
The Discovery Challenge
Workshop

Proceedings of

Editor
Steffen Bickel (Humboldt University, Berlin, Germany)

17th European Conference on Machine Learning (ECML) and
10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD)

Preface

The 2006 ECML-PKDD Discovery Challenge deals with personalized spam fil-
tering and generalization across related learning tasks. The problem setting is
motivated by server-sided spam filtering in the case when the users are not pre-
pared to tag their received messages as spam/non-spam and only public sources
can be used for training a spam filter. The challenge is organized in cooperation
with Strato Rechenzentrum AG.

For the challenge one set of labeled training data collected from publicly
available sources and unlabeled inboxes of several users were provided. The in-
boxes served as evaluation data. The goal was to construct a spam filter for
each single user that correctly classifies the emails in its inbox as spam or non-
spam. There were two different tasks that differ in the number of inboxes and
the proportion of labeled to unlabeled data.

57 teams participated in the challenge and 26 submitted results for the evalu-
ation. The teams approached the problem in very different ways but most of the
participants used variants of semi-supervised learning techniques. The following
are the winners.

Spam Filtering Performance Award - Task A, three teams share the first rank:

– Khurram Junejo, Mirza Yousaf, Asim Karim
Lahore University of Management Sciences, Pakistan,

– Bernhard Pfahringer
University of Waikato, New Zealand,

– Kushagra Gupta, Vikrant Chaudhary, Nikhil Marwah, Chirag Taneja
Inductis India Pvt Ltd.

Spam Filtering Performance Award - Task B :

– Gordon Cormack
University of Waterloo, Canada.

Spam Filtering Creativity Award - Task A/B :

– Bernhard Pfahringer
University of Waikato, New Zealand.

The Discovery Challenge workshop at the ECML-PKDD 2006 conference in
Berlin serves as platform to discuss the results, different approaches, and other
issues related to the problem setting.

We wish to express our gratitude to

– the participants of the challenge,
– the authors of the submitted papers,

– the invited speaker Alexander Zien (Max Planck Institute for Biological Cy-
bernetics),

– Rolf Schimpfky for his help with preparing the datasets,
– the members of the knowledge management group at Humboldt Universität

zu Berlin for their help in developing the idea for the challenge and their
expertise for selecting the winner of the creativity award,

– and Strato Rechenzentrum AG for technical and financial support.

August 2006 Steffen Bickel
Discovery Challenge 2006 Chair

Table of Contents

ECML-PKDD Discovery Challenge 2006 Overview . 1
Steffen Bickel

Harnessing Unlabeled Examples through Iterative Application of
Dynamic Markov Modeling . 10

Gordon V. Cormack

A Two-Pass Statistical Approach for Automatic Personalized Spam
Filtering . 16

Khurum Nazir Junejo, Mirza Muhammad Yousaf, and Asim Karim

Text Classification Using Clustering . 28
Antonia Kyriakopoulou and Theodore Kalamboukis

Using Tri-Training and Support Vector Machines for Addressing the
ECML-PKDD 2006 Discovery Challenge . 39

Dimitrios Mavroeidis, Konstantinos Chaidos, Stefanos Pirillos,
Dimosthenis Christopoulos, and Michalis Vazirgiannis

A Semi-Supervised Spam Mail Detector . 48
Bernhard Pfahringer

Identifying SPAM with Predictive Models . 53
Dan Steinberg and Mikhaylo Golovnya

TPN2: Using Positive-Only Learning to deal with the Heterogeneity of
Labeled and Unlabeled Data . 63

Nikolaos Trogkanis and Georgios Paliouras

ECML-PKDD Discovery Challenge 2006
Overview

Steffen Bickel

Humboldt-Universität zu Berlin, School of Computer Science
Unter den Linden 6, 10099 Berlin, Germany

bickel@informatik.hu-berlin.de

Abstract. The Discovery Challenge 2006 deals with personalized spam
filtering and generalization across related learning tasks. In this overview
of the challenge we motivate and describe the problem setting and the
evaluation measure. We give details on the construction of the data sets
and discuss the results.

1 Introduction

The Discovery Challenge 2006 is about personalized spam filtering and general-
ization across related learning tasks. People spend an increasing amount of time
for reading messages and deciding whether they are spam or non-spam. Some
users spend additional time to label their received spam messages for training
local spam filters running on their desktop machines. Email service providers
want to relieve users from this burden by installing server-based spam filters.
Training such filters cannot rely on labeled messages from the individual users,
but on publicly available sources, such as newsgroup messages or emails received
through “spam traps” (spam traps are email addresses published visually invis-
ible for humans but get collected by the web crawlers of spammers).

This combined source of training data is different from the distributions of
the emails received by individual users. When learning spam filters for individual
users from this type of data one needs to cope with a discrepancy between the
distributions governing training and test data and one needs a balance between
generalization and adaptation. The generalization/adaptation can rely on large
amounts of unlabeled emails in the user’s inboxes that are accessible for server-
based spam filters. Utilizing this unlabeled data a spam filter can be adapted to
the properties of specific user’s inboxes but when little unlabeled data for a user
are available a generalization over multiple users is advised.

The Discovery Challenge 2006 covers this setting, labeled training data col-
lected from publicly available sources are provided. The unlabeled inboxes of
several users serve as test data. The inboxes differ in the distribution of emails.
The goal is to construct a spam filter for each single user that correctly classifies
its emails as spam or non-spam. A clever way of utilizing the available sets of
unlabeled emails from different users is required.

This overview is organized as follows. In Section 2, we discuss the problem
setting and define the evaluation measure. We describe the data sets in Section

1

3. Section 4 gives an overview of the participants and summarizes the results. In
Section 5 we discuss the different approaches and Section 6 concludes.

2 Problem Setting and Evaluation Measure

In the problem setting of the challenge the inboxes of several users are given
and the goal is to correctly classify the messages in each inbox as spam or
non-spam. No labeled training examples from the inboxes are available, instead,
one common set of labeled data is given. The labeled data and the inboxes are
governed by different distributions. A learning algorithm cannot rely only on
the labeled data because the bias between training data and inboxes hinders
learning of a correct classification model for the inboxes. The unlabeled data in
the inboxes need to be used to adapt to their distributions.

The individual distributions of the inboxes are neither independent (identical
spam messages are sent to many users), nor are they likely to be identical: dis-
tributions of inbound messages vary greatly between (professional, recreational,
American, Chinese, . . .) email users. A learning algorithm can exploit the
similarity of the inboxes.

There are two different tasks that differ in the number of inboxes and the
proportion of labeled to unlabeled data (see Section 3).

Usually, cross-validation is used for tuning parameters of a classification
model. In our case, cross-validation cannot be used because the emails in the
inboxes are unlabeled. We provide a second set of labeled training data and
inboxes for parameter tuning. The difference between the tuning set and the
evaluation set is that the emails in the inboxes of the tuning set are labeled.
The feature representation of the tuning data differs from the evaluation data
(different dictionary). This means, the tuning data can not be used to augment
the training data.

The problem setting differs from the standard setting of semi-supervised
learning in three ways,

– there is a bias between training and evaluation data, the training and test
data are governed by different distributions,

– several distinct but similar unlabeled inboxes are given, a multi-task learning
or a transfer learning approach can be used for modeling and exploiting the
similarity between inboxes,

– the number of labeled emails is larger than the number of unlabeled examples
for a single inbox (task A).

The evaluation criterion for the challenge is the AUC value. The AUC value
is the area under the ROC curve (Receiver Operating Characteristic curve). A
ROC curve is a plot of true positive rate vs. false positive rate as the prediction
threshold sweeps through all the possible values. The area under this curve has
the nice property that it specifies the probability that, when we draw one positive
and one negative example at random, the decision function assigns a higher value
to the positive than to the negative example.

2

We compute AUC values for each inbox separately and average over all in-
boxes of the task. The winner for each task is the participant with the highest
average AUC value. There is an additional creativity award for each task for the
most interesting solutions in terms of non-straightforward approaches, innovative
ideas, and assumed high impact.

3 Data Sets

The composition of the labeled training set is the same for both tasks, they differ
in number of emails. 50% of the labeled training data contain spam emails sent by
blacklisted servers of the Spamhaus project (www.spamhaus.org). 40% are non-
spam emails from the SpamAssassin corpus and 10% are non-spam emails sent
from about 100 different subscribed English and German newsletters. Table 1
summarizes the composition of the labeled training data for both tasks. The
labeled data of the tuning set has the same size and composition as the actual
training data but with different emails.

task A task B

emails sent from blacklisted servers 2000 50
SpamAssassin emails 1600 40
newsletters 400 10

total 4000 100

Table 1. Composition of labeled training data.

Evaluating the filters with respect to the personal distributions of messages
requires labeled emails from distinct users. We construct different inboxes using
real but disclosed messages. As non-spam part of the inboxes we use messages
received by distinct Enron employees from the Enron corpus [9] cleaned from
spam. Each inbox is augmented with spam messages from distinct spam sources.
Some spam sources are used for multiple inboxes, in those cases all available
emails from this source were sorted by date and split into different consecutive
subsets. Because of the topic drift the distribution of the emails in the different
parts differs.

The two tasks differ in the number and size of inboxes, task A has 3 and task
B 15 evaluation inboxes. The size of the inboxes in task A is 2500 and in task B
400. Tables 2 and 3 summarize the composition of the evaluation and the tuning
inboxes for task A and B. Each inbox consists of 50% spam and 50% non-spam
emails.

The messages are preprocessed and transformed into a bag-of-words represen-
tation. We provide feature vectors with term frequencies. Our preprocessing uses
charset-, MIME-, base64-, URL- (RFC 1738), and subject line-decoding (RFC
2047). Our tokenization takes care of HTML tags, following the X-tokenizer
proposed by Siefkes et al. [3].

3

inbox evaluation/ non-spam/ spam source
ID tuning Enron user

0 eval Farmer Dornbos spam trap, part 1
(www.dornbos.com)

1 eval Lokay Dornbos spam trap, part 2
(www.dornbos.com)

2 eval Sanders spam trap of Bruce Guenter, part 1
(www.em.ca/∼bruceg/spam)

3 eval Bass personal spam of Richard Jones, part 1
(www.annexia.org/spam)

4 eval Campbell personal spam of Tobias Scheffer, part 1

5 eval Dasovich spam collection of SpamArchive.org, part 1

6 eval Germany spam collection of SpamArchive.org, part 2

7 eval Kean personal spam of Paul Wouters, part 1
(www.xtdnet.nl/paul/spam)

8 eval Mann Dornbos spam trap, part 3
(www.dornbos.com)

9 eval Nemec Dornbos spam trap, part 4
(www.dornbos.com)

10 eval Rogers spam trap of Bruce Guenter, part 2
(www.em.ca/∼bruceg/spam)

11 eval Scott spam trap of Bruce Guenter, part 3
(www.em.ca/∼bruceg/spam)

12 eval Shackleton personal spam of Richard Jones, part 2
(www.annexia.org/spam)

13 eval Shapiro personal spam of Tobias Scheffer, part 2

14 eval Symes spam collection of SpamArchive.org, part 3

0 tune Lay personal spam of Paul Wouters, part 2
(www.xtdnet.nl/paul/spam)

1 tune Taylor spam trap of Bruce Guenter, part 4
(www.em.ca/∼bruceg/spam)

Table 2. Composition of the evaluation and tuning inboxes for task A.

