$

[Aiello, Ishai, Reingold, Eurocrypt 2001]
AIR PIR: Correctness/Security

1. Bob does for every \(j \in \{1, \ldots, n\} \):
 - Set \(b_j \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(D_j; \ast) \)
 - Since \(a = E_{pk}(i; \ast) \),
 \[b_j = \left((E_{pk}(i; \ast)/E_{pk}(j; 1))^* \cdot E_{pk}(D_j; \ast) \right) \]

2. Because \(E \) is additively homomorphic,
 \[b_j = (E_{pk}(i - j; \ast))^* \cdot E_{pk}(D_j; \ast) = (E_{pk}(\ast \cdot (i - j); r)) \cdot E_{pk}(D_j; \ast) \]
 for some \(r \)
3. If \(i = j \) then
 \[b_j = E_{pk}(0; r) \cdot E_{pk}(D_j; \ast) = E_{pk}(D_j; \ast) \]
 and thus \(D_{sk}(b_j) = D_j \)
4. Thus Alice obtains \(D_i \) and nothing else!
AIR 1-out-of-\(n\) PIR: Security Properties

- Alice’s query is \textit{computationally “IND-CPA” private}: Bob sees its encryption, and the cryptosystem is IND-CPA private \textit{by assumption}.

- Bob’s database is \textit{statistically private}: Alice sees an encryption of \(D_i\) together with \(n - 1\) encryptions of random strings.

 - We can construct a \textit{simulator} who, only knowing \(D_i\) and nothing else about Bob’s database, sends
 \[
 (E_{pk}(\ast;\ast), \ldots, E_{pk}(\ast;\ast), E_{pk}(D_i;\ast), E_{pk}(\ast;\ast), \ldots, E_{pk}(\ast;\ast))
 \]
 to Alice.

 - Simulator’s output is the same as honest Bob’s output and was constructed, only knowing \(D_i\Rightarrow\) protocol is statistically private for Bob.

AIR PIR: Full Server-Security Proof

\textbf{Proof.}

We must assume that simulator is unbounded (this is ok since the attacker may also be unbounded, and thus simulator may need a lot of time to check his work). Alice sends \((pk, a)\) to Bob. \textit{Unbounded} simulator finds corresponding \(sk\) and computes \(i^\ast \leftarrow D_{sk}(a)\). If there is no such \(sk\) or \(a\) is not a valid ciphertext then simulator returns “reject”. Otherwise, simulator sends \(i^\ast\) to \(T\). Bob sends \(D\) to \(T\). \(T\) sends \(D_{i^\ast}\) to simulator. Simulator sends

\[
(E_{pk}(\ast;\ast), \ldots, E_{pk}(\ast;\ast), E_{pk}(D_i;\ast), E_{pk}(\ast;\ast), \ldots, E_{pk}(\ast;\ast))
\]

to Alice. Clearly in this case, even a malicious Alice sees messages from the same distribution as in the real world. \(\square\)
AIR PIR: Security Fineprints

- It takes some additional work to ascertain that the protocol is secure if i is chosen maliciously such that for some $j \in [n]$, $\gcd(i - j, N) > 1$.
- We have a relaxed-secure oblivious transfer protocol: privacy of both parties is guaranteed but Alice has no guarantee that b_i decrypts to anything sensible.

AIR 1-out-of-n PIR: Efficiency

- Alice’s computation: one encryption at first, and one decryption at the end. Good
- Bob’s computation: $2n$ encryptions, n exponentiations, etc. Bad but cannot improve to $o(n)$!
- Communication: Alice sends 1 ciphertext, Bob sends n ciphertexts, in total $n + 1$ ciphertexts. Bad, can be improved.
- One encryption \approx one exponentiation
 - On 1024-bit integers, ≈ 512 1024-bit multiplications or $\approx 512^2$ additions
AIR PIR: Lessons

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
- With a well-constructed protocol, proofs can become straightforward
 - Existing designs can be (hopefully?) explained to non-specialists
- Even for really simple tasks, computational overhead can crash the party

More Efficient PIRs: Computation

- As said previously, Bob must do something with every database element
- However, this something doesn’t have to be public-key encryption — and symmetric key encryption (block ciphers, . . .) is often 1000 times faster
- Simple idea [Naor, Pinkas]: every database element is masked by pseudorandom sequence and then transferred to Alice. Alice obtains log n symmetric keys needed to unmask D_i by doing log n 1-out-of-2 PIR-s with Bob.
- Needs n symmetric-key operations and log n public-key encryptions
More Efficient PIRs: Communication