4 Participation and Results

57 teams from 19 different countries participated in the challenge. 26 participants
submitted their results for evaluation, 20 teams have an academic and 6 teams
a commercial background. Not all teams submitted results for both tasks. We
averaged the AUC values for all inboxes as described above and determined the
ranking. We conducted significance tests using a significance level of 5% to test
the null hypothesis that the second rank has a higher AUC value than the first.
The test statistic is computed as described in Hanley and McNeil [7]. For task A

4

inbox evaluation/ non-spam/ spam source
ID tuning Enron user

0 eval Beck spam trap of Bruce Guenter
(www.em.ca/∼bruceg/spam)

1 eval Kaminski spam collection of SpamArchive.org

2 eval Kitchen personal spam of Tobias Scheffer
(www.em.ca/∼bruceg/spam)

0 tune Williams Dornbos spam trap, part 3
(www.dornbos.com)

Table 3. Composition of the evaluation and tuning inboxes for task B.

we could not reject the null hypothesis for rank two and three, this means there
is no statistically significant difference between them and they are all ranked
first. For task B we could reject the null hypothesis for the second rank, this
means there is one winner.

Table 4 and 5 show the first five ranks for task A and task B, respectively.
Figure 1 displays the distribution of AUC over all ranks. Some participants report
higher results in their workshop paper because they improved their algorithms
after the submission deadline.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 3 5 7 9 11 13 15 17 19 21

A
U

C

rank

task A

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 3 5 7 9 11 13 15 17

A
U

C

rank

task B

Fig. 1. Distribution of AUC performance dependent on rank over all participants for
task A (left) and task B (right).

We selected the solution of Bernhard Pfahringer (University of Waikato, New
Zealand) for the Spam Filtering Creativity Award - task A/B, we decided to
award one team for both tasks instead of one for each task because most teams
used the same algorithm for both tasks. Details on his algorithm are given in
the next section.

5 Discussion

The teams approached the problem in very different ways but most of the
participants used variants of semi-supervised learning techniques. Among the
semi-supervised algorithms were graph-based algorithms [2] , large-margin-based

5

rank avg. AUC team

1 0.9507 Khurram Junejo, Mirza Yousaf, Asim Karim
Lahore University of Management Sciences, Pakistan

1 0.9491 Bernhard Pfahringer
University of Waikato, New Zealand

1 0.9487 Kushagra Gupta, Vikrant Chaudhary,
Nikhil Marwah, Chirag Taneja
Inductis India Pvt Ltd

2 0.9365 Nikolaos Trogkanis
National Technical University of Athens, Greece
Georgios Paliouras
National Center of Scientific Research “Demokritos” Greece

3 0.9278 Chao Xu, Yiming Zhou
School of Computer Science and Engineering,
Beijing University, China

4 0.9277 Lalit Wangikar, Mansi Khanna, Ankush Talwar
Nikhil Marwah, Chirag Taneja
Inductis India Pvt Ltd

5 0.9144 Dimitrios Mavroeidis, Konstantinos Chaidos, Stefanos Pirillos,
Dimosthenis Christopoulos, Michalis Vazirgiannis
DB-NET Lab, Informatics Dept., Athens University EB, Greece

Table 4. First five ranks for task A.

rank avg. AUC team

1 0.9465 Gordon Cormack
University of Waterloo, Canada

2 0.9183 Nikolaos Trogkanis
National Technical University of Athens, Greece
Georgios Paliouras
National Center of Scientific Research “Demokritos” Greece

3 0.9074 Kushagra Gupta, Vikrant Chaudhary,
Nikhil Marwah, Chirag Taneja
Inductis India Pvt Ltd

4 0.8992 Dyakonov Alexander
Moscow State University, Russia

5 0.8933 Wenyuan Dai
Apex Data & Knowledge Management Lab,
Shanghai Jiao Tong University

Table 5. First five ranks for task B.

methods [1, 4, 10], self-training approaches [6, 8], positive-only learning [10], and
multi-view learning methods [4]. The assumption in most of those algorithms
is that the unlabeled data is drawn from the same distribution as the labeled
data. This assumption is violated in our case, but nevertheless semi-supervised
learning reduces the error compared to methods that do not utilize the unlabeled
data.

Bernhard Pfahringer the winner of the creativity award accounts for the bias
between training and evaluation data in two ways [2]. Firstly, whenever a pre-

6

diction for some evaluation email is needed, his algorithm transforms the whole
training set by only selecting those features which are actually present in the
evaluation email (i.e. have a non-zero value). A classification model is trained
using this transformed training set and that model’s prediction is used for the
evaluation example in question. This procedure forces the learner to concen-
trate on the features that are actually present in the evaluation example. This
idea of filtering non-existent features is similar to the approach of Steinberg and
Golovnya [11]. Secondly, Pfahringer uses a learning algorithm by Zhou et al. [5]
that is one of the best known graph-based semi-supervised learning algorithms.
The algorithm of Zhou et al. originally suffers from a cubic runtime complexity
in the number of examples. Pfahringer develops a variant of this algorithm with
linear complexity. The tremendous reduction in runtime and memory require-
ments make the algorithm applicable for large data sets.

Trogkanis and Paliouras [10], ranked second in both tasks, are very cautious
when transferring knowledge from labeled to biased unlabeled data. Their ap-
proach is almost unsupervised. A classifier trained an the labeled data is allowed
to label only a very few unlabeled emails with high confidence. In the subsequent
step the labeled data is ignored and a semi-supervised algorithm is applied only
to the inbox emails.

Two teams developed models that account for the similarity of inboxes with
transfer learning. Participant Mohammad Al-Hasan (Rensselaer Polytechnic In-
stitute) first measures the pairwise cosine similarity of all emails between all
inboxes. In a second step a self-training-like learning algorithm learns separate
classifiers for all inboxes in parallel. In each self-training iteration the most confi-
dent previously unlabeled email for each inbox is labeled together with the most
similar email from one other inbox. With this approach confident decisions from
one inbox are transfered to other inboxes. Trogkanis and Paliouras [10] use semi-
supervised learning and augment the unlabeled data of one inbox by a weighted
set of the unlabeled emails of all other inboxes. Gordon Cormack, ranked first in
task B, even ignores the separation of emails into inboxes and pools all inboxes
into one unlabeled set for semi-supervised training.

6 Conclusion

Most of the participants obtained lower classification errors by utilizing the data
from the unlabeled inboxes in addition to the labeled data. Those results indi-
cate that server-sided spam-filtering can be improved by personalization using
unlabeled inboxes.

The results of the participants show that a wide range of semi-supervised
learning algorithms can improve the classification performance for the problem
setting of the challenge. Most semi-supervised learning algorithms make the
implicit assumption that the training and test data are drawn from the same
distribution. This assumption is violated in our case. It is an open problem
to develop semi-supervised learning methods that account for a bias between

7

training and test data. We assume that such methods could further improve the
benefit of spam filter personalization.

Some participants used transfer learning to account for the similarity be-
tween the inboxes. In their experiments the knowledge transfer between the in-
boxes improved the classification performance. Algorithms that did not exploit
the similarity between the inboxes but used more sophisticated semi-supervised
methods received higher scores in the overall ranking. This raises the question
whether the best semi-supervised approaches can be integrated into a transfer
or multi-task learning framework and whether this further improves the classifi-
cation performance.

To our knowledge there is no spam filtering software for practical settings that
utilizes unlabeled examples within a learning framework, also, personalization
in server-sided spam filtering algorithms is widely disregarded. In this respect
the results of the Discovery Challenge are encouraging. A real application in a
server-sided setting poses additional challenges regarding the scalability of the
methods.

Acknowledgment

The Discovery Challenge 2006 has been supported by Strato Rechenzentrum AG
and by the German Science Foundation DFG under grant SCHE540/10-2.

References

1. Kyriakopoulou A. and Kalamboukis T. Text classification using clustering. In
Proceedings of the ECML-PKDD Discovery Challenge Workshop, 2006.

2. Pfahringer B. A semi-supervised spam mail detector. In Proceedings of the ECML-
PKDD Discovery Challenge Workshop, 2006.

3. Siefkes C., Assis F., Chhabra S., and Yerazunis W. Combining winnow and orthog-
onal sparse bigrams for incremental spam filtering. In Proceedings of the European
Conference on Principle and Practice of Knowledge Discovery in Databases, 2004.

4. Mavroeidis D., Chaidos K., Pirillos S., Christopoulos D., and Vazirgiannis M. Using
tri-training and support vector machines for addressing the ecml-pkdd 2006 discov-
ery challenge. In Proceedings of the ECML-PKDD Discovery Challenge Workshop,
2006.

5. Zhou D., O. Bousquet, Lal T., Weston J., and Schölkopf B. Learning with local
and global consistency. In Advances in Neural Information Processing Systems,
2003.

6. Cormack G. Harnessing unlabeled examples through iterative application of dy-
namic markov modeling. In Proceedings of the ECML-PKDD Discovery Challenge
Workshop, 2006.

7. Hanley J. and McNeil B. A method of comparing the areas under receiver operating
characteristic curves derived from the same cases. Radiology, 148:839–843, 1983.

8. Junejo K., Yousaf M., and Karim A. A two-pass statistical approach for auto-
matic personalized spam filtering. In Proceedings of the ECML-PKDD Discovery
Challenge Workshop, 2006.

8

9. B. Klimt and Y. Yang. The Enron corpus: A new dataset for email classification
research. In Proceedings of the European Conference on Machine Learning, 2004.

10. Trogkanis N. and Paliouras G. TPN2: Using positive-only learning to deal with the
heterogeneity of labeled and unlabeled data. In Proceedings of the ECML-PKDD
Discovery Challenge Workshop, 2006.

11. Dan Steinberg and Mikhaylo Golovnya. Identifying spam with predictive models.
In Proceedings of the ECML-PKDD Discovery Challenge Workshop, 2006.

9

Harnessing Unlabeled Examples through

Iterative Application of Dynamic Markov

Modeling

Gordon V. Cormack

University of Waterloo, Waterloo, ON, N2L 3G1, Canada
gvcormac@uwaterloo.ca

cormack.uwaterloo.ca/cormack

Abstract. We describe the application of dynamic Markov modeling
– a sequential bit-wise prediction technique – to labeling email cor-
pora for the 2006 ECML/PKDD Discovery Challenge. Our technique
involves: (1) converting the corpora’s bag-of-words representation to a
sequence of bits; (2) using logistic regression on the training data to
induce an initial maximum likelihood classifier; (2) combining all test
sets into one; (3) ordering the combined set by decreasing magnitude of
the log-likelihood ratio; (4) iteratively applying dynamic Markov model-
ing (DMC) to compute successive log-likelihood estimates; (5) averaging
successive estimates to form an overall estimate; (6) partitioning the
combined estimates into separate results for each test set. Post-hoc ex-
periments showed that: (a) the iterative process improved on the initial
classifier in almost all cases; (b) treating each test set separately yielded
nearly indistinguishable results.

1 Dynamic Markov Modeling

Recently we have shown that sequential adaptive data compression methods
work well for classifying email messages into spam and non-spam [1, 2]. Our ap-
proach uses the DMC data compression model [3] to estimate the conditional
likelihood of each successive bit in a message, under two separate prior assump-
tions: that the message is spam and that the message is non-spam. The log of the
ratio of these two likelihoods is computed and the message is classified as spam
if the average of these values is positive; otherwise the message is classified as
non-spam. The average log-likelihood-ratio itself is used as the decision function

value required by the 2006 ECML/PKDD Discovery Challenge[4].
The DMC model is a finite state machine with a binary label and a fre-

quency count on each edge. As the message is processed – one bit at a time
from left-to-right – the prior probability distribution for each bit is estimated
using the ratio of the frequencies of the edges leaving the current state. Then
the model is updated to take into account the bit’s observed value. The update
has three phases: first, the frequency of the edge labeled with the observed value
is incremented; second, the target of this edge may be cloned ; third, the edge is

10

2

Fig. 1. DMC Cloning

followed to yield a new current state. Consider figure 1. The current state is A
and the next bit has the value 1. The prior probability for this value is estimated
to be 2

3
. Because B has been visited previously by this edge and also by some

other edge,1 it is cloned, resulting a new state B’ to which the current edge is
redirected. The outgoing edge frequencies of B and B’ are divided in proportion
to the number of times each has been visited (3:1 in this example). Finally the
edge is followed resulting in a new current state of B’.

The precise criteria for cloning are as follows. Let f1 be the frequency count
(prior to incrementing) of the edge used to reach B. Let f2 be the sum of the
frequency counts of the edges leaving B. Cloning takes place if f1 > t1 and
f2 − f1 > t2 for two arbitrary threshold parameters t1 and t2. f1 is the number
of times that B has been visited within the current context; f2 is the number
of times it has been visited from other contexts. We used t1 = t2 = 2, default
values which were known to work well in other applications.

To classify messages, we construct two DMC models – one for spam and one
for non-spam. For each message in turn, we twice apply the adaptive process
detailed above – once using the spam model and once using the non-spam model
– to compute the likelihood of the message for each class. After each message is
classified, updates to the model corresponding to the incorrect class (as deter-
mined by the label) are discarded, whereas updates to the model corresponding
to the correct class are preserved.

The DMC model continuously grows, using more context for predicting com-
mon bit sequences. It is thus sensitive to bit, character, and word frequencies,
as well as intra- and inter-word patterns as well as punctuation and formatting.
Also, since the model is dynamic, it is sensitive to inter-message patterns and the
order in which training examples are presented to it. These sensitivities appear
to be advantageous in classifying real sequences of email messages.

It is not obvious that the DMC model should be applicable to the vector-space
representation of messages in the ECML/PKDD Challenge. This representation
discards lexical and formatting information, the order of words, and the order of
messages in the test and training sets. Only the frequency of word occurrences is
explicitly preserved. We used this information to create a sequential rendering of

1 We know the total number of visits to B by summing the frequencies of its two
outgoing edges.

11

bickel
Rechteck

3

each message in the following manner: we represented each feature in the vector
space as a 16-bit2 integer. A feature occurring k times in a message was rendered
as k adjacent occurrences of the corresponding 16-bit integer. The renderings for
all features were concatenated to render the message. This representation aptly
captures word frequencies, but not intra- or inter-word patterns3.

Experiments with the tuning data showed that the DMC model classified
the training data very well, and classified the test data fairly well, but with
high sensitivity to factors such as the order of the training data. Based on these
experiments, we chose a hybrid approach, using logistic regression to build an
initial classifier from the labeled training data, followed by several iterations of
DMC to harness the unlabeled test data.

2 Iterative Classification

We applied Goodman’s adaptive logistic regression implementation [5] to the
training and test messages to yield initial log-likelihood-ratio estimates for each
of the test messages. Based on these estimates we computed tentative labels for
the test messages: those with a positive log-likelihood ratio were labeled as spam;
the rest as non-spam.

A sequence of labeled messages was created by concatenating

– the training messages and labels, in the order given
– the test messages, labeled as described above, in decreasing order by the

magnitude of the log-likelihood-ratio estimate (i.e. by diminishing confidence
in the label).

Our DMC classifier was applied on-line to this sequence, classifying each mes-
sage before training on its label, to yield a new sequence of log-likelihood-ratio
estimates. A new sequence of labeled messages was created from these estimates
as described above, and the process repeated five times.

Finally, the six log-likelihood-ratio estimates for each message (initial plus
five iterations of DMC) were averaged to yield the final classifier output.

In summary, we use the output from one stage of classification to synthetically
label training examples for the next. Since the training examples are ordered
by confidence, we have reason to believe that early examples are likely to be
correctly labeled, so that the adaptive DMC model will grow to include patterns
from correctly classified messages that may not be present in the initial training

2 There are fewer than 216 distinct features in the ECML/PKDD Challenge data,
but they are numbered discontiguously resulting in values greater than 216. We
renumbered the features – preserving the original order but eliminating unused values
– to achieve a 16-bit representation.

3 We note that the feature numbers were assigned by ECML in order of first occur-
rence. We expect if two common features frequently occur adjacent, there is a good
chance that their first occurrences are adjacent. Therefore, some small reflection of
the inter-word patterns may be preserved in our rendering.

12

bickel
Rechteck

4

data. Similarly, by combining together the separate tests, we have reason to
believe that the model may grow to incorporate other features representative
of spam or non-spam. Finally, prior experience gives us reason to believe that
combining classifiers – even combining weak and strong classifiers – by summing
log-odds-ratios would provide accurate and reliable results [6].

3 Results

Test Set Initial LR Combined mailboxes Separate mailboxes

task a u00 15.1 19.6 19.7
task a u01 12.4 11.7 11.2
task a u02 7.1 2.6 1.3
all task a 12.0 11.4 10.9

task b u00 23.5 1.7 3.3
task b u01 21.3 2.5 2.9
task b u02 7.1 3.2 2.1
task b u03 3.8 1.2 1.0
task b u04 11.3 3.2 2.9
task b u05 12.0 10.1 11.9
task b u06 20.2 11.7 4.3
task b u07 9.5 3.6 4.3
task b u08 12.4 2.4 1.5
task b u09 16.6 4.0 4.7
task b u10 11.5 6.2 7.1
task b u11 9.5 5.3 5.1
task b u12 17.4 11.1 12.8
task b u13 12.7 7.4 8.0
task b u14 18.9 6.7 7.3
all task b 13.7 5.2 5.1

Table 1. Per-mailbox error rates [1-AUC (%)]

Test Set Initial LR DMC1 DMC2 DMC3 DMC4 DMC5 Final average
all task a 12.0 17.9 13.6 11.0 9.7 9.2 10.9
all task b 13.7 10.0 6.1 5.8 5.5 5.6 5.1

Table 2. Iterative results – separate mailboxes [1-AUC (%)]

Table 1 shows the area above the ROC curve (as a percentage) achieved by
the initial and final classifier for each mailbox (test set) and for all mailboxes
combined in Task A and Task B. The first column is the score achieved by the
LR classifier using only the labeled training data. The second column is the end

13

bickel
Rechteck

5

Test Set Initial SVM DMC1 DMC2 DMC3 DMC4 DMC5 Final average
all task a 14.2 11.4 8.5 7.1 6.5 6.2 7.0
all task b 49.3 42.4 37.5 38.0 38.2 38.3 24.8

Table 3. SVM initial classifier – separate mailboxes [1-AUC (%)]

result of the iterative process applied to the combined mailboxes. This column
corresponds to our official results. The third column shows the result of iterating
on each mailbox separately.

We see that in all but one mailbox the iterative process reduced the error rate,
in most cases substantially. Unfortunately, the one case was the first mailbox of
Task A, with the net result being that the iterative process made an insubstan-
tial improvement overall for this task. For Task B, the iterative process worked
remarkably well. For all mailboxes the result was improved; for most, substan-
tially so. The overall effect was that the result on Task B was significantly better
than any other.

Table 2 illustrates the convergence of the iterative process. In general, clas-
sifier error diminishes with the number of iterations but appears to be near
asymptote after the fifth iteration. The final combined score is in general a small
further improvement.

We investigated several alternatives in an effort to determine why our method
worked well for Task B and not for Task A. We first repeated the iterative process
separately for each of the eighteen mailboxes in both tasks. The results – seen
in column 3 of table 1 – are nearly indistinguishable from and certainly not
significantly different from those derived from combined mailboxes. We know
from data compression experiments that DMC is particularly good at modeling
heterogeneous data, because it simply “grows” distinct states to handle each
category. Therefore we should perhaps not have been as surprised as we were to
observe that combining mailboxes has no substantive effect.

We investigated the use of a different initial classifier, namely SV M light with
binary features and default parameters. As shown in figure 3 the results were
mixed. For Task A, the initial SVM classification was inferior to that yielded by
logistic regression, but our iterative process was much better able to improve on
it, yielding a dramatic overall improvement. For Task B, the initial SVM classi-
fication was very poor, presumably due to over-fitting. The iterative technique
was able to improve on it considerably, but the overall result is still not good.

We further investigated the effect of the size of the training and test sets on
the result. Using a small sample of the Task A training data had an insubstantial
effect – the results were very slightly worse. Similarly, results on a sample of the
Task A mailbox were insubstantially different from those on the whole.

4 Conclusion

Our technique for iterative labeling using Dynamic Markov Modeling makes
effective use of unlabeled training data to improve on an initial discriminative

14

bickel
Rechteck

6

classifier derived from labeled data. The technique provided an improvement
for seventeen of eighteen mailboxes consisting of unlabeled messages, whether
applied to the mailboxes separately or as a common set. For the majority of
mailboxes, the improvement was substantial, in some cases reducing the area
above the ROC curve by a factor of ten.

We are unable to find a reason for discrepancy between Task A and Task B
results. In our pilot experiments the method performed as well on Task A as on
Task B. We tried adjusting the training and test set sizes, and the number of
combined test sets. We can only conclude that the data used in at least one of
the Task A mailboxes is materially different from the rest; perhaps examining
the unobfuscated data would yield insight as to the nature of the difference.

References

1. Bratko, A., Cormack, G.V., Filipic, B., Lynam, T.R., Zupan, B.: Spam filtering
using statistical data compression. Journal of Machine Learning Research (in
press; see http://plg.uwaterloo.ca/˜gvcormac/jmlr.pdf)

2. Cormack, G.V., Bratko, A.: Batch and on-line spam filter evaluation. In: CEAS
2006 – Third Conference on Email and Anti-Spam, Mountain View (2006)

3. Cormack, G.V., Horspool, R.N.S.: Data compression using dynamic Markov mod-
elling. The Computer Journal 30(6) (1987) 541–550

4. Bickel, S.: ECML/PKDD 2006 Discovery Challenge
http://www.ecmlpkdd2006.org/challenge.html (2006)

5. Goodman, J., Yih, W.T.: Online discriminative spam filter training. In: The Third
Conference on Email and Anti-Spam, Mountain View, CA (2006)

6. Lynam, T.R., Cormack, G.V.: On-line spam filter fusion. In: 29th ACM SIGIR
Conference on Research and Development on Information Retrieval, Seattle (2006)

15

bickel
Rechteck

A Two-Pass Statistical Approach for Automatic
Personalized Spam Filtering

Khurum Nazir Junejo, Mirza Muhammad Yousaf, and Asim Karim

Dept. of Computer Science, Lahore University of Management Sciences
Lahore, Pakistan

{junejo, 05030019, akarim}@lums.edu.pk

Abstract. Typically, spam filters are built on the assumption that the
characteristics of e-mails in the training dataset is identical to those in
individual users’ inboxes on which it will be applied. This assumption is
oftentimes incorrect leading to poor performance of the filter. A personalized
spam filter is built by taking into account the characteristics of e-mails in
individual users’ inboxes. We present an automatic approach for personalized
spam filtering that does not require users’ feedback. The proposed algorithm
builds a statistical model of spam and non-spam words from the labeled training
dataset and then updates it in two passes over the unlabeled individual user’s
inbox. The personalization of the model leads to improved filtering
performance. We perform extensive experimentation and report results using
several performance measures with a discussion on tuning the two parameters
of the algorithm.