- In non-private information retrieval, Alice sends i to Bob and Bob responds with D_i. I.e., $\log n + \text{length}(D_i)$ bits.
- Also in PIR, the communication is lower bounded by $\log n + \text{length}(D_i)$ bits.
- [Lipmaa, 2005]: A PIR with communication $O(\log^2 n + \text{length}(D_i) \log n)$
- [Gentry, Ramzan, 2005]: communication $O(\log n + \text{length}(D_i))$ but much higher Alice-side computation
- **Open problem**: construct a PIR with sublinear communication $o(n)$ where server does $\ll n$ public-key operations

Private Scalar Product

- **Goal**: Given Alice’s vector $a = (a_1, \ldots, a_n)$ and Bob’s vector $b = (b_1, \ldots, b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- **Cryptographic privacy goals**: Alice only learns $a \cdot b$, Bob learns nothing
- **Scalar product** is another subprotocol that is often needed in data mining
 - Finding if a pattern occurs in a transaction is basically a scalar product computation
 - Etc etc
- Many “private” scalar product products have been proposed in the data mining community, but they are (almost) all insecure
GLLM04 Private Scalar Product Protocol

- Assume E is additively homomorphic,
 $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1 r_2)$
- Alice has $a = (a_1, \ldots, a_n)$, Bob has $b = (b_1, \ldots, b_n)$
- For $i \in \{1, \ldots, n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; \ast)$
- Bob computes $B \leftarrow \prod_i A_i^{b_i} \cdot E_K(0; \ast)$ and sends B to Alice
- Alice decrypts B
- Correct: $B = \prod_i A_i^{b_i} \cdot E_{pk}(0; \ast) = \prod E_{pk}(a_i; \ast)^{b_i} \cdot E_{pk}(0; \ast) = \prod E_{pk}(a_i b_i; \ast) \cdot E_{pk}(0; \ast) = E_{pk}(\sum a_i b_i; \ast)$
- Since B is a random encryption of $\sum a_i b_i$, then this protocol is also private
- See [Goethals, Laur, Lipmaa, Mielikäinen 2004] for more

GLLM04: Complexity

1. For $i \in \{1, \ldots, n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; \ast)$
2. Bob computes $B \leftarrow E_K(0; \ast) \cdot \prod_{i=1}^n A_i^{b_i}$ and sends B to Alice
3. Alice decrypts B

Alice does $n + 1$ decryptions
Bob does n exponentiations
One can optimize it significantly, see [GLLM04]
Homomorphic Protocols: SWOT Analysis

- **Bad:**
 - Applicable mostly only if client’s/server’s outputs are affine functions of their inputs:
 - E.g., scalar product
 - Some additional functionality can be included:
 - PIR uses a selector function: Client gets back some value if her input is equal to some other specific value
- **Good:**
 - “Efficient” whenever applicable
 - Security proofs are standard and modular, client’s privacy comes directly from the security of the cryptosystem, sender’s privacy is also often simply proven
 - Easy to implement (if you have a correct implementation of the cryptosystem)

The Need For More Complex Tools

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) adatron algorithm
- Condition $a > 0$ can be checked by using affine operations but it is cumbersome and relatively inefficient
- Thus, in many protocols we need tools that make it possible to efficiently implement non-affine functionalities
- **Circuit evaluation:** a well-known tool that is efficient whenever the functionality has a small Boolean complexity
Setting: Recap

- Two parties, Alice and Bob, have inputs a and b, correspondingly.
- Functionality: Alice learns $A(a, b)$, Bob learns $B(a, b)$.
- Neither party learns more in the **semihonest model**, i.e., when Alice and Bob follow the protocol but try to devise new information from what they see.
- Can decompose: First run a protocol where Alice learns $A(a, b)$ and Bob learns nothing, then a second protocol where Bob learns $B(a, b)$.
- Thus we will consider the case where $B(a, b) = \bot$.
- Wlog, $A(a, b) : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\}$ /* run x protocols in parallel if output is longer */

High level idea

- Every function $A : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\}$ can be decomposed as a Boolean circuit.
- Idea:
 - Bob **garbles** the Boolean circuit for A, together with his inputs, and handles the circuit to Alice.
 - Alice obtains from Bob the key that corresponds to one possible Alice’s input.
 - Alice “runs” this circuit on this key.
 - Alice obtains from Bob the real output, corresponding to the garbled output.
 - Bob garbles the circuit, corresponding to his concrete input b.
 - Alice should not be able to obtain Bob’s input b or run the circuit on two different inputs $a, a’$.
Example

- Millionaire’s problem: Who has more toys?
- I.e., $A(a, b) = 1$ iff $a > b$ in \mathbb{Z}_{2^ℓ}
- Boolean way:

$$ (a_{\ell-1} = 1 \land b_{\ell-1} = 0) \lor (a_{\ell-1} = b_{\ell-1} \land a_{\ell-2} = 1 \land b_{\ell-2} = 0) \lor \ldots $$