1 Introduction

E-mail is an indispensable communication method for most computer users and it
plays an essential role in the functioning of most businesses. Globalization has
resulted in an exponential increase in the volume of e-mails. Unfortunately, a large
chunk of it is in the form of spam or unsolicited e-mails. Last year 40% of all e-mails
were spam, which totals up to 12.4 billion messages per day and about 176 messages
per user per day [1]. In 2002, spam cost non-corporate Internet users 255 million
dollars and resulted in a loss of 8.9 billion dollars to U.S. corporations alone [1].
Spam messages not only waste users’ time and money but are also harmful for their
computer’s security. Commtouch, a security service provider, reported 19 new e-mail
borne viruses in the month of January 2006 [2]. E-mail users spend an increasing
amount of time reading messages and deciding whether they are spam or non-spam
and categorizing them into folders. Some e-mail clients require users to label their
received messages for training local (or personalized server-based) spam filters. E-
mail service providers would like to relieve users from this burden by installing
server-based spam filters that can classify e-mails as spam automatically and
accurately without user feedback.

Typically, server-based spam filters are trained on general training datasets and
then applied to individual users’ inboxes. However, the characteristics of individual

16

users’ inboxes are usually not identical to that of the general e-mail corpus used for
training the spam filter, resulting in poor filtering performance. Furthermore, the
characteristics of spam e-mails evolve with time making non-adaptive filters less
robust to change. Thus, there is a need for personalized spam filters that learn from
general training datasets and adapt to the characteristics of individual users’ inboxes.
This adaptation must be done without asking the users to label their e-mails. Earlier
works on personalized spam filtering utilize users input. This approach is clearly not
convenient for the e-mail user.

In this paper, we present a statistical approach for classifying individual users’ e-
mails in accordance with the users’ e-mails characteristics without requiring their
input. The algorithm learns from a general corpus of labeled e-mails in a single pass
over them and then updates this learned model in two passes over the individual
users’ unlabeled e-mails. This approach allows automatic specialization of the general
model to the underlying distribution of e-mails in individual users’ inboxes. The
statistical model is built from the tokens in the e-mail body and their frequencies. Our
initial implementation of the algorithm won the performance award at the Discovery
Challenge held in conjunction with ECML-PKDD [3]. This paper presents the
detailed results of our implementations using several performance metrics and with
varying parameters of the algorithm.

The rest of the paper is organized as follows. In section 2, we provide a brief
review of content-based spam filters with specific focus on personalized spam
filtering. Section 3 describes our algorithm for automatic personalized spam filtering.
Section 4 describes the experiments and their results, and a discussion of the results
with specific focus on parameter tuning is given in section 5. We conclude in section
6.

2 Personalized Content-based Spam Filtering

Many approaches are used in practice to control the menace of spam including global
and local blacklists, global and local whitelists, IP blocking, legislation, and content-
based filtering. Content-based filters employ machine learning techniques to learn to
predict spam e-mails given a corpus of training e-mails. Such filters are typically
deployed on the mail server that filters e-mails for all users of the server. Researchers
have developed content-based spam filters using Bayesian approaches [4-7], support
vector machines (SVM) [8, 9], nearest neighbor classifiers [10], rule-based classifiers
[11, 12], and case-based reasoning [13]. Among these techniques, Bayesian
approaches and SVMs have shown consistently good performances. Sahami et al.
present one of the earliest naïve Bayes classifier for the spam classification problem
[4]. Since then, numerous variations of the naïve Bayes classifier have been presented
for spam filtering [5-7]. The popular Mozilla’s e-mail client implements a naïve
Bayes classifier for spam filtering [6]. Support vector machine (SVM) is a powerful
supervised learning paradigm based on the structured risk minimization principle
from computational learning theory. SVMs exhibit good generalization capabilities
and have shown good spam classification performance. One of the first SVM for the

17

spam classification problem is presented in [8]. Since then, several extensions and
variations have been presented such as [9].

The majority of the supervised machine learning techniques presented for spam
filtering assume that e-mails are drawn independently from a given distribution. That
is, the statistical distribution of e-mails in the training dataset is identical to that of the
individual user’s e-mails on which the trained filter will be applied. This assumption,
however, is usually incorrect in practice; the training dataset is typically derived from
multiple Internet sources reflecting different distributions of spam and non-spam e-
mails that are different from that of the individual user’s e-mails. A personalized
spam filter is capable of adapting to the distribution of e-mails of each individual user.
Previous works on personalized spam filtering have relied upon user feedback in the
form of e-mail labels from each individual user [14, 15]. This strategy burdens the e-
mail user with the additional task of aiding the adaptation of the spam filter. Recently,
the problem of automatic personalized spam filtering is investigated by Bickel and
Scheffer [16]. They present a nonparametric hierarchical Bayesian model that
generalizes across several users’ e-mails by minimizing a loss function. Their
experiments indicate performance improvements over classifiers developed by
assuming independent and identically distributed data.

We present a simple approach for automatic personalized spam filtering that does
not require users’ feedback. The approach is based on a statistical model of spam and
non-spam words in e-mails similar to that developed in Bayesian approaches.
However, unlike many Bayesian approaches presented in the literature, we specialize
the model to reflect the distributions of e-mails in individual users’ inboxes.

3 Our Algorithm

Our personalized spam filtering algorithm consists of two phases of processing. In the
first phase, called the training phase, the algorithm learns a statistical model of spam
and non-spam words from the training dataset in a single pass over the training
dataset. The second phase, called the specialization phase, consists of two passes over
the user’s inbox (evaluation dataset). In the first pass, the statistical model developed
in the training phase is used to label the e-mails in the individual user’s inbox, and to
build an updated statistical model of the e-mails. In the second pass, the updated
statistical model is used to score and classify the e-mails in the individual user’s
inbox. The pseudo-code of our algorithm is given in Figure 1.

The statistical model is developed as follows: For each distinct word in the labeled
(i.e. training or after first pass of evaluation) dataset, count its occurrences in spam
and non-spam e-mails. Then, find the difference of these two values for each word.
Now choose the significant words by selecting only those words for which the
absolute difference between their spam and non-spam occurrences is greater than
some integer threshold t. This approach also categorizes the significant words as
either a spam word or a non-spam word. Each spam and non-spam word is assigned a
weight based on the ratio of its occurrences in the spam and non-spam e-mails. This
statistical model of words can then be used to classify a given e-mail by computing its
spam score and non-spam score values, where the spam score (non-spam score) of an

18

N = Total number of e-mails
NS = Number of spam e-mails
NN = Number of non-spam e-mails
D = number of words in dictionary (indexed from 1 to D)
CSi = count of word i in all spam e-mails
CNi = count of word i in all non-spam e-mails
ZS = set of significant spam words
ZN = set of significant non-spam words
t = threshold (e.g. CSi – CNi > t for it to be included in significant spam words)
s = scale factor
WSi = weight associated with significant spam word i
WNi = weight associated with significant non-spam word i
Ti = word i

Training Phase (Phase 1 on Training Dataset)
Build_Statistical_Model Procedure
-For each distinct word i in dataset find CSi and CNi
-Find the significant spam words ZS such that for each word Ti in ZS, CSi – CNi > t
-Find the significant non-spam words ZN such that for each word Ti in ZN, CNi – CSi >t
-For each significant spam and non-spam word find their weight as follows:

-WSi = [CSi / CNi] * [NN / NS], for all words in ZS
-WNi = [CNi / CSi] * [NN / NS], for all in ZN

Specialization Phase (Phase 2 on Evaluation Dataset)
First Pass
Score_Emails Procedure
-For each e-mail in the evaluation dataset
-spam_score = ∑ WSi (sum is over all significant spam words in e-mail)
- nonspam_score = ∑ WNi (sum is over all significant non-spam words in e-mail)
-If (s * spam_score > nonspam_score) then classify as spam and output spam_score;
other wise classify as non-spam and output -nonspam_score.

-Build statistical model concurrently with scoring e-mails (procedure is identical to
Build_Statistical_Model given above)

Second Pass
-Score and classify e-mails using the updated statistical model (procedure is identical to
the Score_Emails procedure given above)

Fig. 1. Our automatic personalized spam filtering algorithm

e-mail is the weighted sum of the words of that e-mail that belong to the significant
spam (non-spam) words set. If the spam score multiplied by a scaling factor (s) is
greater than the non-spam score then the e-mail is labeled as spam; otherwise, it is
labeled as non-spam. This statistical model is developed in the training phase as well

19

as in the first pass of the specialization phase. In the second pass of the specialization
phase, the final scores and classifications of e-mails are output.

The motivation for using significant words that have differences of their counts in
spam and non-spam e-mails greater than a specified threshold is: (1) a word that
occurs much more frequently in spam e-mails (or non-spam e-mails) will be a better
feature in distinguishing spam and non-spam e-mails than a word that occurs
frequently in the dataset but its occurrence within spam and non-spam e-mails is
almost similar, and (2) this approach greatly reduces the number of words that are of
interest, simplifying the model and its computation. The scale factor is used to cater
for the fact that the number of non-spam words, and their weighted sum in a given e-
mail, is usually greater than the number of spam words and their weighted sum.

The purpose of the weighting scheme for the significant words is to give an
advantage to words for which either the spam count or the non-spam count is
proportionally greater than the other. For example, if the word with ID ‘10’ has spam
and non-spam counts of 0 and 50, respectively, and the word with ID ‘11’ has spam
and non-spam counts of 950 and 1000, respectively, then even though their difference
is the same (50) the word with ID ‘10’ gives more information regarding the
classification of the e-mail than word with ID ‘11’.

The specialization phase adapts the general statistical model to the characteristics
of the individual user’s inbox. The model developed from the training phase is used
for the initial classification of the user’s e-mails. Furthermore, the statistical model is
updated to incorporate the characteristics of the user’s inbox. This updated model is
then used to finally score and classify the e-mails in the user’s inbox.

4 Experiments

In this section, we present the results of our experimental evaluation of the automatic
personalized spam filtering algorithm. The algorithm is implemented in Java. The
code uses special built-in data structures of Java such as Hash Maps that provide an
efficient way of retrieving word objects by avoiding the cost of searching through an
array list of word IDs.

4.1 Datasets

We use the datasets available from the ECML-PKDD Discovery Challenge website
[3]. The training dataset is a general corpus containing 4000 e-mails collected from
several users’ inboxes. The evaluation datasets consist of three different users’
inboxes each containing 2500 e-mails. These evaluation datasets are identified as
Eval-00, Eval-01, and Eval-02. In addition to these datasets, a training and a test
(labeled evaluation) dataset containing 4000 and 2500 e-mails, respectively, is
provided for parameter tuning. The ratio of spam and non-spam e-mails in all the
datasets is 50-50. The distribution of e-mails in the training corpus which is a
combined source of training data is different from the distributions of the e-mails
received by individual users. An additional evaluation dataset is created from the

20

Table 1. Characteristics of datasets

above datasets. Dataset Eval-Combined is the collection of e-mails in datasets Eval-
00, Eval-01, and Eval-02.

Each e-mail in the datasets is represented by a word (term) frequency vector. Each
word in an e-mail is identified by an ID and its frequency count in the e-mail. An
additional attribute identifies the label of the e-mail as either spam or non-spam.

4.2 Evaluation Criteria

We evaluate our algorithm using the following performance measures:
1. True positive rate (TP): fraction of spam e-mails correctly classified as spam
2. False positive rate (FP): fraction of non-spam e-mails incorrectly classified as

spam
3. Accuracy: fraction of all e-mails that are correctly classified
4. Precision: TP / (TP + FP)
5. Recall: TP / (TP + FN), where false negative rate (FN) is the fraction of spam e-

mails that are incorrectly classified as non-spam
6. AUC: area under the receiver operating characteristics (ROC) curve

The first five measures are calculated by taking zero as the discriminating
threshold in the scores output by a given filter. The AUC is computed from the ROC
generated by sweeping through all possible discriminating thresholds in the scores
output by a given filter. The AUC is considered to be a better measure of the overall
performance of a filter [17].

4.3 Results

We ran our algorithm by iterating over several values of the threshold (t) and scale
factor (s) parameters to find the parameter combination that produces the best
performance. The parameters that yield the highest AUC value on the tuning datasets
are t = 8 and s = 13. With these parameters, the performance of our algorithm on the
evaluation datasets (users’ inboxes) is given in Table 2. The average AUC value for
these 3 inboxes is 0.9875. This value is significantly better than 0.9539 obtained by
the filter submitted for the Discovery Challenge. The submitted filter used the

 Distinct Words Total Words

Training Corpus 41675 2761246
Eval-00 26580 842998
Eval-01 27523 843634
Eval-02 20227 494536
Eval-Combined 39962 2181168
Tune-Training 39967 2915199
Tune-Test 22991 1197283

21

Table 2. Performance results of our algorithm with parameters t = 8 and s = 13 tuned on the
tuning datasets

parameters t = 400 and s = 8. These parameters were selected after a few iterations
over the tuning datasets. Furthermore, at that time we preferred a large value for t to
keep the size of the significant words set small.

We have now experimented with hundreds of parameter combinations by tuning
them on the individual evaluation datasets. The performance results of some selected
parameter combinations are given in Table 3. The highest AUC value (the ‘optimal’
filter) for each evaluation dataset is highlighted. It is seen that whenever the AUC
value is the highest the corresponding accuracy is also the highest. The filter with
threshold value of 400 is the one that was submitted to the Discovery Challenge. In
general, the AUC value increases slightly as the threshold increases from zero and
then starts decreasing with further increase in the threshold. This is because as the
threshold increases the number of significant words decreases to an ‘optimal’ feature
set and then, with further increase in the threshold, the significant words become less
discriminatory. For the three evaluation datasets we suggest a threshold of around 10
as this produces a reduction of the total words by more than half at the expense of
about 0.3% loss in accuracy. The tradeoff between the accuracy and threshold is
discussed in more detail in Section 5.

The key part of our algorithm is the specialization phase in which the model
learned from the general corpus is updated in accordance to the characteristics of each
individual user’s inbox. The second pass of this phase is the step that significantly
differentiates our algorithm from the conventional techniques that assume that e-mails
are drawn independently from a given distribution. To highlight this personalization
characteristic of our algorithm, we ran our algorithm with and without the second pass
of the specialization phase. The results of this experiment are shown in Table 4 for the
‘optimal’ filters highlighted in Table 3. It is seen that the second pass produces a
significant improvement in the AUC value because now the model is specialized for
each user’s inbox. Similarly, the second pass results in an increase of at least 10% in
the accuracy on all evaluation datasets, which is a significant amount.

4.4 Results of Some Variations of the Algorithm

We also experiment with some variations of the algorithm given in Figure 1. In the
first variation, instead of maintaining the frequencies of words in e-mails we use only
their occurrences (i.e. count 1 if a word occurs in an e-mail and 0 otherwise).

AUC Precision
(%)

Recall
(%)

Accuracy
(%)

FP (%) TP (%)

Eval-00 0.9832 85.53 98.88 91.08 16.72 98.88
Eval-01 0.9896 91.87 98.56 94.92 7.76 98.08
Eval-02 0.9898 98.68 90.24 94.52 1.2 90.24
Average 0.9875 92.02 95.89 93.50 8.56 95.73

22

Table 3. Performance results of our algorithm with various parameter combinations. Average
AUC of the highlighted rows is 0.9902. Average AUC of the submitted filter (with t = 400) is
0.9539

Surprisingly, this variation resulted in a significant increase in the AUC value for the
datasets as shown in Table 5. It is seen from Table 5 that the ‘optimal’ average AUC
value for this variation is 0.9932 as compared to 0.9902 for the original algorithm. In
particular, the increase in the AUC value of dataset Eval-00 is quite substantial.

To compare the performance of a single classifier/filter for all users to that of
personalized filters for each individual user, we experiment with a second variation of
the algorithm. In this variation, we combine the 3 evaluation datasets into a single
dataset Eval-Combined for which a single filter is built. This results in an increase in
the AUC value. The average AUC value of the three evaluation datasets using the
frequency counts comes out to be 0.9902 while the AUC value with the combined
dataset comes out to be 0.9937. This improvement can be attributable to: (1) the
larger size of the combined evaluation dataset, and (2) the fact that the general corpus
is a collection of individual users’ inboxes and thus resembles the dataset Eval-
Combined. Table 5 also shows the performance of the filter based on word
occurrences when applied to dataset Eval-Combined. This variation outperformed the
rest with an AUC value of 0.9942. Thus, the best AUC value is obtained if we merge
the evaluation datasets and use word occurrences rather frequencies for building the
statistical model.

5 Parameter Tuning

Our algorithm uses two parameters: threshold (t) and scale factor (s). We ran
hundreds of experiments with varying values for these parameters. The performance

Threshold
(t)

Scale
Factor

(s)

AUC Precision
(%)

Recall
(%)

Accuracy
(%)

FP (%) TP (%)

Eval-00 0 9 0.9844 97.42 94 95.76 2.48 94
Eval-00 10 9.5 0.9845 96.80 94.64 95.76 3.12 94.64
Eval-00 11 9.5 0.9848 96.81 94.88 95.88 3.12 94.88
Eval-00 100 7.5 0.9816 95.55 91.2 93.44 4.24 91.12
Eval-00 400 8 0.955 86.94 93.2 89.6 14 93.2
Eval-01 0 11 0.993 94.96 96.56 95.72 5.12 96.56
Eval-01 4 11.5 0.993 94.76 97.04 95.84 5.36 2.96
Eval-01 10 11.5 0.9929 95.51 95.44 95.48 3.92 94.72
Eval-01 100 9 0.9821 95.60 90.48 93.16 4.16 90.48
Eval-01 400 8 0.9717 91.36 88.88 90.24 8.4 88.88
Eval-02 0 14.5 0.9924 97.02 96.56 96.8 2.96 96.56
Eval-02 2 16 0.9928 96.29 97.68 96.96 3.76 97.68
Eval-02 10 16.5 0.9918 96.19 97.12 96.64 3.84 97.12
Eval-02 100 14 0.9751 89.73 94.4 91.8 10.18 94.4
Eval-02 400 8 0.935 85.86 83.12 84.72 13.68 83.12

23

Table 4. Performance results of the algorithm after the first and second pass over the
evaluation dataset

After First Pass After Second Pass
AUC Precision

(%)
Recall

(%)
Accuracy

(%)
AUC Precision

(%)
Recall

(%)
Accuracy

(%)

Eval-00 0.9090 94.45 70.8 83.32 0.9848 96.81 94.88 95.88
Eval-01 0.9220 93.61 77.36 86.04 0.993 94.76 97.04 95.84
Eval-02 0.9346 89.38 82.88 86.52 0.9928 96.29 97.68 96.96
Average 0.9218 92.48 77.01 85.29 0.9902 95.95 96.53 96.22
Eval-
Combined

0.9283 93.10 77.01 56.96 0.9937 96.79 96.66 96.73

Table 5. Performance comparison of algorithm using word frequecies and occurrences

Based on Frequency Count Based on Occurrence Count

Eval-00 0.9848 0.9920
Eval-01 0.9930 0.9941
Eval-02 0.9928 0.9936
Average 0.9902 0.9932
Eval-Combined 0.9937 0.9942

spread is seen in the ROC curve for dataset Eval-00 shown in Figure 2. The purpose
of the threshold parameter is to find significant spam and non-spam words by filtering
out the words that are not discriminatory enough. We experiment with several
thresholds (t) to find the t that produces the highest accuracy and AUC value. For the
three datasets, the best values for t are 11, 4, and 2, respectively. Figure 3 shows the
variation of the threshold t with the number of significant words and the accuracy of
the filter. It is observed that for small values of t there is little change in the accuracy
of the filter, but the number of significant words in the model is greatly reduced. For
example, by increasing t from 10 to 20 does not increase the accuracy significantly,
but the number of significant words in the model is reduced by more than a factor of
2. This trade off between the number of significant words and the accuracy suggests a
value for t that lies between 10 and 20.

The scale factor (s) is used to counter the effect of greater weight of non-spam
words as compared to spam words in e-mails. For example, for dataset Eval-01, the
average weight of a spam word is 4.0726, the average weight of a non-spam word is
13.1045, the average number of spam words in spam e-mails is 5.7192, and the
average number of non-spam words in spam e-mails is 2.3296. Thus, for this dataset
the average spam score of spam e-mails is 4.0726*5.7192 = 23.32 and the average
non-spam score of spam e-mails is 13.1045*2.32 = 30.40, resulting in a large number
of miss classifications. The scale factor is used to counter this by increasing the spam
score by a factor s.

24

Fig. 2. ROC curve for dataset Eval-00

Based on the above observation, a reasonable way to estimate the scale factor for a

dataset for which the ratio of spam-to-non-spam e-mails is known is as follows: adjust
the scale factor until the ratio of spam-to-non-spam classification of the filter is equal
to the known ratio. This approach can be applied to each individual user’s inbox if the
ratio of spam-to-non-spam e-mails is known.

6 Conclusion

We present a simple statistical algorithm for automatic personalized spam filtering
that does not require users to provide feedback regarding the classifications of e-mails
in their inboxes. The algorithm builds a statistical model of words from a training
corpus and then adapts it to the distribution of words and e-mails in each individual
user’s inbox. Overall, the algorithm requires one pass over e-mails in the training
corpus and two-passes over e-mails in the individual user’s inbox. Our experiments
confirm the benefit of personalization with significant performance gains over a filter
that assumes that training and evaluation (users’ inboxes) datasets follow the same
distribution. We present extensive results of our algorithm including a discussion on
the estimation of its two parameters.

The problem of automatic personalized spam filtering has generated much interest
recently. It is a technically challenging problem that promises significant benefit to e-
mail users and e-mail service providers.