Obtaining The Input Key

- Alice has m inputs a_i.
- Bob generates $2m$ keys K_{i0} and K_{i1}, $\forall i \in [m]$.
- For $i \in [m]$, Alice uses an $\binom{2}{1}$-OT to obtain $K_{i\alpha_i}$
Obtaining The Output Key

- After running the circuit, Alice has exactly one output key K_{out}
- Assume that Bob has before also transferred $E_{K_{out}}(answer_i)$ for all possible output keys/corresponding answers

Garbling The Circuit

- Every gate ψ is constructed so that if you know input keys then you get to know output keys
- E.g., \land gate:
 - Alice gets to know the key $K_{out,1}^{\psi}$ corresponding to 1 if both his keys correspond to the 1-input keys $K_{1,1}^{\psi}$, $K_{2,1}^{\psi}$ of this gate
 - Otherwise, Alice gets to know the key corresponding to 0
 - Alice should not get to know to what does the new key correspond
- Basic idea: encrypt K_{out}^{ψ} by using K_{1}^{ψ}, K_{2}^{ψ}. Store a randomly ordered table that corresponds to $E_{K_{out,i,j}^{\psi}}(K_{out}^{\psi})$ for $i, j \in \{0, 1\}$
- Call this table a Yao gate
- Alice later tries to decrypt all four values \Leftarrow It is needed that one can detect that K_{out}^{ψ}, ..., is correct
Construction

- Bob creates key pairs for all bits of all inputs and for each “wire” of the circuit.
- Given these key pairs, Bob turns gates into Yao gates.
- Bob gives Alice all Yao gates, keys corresponding to his inputs.
- Alice obtains keys corresponding to her inputs.
- Alice computes Yao gate, until she gets the output keys.
- Alice converts output keys to correct answers.

What if Bob cheats?

- Recent research (Katz-Ostrovsky, 2004) etc: it is possible to design two-party protocols, secure in the malicious model, for any “computable” A in five rounds.
- However: is it practical?
 - Circuit evaluation is not even practical in semihonest model, except for functions of special type.
 - For protocols, seen previously, homomorphic solutions are much more efficient.
- Circuit evaluation is practical if the circuit is small: e.g., computing a XOR of two inputs etc.
Secret Sharing: Multi-Party Model

- Sharing a secret X: X is shared between different parties so that only legitimate coalitions of parties can reconstruct it, and any smaller coalition has no information about X
- Well-known, well-studied solutions starting from [Shamir 1979]
- Multi-Party Computation:
 - n parties secretly share their inputs
 - The protocol is executed on shared inputs
 - Intermediate values and output will be shared
 - Only legitimate coalitions can recover the output
- MPC: well-known, well-studied since mid 80-s
- Contemporary solutions quite efficient
- Needs more than two parties: 2/3rd fraction of parties must be honest 😊

Combining Tools

- Most algorithms are not affine and have a high Boolean complexity
- Many algorithms can be decomposed into smaller pieces, such that some pieces are affine, some have low Boolean complexity
- Solve every piece of the algorithm by using an appropriate tool: homomorphic protocols, circuit evaluation or MPC
- Internal states of the algorithm should not become public and must therefore be secretly shared between different participants
- All more complex cryptographic PPDM protocols have this structure, see [Pinkas, Lindell, Crypto 2000] or [Laur, Lipmaa, Mielikäinen, KDD 2006]
Combining Example: Private Kernel Perceptron

Kernel Perceptron

Input: Kernel matrix K, class labels $\vec{y} \in \{-1, 1\}^n$.
Output: A weight vector $\vec{a} \in \mathbb{Z}^n$.

1. Set $\vec{a} \leftarrow \vec{0}$.
2. repeat
 1. for $i = 1$ to n do
 1. if $y_i \cdot \sum_{j=1}^n k_{ij} \alpha_j \leq 0$ then $\alpha_i \leftarrow \alpha_i + y_i$
 2. end for
3. until convergence

Conclusions

- Cryptography and Data-Mining — two different worlds
- Cryptographic PPDM: data itself is not made public, different parties obtain their values by interactively communicating with the database servers
- Security definitions are precise and well-understood
- Security guarantees are very strong: no adversary working in time 2^{80} can violate privacy with probability $\geq 2^{-80}$
- Computational/communication overhead makes many protocols impractical
- Constructing a protocol that is practical enough may require breakthroughs in cryptography and/or data mining
Further work?

- From cryptographic side:
 - Construct faster public-key cryptosystems
 - Superhomomorphic public-key cryptosystems that allow to do more than just add on ciphertexts
 - PIR with $o(n)$ communication and $o(n)$ public-key operations
- From data mining side:
 - Construct privacy-friendly versions of various algorithms that are easy to implement cryptographically
 - E.g.: a version of SVM algorithm that is faster than adatron but privacy-friendly

Questions?

- Slides will be soon available from http://www.adastral.ucl.ac.uk/~helger