25

Fig. 3. Impact of threshold on accuracy and number of significant words

References

1. D. Evett: Spam statistics 2006. TopTenREVIEWS http://spam-filter-
review.toptenreviews.com/spam-statistics.html (2006)

2. Commtouch: January virus and spam statistics: 2006 starts with a bang. Commtouch Press
Release
http://www.commtouch.com/Site/News_Events/pr_content.asp?news_id=602&cat_id=1
(2006)

3. ECML-PKDD: Discovery challenge. http://www.ecmlpkdd2006.org/challenge.html
(2006)

4. M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz: A bayesian approach to filtering
junk E-mail. In Proc. of AAAI Workshop on Learning for Text Categorization. AAAI
Technical Report WS-98-05 (1998)

5. P. Graham: Better Bayesian filtering. In Proc. of 2003 Spam Conference
http://www.paulgraham.com/better.html (2003)

6. E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, and P. Stamatopoulos: Filtron:
a learning-based anti-spam filter. In Proc. 1st Conf. on Email and Anti-Spam (CEAS
2004) (2004)

7. A.K. Seewald: An evaluation of naive Bayes variants in content-based learning for spam
filtering. Kluwer Academic Publsihing (2005)

8. H. Drucker, D. Wu, and V.N. Vapnik: Support vector machine for spam categorization.
IEEE Transactions on Neural Networks 10(5) (1999) 1048–1054

9. A. Kolcz and J. Alspector: SVM-based filtering of e-mail spam with content-specific
misclassification costs. In Proc. of the TextDM'01 Workshop on Text Mining (2001)

26

http://spam-filter-review.toptenreviews.com/spam-statistics.html (2006
http://spam-filter-review.toptenreviews.com/spam-statistics.html (2006
http://www.ecmlpkdd2006.org/challenge.html

10. G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropoulos, and P.
Stamatopoulos: A memory-based approach to anti-spam filtering for mailing lists.
Information Retrieval, Springer 6(1) (2003) 49-73

11. W.W. Cohen: Learning rules that classify e-mail. In Proc. of 1996 AAAI Spring
Symposium in Information Access (1996)

12. E.C.J. Kay and E. McCreath: Automatic induction of rules for e-mail classification. In
Proc. of the Sixth Australasian Document Computing Symposium (2001) 13–20

13. S.J. Delany, P. Cunningham, and L. Coyle: An assessment of case-based reasoning for
spam filtering. Artificial Intelligence Review, Springer 24(3-4) (2005) 359-378

14. R. Segal. J. Crawford, J. Kephart, and B. Leiba: SpamGuru: an enterprise anti-spam
filtering system. In Proc. of Conference on Email and Anti-Spam (CEAS ’04) (2004)

15. A. Gray and M. Haahr: Personalised collaborative spam filtering. In Proc. of Conference
on Email and Anti-Spam (2004)

16. S. Bickel and T. Scheffer: Dirichlet-enhanced spam filtering based on biased samples. In
Proc. of the Workshop on Learning with Nonparametric Bayesian Methods (with
ICML’06) (2006)

17. C. Cortes and M. Mohri: AUC optimization vs. error rate minimization. Advances in
Neural Information Processing Systems, NIPS (2004)

27

Text Classification Using Clustering

Antonia Kyriakopoulou and Theodore Kalamboukis

Department of Informatics, Athens University of Economics and Business
76 Patission St., Athens, GR 104.34

{tonia, tzk}@aueb.gr

Abstract. This paper addresses the problem of learning to classify texts
by exploiting information derived from both training and testing sets. To
accomplish this, clustering is used as a complementary step to text classi-
fication, and is applied not only to the training set but also to the testing
set. This approach allows us to estimate the location of the testing ex-
amples and the structure of the whole dataset, which is not possible
for an inductive learner. The incorporation of the knowledge resulting
from clustering to the simple BOW representation of the texts is ex-
pected to boost the performance of a classifier. Experiments conducted
on tasks and datasets provided in the framework of the ECDL/PKDD
2006 Challenge Discovery on personalized spam filtering, demonstrate
the effectiveness of the proposed approach. The experiments show sub-
stantial improvements on classification performance especially for small
training sets.

1 Introduction

Text classification is one of the first applications of machine learning, that applies
to the general problem of supervised inductive learning: given a set of training
documents, classified to one or more predefined categories, learn to automati-
cally classify new documents. Automated text classification has been used in a
number of different applications: automatic indexing, content management, fil-
tering, and routing, word sense disambiguation, and Yahoo!-style search space
categorization [1, 20]. A plethora of techniques have been developed for text clas-
sification, including Nearest-Neighbours [29], Regression [30], Neural Networks
[28, 14], Naive Bayes [12], Decision Trees [27], and Support Vector Machines [26,
8]. In most cases, the classification algorithms require sufficient training data
in order to generalize well on unseen documents. However, the generalization
using labeled examples is an extremely costly and time-consuming activity. The
need for classifiers that can learn from small training samples is imperative.
This is an area of active research and several experiments have been conducted
to boost conventional classifiers’ performance, by combining supervised learning
with semi-supervised or unsupervised, using techniques such as co-training [5,
13], active learning [25, 19], and transductive SVMs [10].

In traditional supervised classification an inductive learner is first trained
on a training set, and then is called to classify a testing set, about which it

28

has no prior knowledge. An ideal situation would be for the classifier to have
information about the distribution of the testing examples before it classifies
them. This remark motivates the work included in this paper. In this vein, the
goal of this paper is to deal with the problem of learning from training sets
of different sizes, by exploiting information derived from clustering the whole
dataset (both training and testing examples), and embodied in it in the form of
meta-information.

Clustering has been used in the literature of text classification either as an
alternative approach to term selection for dimensionality reduction or as a tech-
nique to enhance the training set. In the second case, clustering is used to discover
a kind of “structure” in the training examples and expand the feature vectors
with new attributes extracted from clusters. Also, it is used to augment a small
number of labeled examples with unlabeled examples by propagating label in-
formation to the unlabeled data according to clustering results on both labeled
and unlabeled data. Several approaches of clustering have been proposed in these
areas.

In [2], class-distributional clustering [15] is applied as a feature selection
method in a text classification context using a Naive Bayes classifier. Words
are clustered into groups based on the distribution of class labels associated
with each word. In [21], the information bottleneck (IB) method [24] is used to
find word-clusters that preserve the information about the categories as much
as possible. These clusters are used to represent the documents in a new, low
dimensional feature space and a Naive Bayes classifier is applied. Accordingly,
[3, 4] also use the IB framework to generate a document representation in a word
cluster space instead of word space, where words are viewed as distributions over
document categories. [6, 7] propose an information-theoretic divisive algorithm
for word clustering and apply it to text classification. Classification is done
using word clusters instead of simple words for document representation. [22, 23]
adopt a more complicated approach, applying two-dimensional clustering to text
classification. They cluster the training examples in order to deal with problems
where the texts in a category are not generated from an identical probability
distribution, and also they cluster the words/features of these examples in order
to avoid the data sparseness problem. The evaluation is done using Naive Bayes
and SVM classifiers on Reuters-21578 corpus and shows a superiority of their
algorithm over class-distributional clustering and word clustering.

The idea of using clustering as a technique to enhance the training set is
pursued in many works too. In [16], an algorithm is described that uses un-
labeled data, independent from the testing set, to improve text classification
performance. The algorithm applies clustering to labeled and unlabeled data,
and introduces new features extracted from those clusters to the patterns in the
labeled and unlabeled data. They evaluate the method using SVM classifiers
on Reuters-21578, 20Newsgroups, and WebKB corpora, and find significant im-
provements in their classification performance. In [17], the technique presented
above is combined with co-training. The algorithm trains two predictors in par-
allel, with one predictor labeling the unlabeled data for training the other in the

29

next round. The predictors are SVMs, one trained using data from the original
feature space, and the other trained with new features that are derived from
clustering both labeled and unlabeled data. This new input feature space cre-
ates an alternative view of the data, which is used for co-training, using the
same supervised learning algorithm that is used for the original feature space.
The evaluation of the method using SVM classifiers on Reuters-21578, 20News-
groups, and WebKB corpora confirm previous findings. The clustering based text
classification (CBC) approach [31], adopts a different way of exploiting the un-
labeled data. According to this approach, labeled training data and unlabeled
data are first clustered. Some of the unlabeled data are then labeled based on
the clusters obtained, i.e. the labels of the labeled data are propagated to the
unlabeled data that are closest to the cluster centroids. Discriminative classifiers
are subsequently trained with the expanded labeled dataset. Their experimental
results on 20Newsgroups, Reuters-21578 and Open Directory Project (ODP),
demonstrated that CBC outperforms existing algorithms, such as TSVMs and
co-training, especially when the size of the labeled dataset is very small.

The works of [16, 31] could be considered most relevant ones to our approach.
However, they use clustering in order to create a better training set, without
looking into the testing set as we do.

In this article, an algorithm that combines supervised and unsupervised clas-
sification is proposed. In the unsupervised case, the aim is to extract a kind of
“structure” from a given sample of objects, or to rephrase it better to learn a
concise representation of these data. The reasoning behind this is that if some
structure exists in the objects, it is possible to take advantage of this information
and find a short description of the data. In our approach, given a classification
problem, the training and testing examples are both clustered before the classi-
fication step, in order to extract the “structure” of the whole dataset, exploiting
the dependence or association between index terms and documents. The struc-
ture extracted from the dataset is “translated” in such a way that each cluster
is represented by one representative. This concise representation of the whole
dataset is incorporated in the existing data representation; each object is as-
signed the corresponding cluster id using appropriate artificial meta-features. It
is expected that the use of prior knowledge about the nature of the testing set
will help in building a more efficient classifier for this set.

The paper is organized as follows. Sections 2 and 3 describe the proposed
algorithm. In section 4, the experimental settings, i.e. the datasets, the evaluation
metrics and the experimental results are presented. Finally, section 5 concludes
with a summary of the work and future research.

2 Classification with Clustering

In this section, we give the intuition of the proposed algorithm in order to un-
derstand how clustering prepares the ground for classification. The algorithm
consists of the following steps:

30

1. Clustering step: to cluster both the training and testing set.
2. Expansion step: to augment the dataset with meta-features originated from

the clustering step.
3. Classification step: to train a classifier with the expanded dataset.

Figure 1 gives an insight into our approach. The labeled examples of the
training set are denoted with + and − signs, while the unlabeled examples of
the testing set are denoted with dots.

A classifier trained with the given training examples will probably find hy-
perplane A instead of the desirable hyperplane B, as shown in Fig. 1(a). In Fig.
1(b), both datasets (training and testing) are clustered into two non-overlapping
clusters. In the ideal case, the two clusters contain the positive and negative ex-
amples of the whole data set respectively. Then, corresponding meta-features are
propagated to the existing feature vectors, and all feature vectors inside the same
cluster are augmented with the same meta-feature. The dataset is transformed
into a new coordinate system. Since feature vectors inside the same cluster are
augmented with the same attribute-value pair, these vectors are now closer to
one another resulting to an increase in the dataset’s density, illustrated in Fig.
1(b). Increasing the inter-cluster distance consequently leads to the maximal
margin hyperplane B, as shown in Fig. 1(c). In a way, the classifier is tuned
to the testing set and the classification efficiency is expected to improve. Intu-
itively, the classifier with the largest margin will give lower expected risk, i.e.
better generalization.

(a) Classification with the
original data

(b) Expanded dataset after
clustering

(c) Classification with the
new expanded dataset

Fig. 1. An insight into the algorithm proposed

3 The Algorithm

In this section, we present our algorithm in more details. Following the tradi-
tional IR approach, we consider a k -class categorization problem, (k = 1 in the

31

case of the spam filtering problem), with a labeled l -sample {(~x1, y1) , . . . , (~xl, yl)}
of feature vectors ~xi ∈ Rn, and corresponding labels yi ∈ {1, . . . , l}, and an unla-
beled m-sample

{
~x∗1, . . . , ~x∗m

}
of feature vectors, where m � l. In their original

representation – that given in the framework of the Challenge – the datasets
consist of feature vectors (documents) whose terms (features) are valued with
their term frequency, TF (wi, ~x), i.e. the number of times term wi occurs in the
document ~x. However, in our implementation the TFIDF model [18] is used,
defined by

W (wi) = TF (wi, ~x) ∗ IDF (wi) (1)

where

IDF (wi) = log2

(
|X|

DF (wi)

)
(2)

is the inverse document frequency IDF (wi) with |X| total number of documents
in the training set, and document frequency, DF (wi), the number of documents
that contain the term wi. All feature vectors are normalized to unit length. For
the classification step, the terms that appear only in the testing set but not in
the training set are discarded.

The CLUTOTM Clustering Toolkit [11] is used, and a divisive clustering
algorithm with repeated bisections is applied. In this method, the disired k-
way clustering solution is computed by performing a sequence of k− 1 repeated
bisections. The dataset is first clustered into two groups, then one of these groups
is selected and disected further. This process continuous until the desired k
number of clusters is found. During each step, the cluster is bisected so that the
resulting 2-way clustering solution optimizes the internal criterion function

max
k∑

i=1

√ ∑
~xv,~xu∈Si

sim(~xv, ~xu) (3)

where Si is the set of documents assigned to the ith cluster, and sim(~xv, ~xu) is
the similarity between documents ~xv and ~xu. The generated clusters are non-
overlapping.

After the clustering step, each cluster contributes one meta-feature to the
feature space of the training and testing sets: given the total n features that are
used in the representation of the l+m feature vectors, and the k clusters derived
from the clustering step, create meta-features xn+1, . . . , xn+k. A document ~x
that belongs to cluster Cj is characterized by the meta-feature xn+j . The weight
of that meta-feature is computed applying the TFIDF model to the clusters.
Considering that each document in the cluster contains this meta-feature, its
term frequency TF (xn+j , ~x) = 1 and its inverse document frequency is defined
accordingly

IDF (xn+j) = log2

(
|X|
|Cj |

)
(4)

32

Finally, on the classification step the SVMlight implementation of SVMs and
TSVMs is used [9, 10]. A binary classifier is constructed for each user’s expanded
dataset, a linear kernel is used and the weight C of the slack variables is set to
default.

The proposed algorithm is summarized in Table 1.

Table 1. The proposed algorithm.

Clustering step

Input: training examples (~x1, y1), . . . , (~xl, yl)

testing examples ~x∗
1, . . . , ~x∗

m

k = desired number of clusters
Use a clustering algorithm to cluster all examples

Output: k cluster ids

Expansion step

Input: training examples (~x1, y1), . . . , (~xl, yl)

testing examples ~x∗
1, . . . , ~x∗

m

k cluster ids
Create additional meta-features for the vectors of all the examples.
Each cluster corresponds to one new meta-feature.
Given the total n features that produce the l + m example vectors,
and the k clusters derived from the clustering step, create meta-features
xn+1, xn+2, . . . , xn+k. The values of these new features are defined by

W (xn+j) =

{
log2

(
|X|
|Cj |

)
if ~x ∈ Cj for j = 1, . . . , k

0 otherwise

}
Output: expanded training examples (~x′

1, y1), . . . , (~x′
l, yl)

expanded testing examples ~x∗
1

′
, . . . , ~x∗

m
′

Classification step

Input: expanded training and testing examples of previous step.
Train a SVM/TSVM classifier based on the expanded training examples.
Classify the expanded testing examples.

Output: predicted labels of the testing examples y∗
1 , . . . , y∗

m

A generalization of our algorithm includes the addition of more than one
meta-features for each cluster. In this case, if f is the desired number of meta-
features to be added per cluster, then an example ~x that belongs to cluster Cj is
expanded with meta-features xn+(j−1)∗f+1, . . . , xn+(j−1)∗f+f . Experiments that
have been conducted show that expanding an example with more than one meta-
features has a positive effect to classification. However, these experiments are
beyond the scope of this paper.

33

4 A Performance Study

4.1 Experiment Settings

The empirical evaluation is done in two tasks, created and published in the
framework of EMLC/PKDD 2006 Challenge Discovery1. The goal in both tasks
is to make a personalized spam filter for a single user’s inbox that correctly
classifies its emails as spam or non-spam. In Task A, each classifier is made using
the available training examples and each inbox separately, taking into account
the user’s inbox specific characteristics. In Task B, the learning algorithm is
supposed to generalize over the different users in such a way that data from the
other users may be utilized in order to enhance classification performance. In
our experiment, however, both tasks are used in the same way, that defined for
Task A. The reason for this is that we want to explore the effect of our technique
when different sizes of training samples are used; Task A contains 4.000 training
examples, whereas Task B only 100 training examples. The evaluation criterion
prescribed by the competition is the AUC value. AUC values are computed for
each user separately and average over all users.

4.2 Results and Further Discussion

To provide a baseline for comparison, results from the standard SVM and trans-
ductive SVM classifiers are also presented.

Preliminary results from experiments conducted on three widely used cor-
pora (Reuters, Ohsumed, and WebKB) have shown an increase of performance
of classification when the number of clusters is equal to the number of the pre-
defined classes. In traditional classification tasks it can be assumed that the
classes correspond to topics, and there is a one-to-one correspondence between
the topic and the class under which the data are classified. Moreover, the exam-
ples of a class are clustered together which is logical since they share the same
word distribution. So we can assume that there is a one-to-one correspondence
between classes, topics and clusters, and use this information to define the de-
sired number of clusters. In spam filtering we can’t make such safe assumptions.
Spam emails can deal with many different topics, there is a one-to-many corre-
spondence between the class spam and the topics of the examples that fall under
it. The obvious number of clusters to select is two: one cluster with the spam
emails and one cluster with the non-spam. But we loosen this assumption based
on the rationale that not all people consider an email as spam or non-spam. It is
suggested that spam emails should be similar in both the public domain emails of
the training set and the users’ inboxes (testing set), while the non-spam should
differentiate. According to this assumption, the number of clusters is chosen to
be equal to three: one cluster for the common spam emails, one cluster for the
common non-spam emails and one cluster for the rest.
1 The task specific number of emails and inboxes, and additional infor-

mation about the settings of the Challenge Discovery, can be found in
http://www.ecmlpkdd2006.org/challenge.html

34

Table 2 gives the results for Task A. The proposed method leads to an im-
provement in performance on all users, raising the average AUC by 6.6% when
the SVM classifier is used with clustering and by 3.2% when the TSVM classifier
is used accordingly.

Table 2. Average AUC for the users of Task A.

Standard Clustering Standard Clustering
Users SVM +SVM TSVM +TSVM

user00 84.72 93.26 89.44 95.25

user01 89.10 96.65 94.43 97.28

user02 94.70 96.58 98.92 99.40

Average AUC 89.51 95.50 94.26 97.31

The results on the Task B datasets in Table 3 show a 3.2% improvement
on AUC over the standard TSVM classifier. Due to the small number of the
training and testing examples for this task (100 and 400 examples respectively),
no SVMs were used in the classification step. In the last column of Table 3,
we present the best results obtained in terms of AUC after several runs of the
algorithm with various numbers of clusters and meta-features used. These results
are for demonstration purposes only and they were possible after the release of
the data with their true labels by the Challenge organizers. The numbers of
clusters, k, and meta-features, f, used in these experiments are mentioned in
the parentheses. The results reveal that there is still room for improvements in
performance, which is currently under investigation.

One limitation of our algorithm is that with the constant arrival of new
emails, the same procedure of clustering, meta-feature addition, and classifica-
tion, should be applied again for the whole dataset, a rather time consuming,
and computationally expensive process. A suggestion would be to use incremen-
tal clustering instead of the static clustering algorithm used now. Incremental
clustering is a method that deals with the problem of updating clusters without
frequently performing complete reclustering. This would be a more suitable way
for maintaining clusters in the typical, dynamic environment of spam filtering.

Another issue about our algorithm is its rather naive approach to clustering
that may not capture all the meta-information possible hidden in the dataset.
More sophisticated clustering methods have been proposed in the literature that
focus on incorporating prior knowledge into the clustering process; conceptual
clustering, topic-driven clustering [32], just to name a few. These methods are
based in the idea that it is possible to use explicitly available domain knowledge
to constrain or guide the clustering process. In our case, the class labels of the
training set can constitute the domain knowledge and be used as guidance to a
clustering algorithm.

Another issue that needs to be discussed is the representation of the extra
knowledge derived from clustering, i.e. the representation of the clusters. The

35

Table 3. Average AUC for the users of Task B.

Standard Clustering Clustering
Users TSVM +TSVM +TSVM (best)

user00 96.76 97.36 98.19 (k = 2, f = 12)

user01 91.75 96.67 98.50 (k = 5, f = 5)

user02 97.34 97.09 99.93 (k = 5, f = 5)

user03 97.11 99.09 99.73 (k = 5, f = 3)

user04 94.91 96.44 97.99 (k = 10, f = 5)

user05 82.09 95.74 97.31 (k = 3, f = 3)

user06 82.91 90.87 93.06 (k = 4, f = 5)

user07 98.19 97.65 99.24 (k = 3, f = 15)

user08 98.95 99.16 99.77 (k = 5, f = 1)

user09 98.18 96.85 99.25 (k = 2, f = 5)

user10 92.56 92.99 96.16 (k = 10, f = 15)

user11 92.19 94.73 96.73 (k = 4, f = 5)

user12 87.77 88.92 92.38 (k = 4, f = 15)

user13 92.32 90.14 97.53 (k = 4, f = 3)

user14 78.98 92.44 99.28 (k = 3, f = 15)

Average AUC 92.13 95.08 97.67

representation schemes where a cluster of points is represented by their centroid
or by a set of distant points in the cluster are the most popular ones. It appears
that a different cluster representation scheme and its readjustment to our model’s
terrain might reflect the structure of more complex datasets, in a more efficient
way. We hope that this can be further evaluated in future works.

5 Conclusions

This paper has introduced a new way to combine clustering with classification.
We presented experimental results on datasets given in the framework of the
ECML/PKDD Discovery Challenge 2006 on spam filtering. On all the collections
the clustering approach combined with a SVM/TSVM classifier outperformed
the standard SVM/TSVM classifier.

Possible extensions and improvements of our model include incremental clus-
tering, and semi-supervised clustering. Other issues that can be further re-
searched include the estimation and statistical basis of the optimum number
of clusters and meta-features to be used.

References

1. Aas, K., Eikvil, L.: Text Categorization: A Survey. (1999)
2. Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classifica-

tion. Proceedings of SIGIR98, 21st ACM International Conference on Research and

36

Development in Information Retrieval, Melbourne, AU, ACM Press, New York, US
(1998) 96103

3. Bekkerman, R., El-Yaniv, R., Tishby, N., Winter, Y.: On Feature Distributional
Clustering for Text Categorization. Proceedings of SIGIR01, 24th ACM Interna-
tional Conference on Research and Development in Information Retrieval, New Or-
leans, US, ACM Press, New York, US (2001) 146153

4. Bekkerman, R., El-Yaniv, R., Winter, Y.: Distributional Word Clusters vs. Words
for Text Categorization. Journal of Machine Learning Research 3 (2003) 1183-1208.

5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
Proceedings of the 11th Annual Conference on Computational Learning Theory,
(1998) 92-100, ACM Press, NY

6. Dhillon, I., Mallela, S., Kumar, R.: Enhanced word clustering for hierarchical text
classification. Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, (2002) 191-
200

7. Dhillon, I., Mallela, S., Kumar, R.: A Divisive Information-Theoretic Feature Clus-
tering Algorithm for Text Classification. Journal of Machine Learning Research 3
(2003) 1265-1287

8. Joachims, T.: Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. Proceedings of the 10th European Conference on Machine
Learning (ECML) (1998)

9. Joachims, T.: Making large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, B. Schlkopf and C. Burges and A. Smola (ed.),
MIT-Press, (1999)

10. Joachims, T.: Transductive inference for text classification using support vector
machines. Proceedings of 16th International Conference on Machine Learning. San
Francisco: Morgan Kaufmann (1999) 200-209

11. Karypis, G.: CLUTO a clustering toolkit. Technical Report 02-017,
Dept. of Computer Science, University of Minnesota (2002) Available at
http://www.cs.umn.edu/cluto.

12. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information
retrieval. Proceedings of ECML-98, 10th European Conference on Machine Learn-
ing, pages 415, Chemnitz, DE (1998)

13. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from la-
beled and unlabeled documents using EM. Machine Learning (1999) 1-34

14. Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a
usability case study for text categorization. Proceedings of SIGIR-97, 20th ACM
International Conference on Research and Development in Information Retrieval,
Philadelphia, US (1997) 6773

15. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. Proceed-
ings of the 31st Annual Meeting of the Association for Computational Linguistics
(1993) 183-190

16. Raskutti, B., Ferr, H., Kowalczyk, A.: Using unlabeled data for text classifica-
tion through addition of cluster parameters. Proceedings of the 19th International
Conference on Machine Learning ICML (2002)

17. Raskutti, B., Ferr, H., Kowalczyk, A.: Combining clustering and co-training to en-
hance text classification using unlabeled data. Proceedings of SIGKDD 02, Canada
(2002)

18. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. New York:
McGraw-Hill (1983)

37

19. Schohn, G., Cohn, D.: Less is More: Active Learning with Support Vector Ma-
chines. Proceedings of ICML-00, 17th International Conference on Machine Learn-
ing (2000)

20. Sebastiani, F.: A tutorial on automated text categorization. Proceedings of ASAI-
99, 1st Argentinian Symposium on Artificial Intelligence (1999) 7-35

21. Slonim, N., Tishby, N.: The power of word clustering for text classification. Pro-
ceedings of the European Colloquium on IR Research, ECIR (2001)

22. Takamura, H., Matsumoto, Y.: Two-dimensional Clustering for Text Categoriza-
tion. Proceedings of the Sixth Conference on Natural Language Learning (CoNLL-
2002), Taipei, Taiwan, (2002) 29-35

23. Takamura, H.: Clustering approaches to text categorization. Doctor’s thesis (2003)
24. Tishby, N., Pereira, F.C., Bialek, W.: The Information Bottleneck Method. Pro-

ceedings of the 37th Annual Allerton Conference on Communication, Control and
Computing (1999)

25. Tong, S., Koller, D.: Support Vector Machine Active Learning with Applications
to Text Classification. Proceedings of ICML-00, 17th International Conference on
Machine Learning (2000)

26. Vapnik, V.: The nature of statistical learning theory. Springer, NY (1995)
27. Weiss, S.M., Apte, C., Damerau, F.J., Johnson, D., Oles, F.J., Goetz, T., Hampp,

T.: Maximizing text-mining performance. Intelligent Information Retrieval, IEEE
(1999)

28. Wiener, E., Pedersen, J.O., Weigend, A.S.: A neural network approach to topic
spotting. Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis
and Information Retrieval, Las Vegas, US (1995) 317332

29. Yang, Y.: Expert network: an effective and efficient learning from human decisions
in text categorization and retrieval. Proceedings of SIGIR-94, 17th ACM Interna-
tional Conference on Research and Development in Information Retrieval, Dublin,
IE (1994) 13-22

30. Yang, Y., Chute, C.G.: An example-based mapping method for text categorization
and retrieval. ACM Transactions of Information Systems, 12(3) (1994) 252-277

31. Zeng, H.J., Wang, X.H., Chen, Z., Lu, H., Ma, W.Y.: CBC: Clustering based
text classification requiring minimal labeled data. Proceedings of the 3rd IEEE
International Conference on Data Mining, Melbourne, Florida, USA (2003)

32. Zhao, Y., Karypis, G.: Topic-driven Clustering for Document Datasets. SIAM Data
Mining Conference (2005)

38

Using Tri-Training and Support Vector Machines for
addressing the ECML-PKDD 2006 Discovery Challenge

Dimitrios Mavroeidis, Konstantinos Chaidos, Stefanos Pirillos, Dimosthenis
Christopoulos and Michalis Vazirgiannis

Department of Informatics, Athens University of Economics and Business, Greece

Abstract. In this paper we present and analyze the methodological approach we
have used for addressing the ECML - PKDD Discovery Challenge 2006. The
Challenge was concerned with the identification of individual user’s spam emails
based on a centrally collected training set. The task descriptions of the discovery
challenge indicated that we should deviate from the classical supervised clas-
sification paradigm and attempt to utilize semi-supervised and transductive ap-
proaches. The format of the training data (bag-of-words providing only word
IDs), did not allow either for the use of Natural Language Processing (NLP) ap-
proaches, or for the use of standard spam-recognition strategies. The submitted
model, which achieved 5th place on Task A of the challenge, was derived by Tri-
Training, a recent development in Semi-supervised algorithms research. Given
a standard classifier, Tri-Training initially uses bagging to produce three diverse
training datasets-classifiers, which are used for classifying the unlabeled data and
incorporating them into the training set in a theoretically sound way. The classi-
fier we have used within Tri-Training was Support Vector Machines (SVM) and
more precisely the Sequential Minimal Optimization (SMO) implementation of
WEKA. Moreover, we have used feature normalization and logistic regression
models to produce continuous outputs. Apart from a detailed description and a
discussion of the submitted model, this paper contains an extensive empirical
evaluation of two popular semi-supervised classification algorithms: Transduc-
tive Support Vector Machines (TSVM) and Tri-Training.

1 Introduction

The ECML-PKDD discovery challenge 2006, was concerned with the construction of
a spam recognition filter, based on previously classified emails. The organizers consid-
ered the spam training set to be collected centrally, by server based spam filters that can
construct a labeled spam/non-spam training set using publicly available sources and
spam traps. Although, the centralized collection of the labeled training set presents sev-
eral advantages, it is probable that the distribution of the server - collected training set is
different than the distribution of the emails received by individual users. This raises the
need of deviating from the classical supervised classification paradigm where the goal
of classification algorithm is to minimize the expected error over instances taken from
the same distribution as the training set, and utilize semi-supervised [1] or transductive
[2] approaches that take into account the distribution of the test set (individual user’s
inboxes), where predictions should be made.

39

Semi-supervised algorithms take into account both labeled and unlabeled instances
and attempt to find a balance between generalization (using the labeled examples) and
adaptation (using the unlabeled examples) to construct a model that generalizes well on
the whole space of labeled and unlabeled data. A slightly different research paradigm,
that is related to semi-supervised learning is presented by transductive learning. The
transductive paradigm considers a set of labeled training data and a set of unlabeled
test data, and the goal is to perform predictions only on the test data (and not on the
whole space of training and test data). Research on semi-supervised algorithms has
been receiving increasing attention, and several algorithms have been proposed (i.e.
Transductive Support Vector Machines (TSVMs) [3], Tri-Training [4], Spectral Graph
Transduction [5]). The Discovery Challenge presents an excellent opportunity for eval-
uating these algorithms empirically and for exploring possible strategies for tuning their
parameters effectively.

In the context of Task A of the Discovery Challenge we have conducted extensive
experiments using TSVMs and Tri-Training. The submitted model that yielded the best
result on the tuning data and achieved 5 th place in Task A of the contest, was derived
by the Tri-Training algorithm. Given a classifier and a set of labeled and unlabeled
data, Tri-Training initially constructs three diverse datasets-classifiers using bagging
[6]. Subsequently, it uses an incremental procedure, where in each round, an unlabeled
example is added in the training set of a classifier if the other two classifiers agree on
the class label and certain theoretical criteria are met. The classifier used in the context
of Tri-Training was the SVM [2] and more precisely the SMO [7] implementation of
WEKA [8]. The SVM was parameterized by a linear kernel with complexity parame-
ter C = 0.015. Moreover, we have used feature normalization and logistic regression
models in order to produce continuous output.

The rest of the paper is organized as follows. Section 2 provides a short description
of the Discovery Challenge. Section 3 presents the Data preprocessing strategies we
have experimented with. Section 4 analyzes the model evaluation approaches we have
used. Section 5 describes the learning algorithms used and presents the experimental
results. Section 6 discusses the results and contains the concluding remarks.

2 Discovery Challenge Description

2.1 Task Description

The discovery challenge consisted of two tasks, Task A and Task B. Task A was con-
cerned with the case where the size of the centrally collected training data was larger
than the individual users’ inboxes. More precisely, the centrally collected training set
contained 4000 emails, and the three individual users inboxes, where predictions should
be made, contained 2500 emails each. Task B was concerned with the case where the
size of the centrally collected training data was small in comparison to the size of the
inboxes of the individual users. In task B, the centrally collected training data con-
tained 100 emailes, while predictions should be made on 15 user inboxes, containing
400 emails each. In order to tune the parameters of the algorithms, tuning data was
provided for both tasks. Since we have submitted a solution only for task A of the chal-

40

lenge, in the rest of the document unless otherwise stated, we will refer to Task A of the
challenge.

The evaluation of the submissions was performed using the correct class labels for
the individual user’s inboxes (where the predictions were made), with the Area Under
the Receiver Operating Characteristics (ROC) Curve (AUC) as an evaluation measure.
The ROC curve was originally introduced in the signal processing community for ad-
dressing the problem signal detection, and it has been utilized in various contexts (i.e.
model selection [9], introduction of algorithms that optimize the AUC measure [10]) by
the machine learning research community.

2.2 Data Description

The methodological approaches that could be utilized in the Discovery Challenge, were
determined by the form of the data provided. The discovery challenge datasets were
delivered in the bag-of-words representation, where the words were represented by nu-
meric IDs. This prevented the contestants from using any Natural Language Processing
(NLP) techniques that could enhance the performance of the learning algorithms. How-
ever, taking into account the fact the NLP techniques are receiving increasing attention
from the machine learning community (i.e. Word Sense Disambiguation for Text Clas-
sification [11]), it would have been interesting if more information were provided, that
allowed the use of NLP techniques.

Moreover, the email representations excluded the use of any traditional spam filter
methods. Such methods are DNS Black-hole Lists (DNSBLs), which reject the email
that come from certain IPs (e.g. dynamic and dial-up IP addresses), keyword-based fil-
tering (e.g. block the emails that contain certain phrases), checksum-based filtering,
which takes advantage of the fact that usually the spam emails that are sent by an
individual user are almost identical, and several others. Providing such additional in-
formation would pose the challenge of deriving decision functions that combine spam
recognition rules and the statistical models constructed by the learning algorithms. Al-
though, this is the task that real world spam filters must achieve, this would probably
be out of the scope of the ECML-PKDD conference.

3 Data preprocessing

3.1 Feature Selection

Although feature selection has been shown to improve algorithms’ performance in sev-
eral learning tasks and application areas, experimental results have suggested that text
classification algorithms should not be expected to benefit from aggressive feature se-
lection [12]. This is because most words (with the exception of stop-words and common
terms, issues that can be dealt using stop word lists and term weighting) offer important
information for the correct classification of text data. Whatsoever we have investigated
possible benefits from using some popular feature selection algorithms.

The feature selection measures we have considered are the Bi-Normal Separation
(BNS) metric and the Information Gain (IG). BNS is defined as: F −1(P (word|+)) −

41

F−1(P (word|−))) where F−1 is the inverse of the cumulative probability function of
the Normal Distribution. For a theoretical analysis of the BNS metric in the context of
ROC analysis the interested reader can refer to [13]. The IG is defined as the difference
in entropy caused by the existence of a feature. The IG has been used widely in the
context of feature selection and machine learning algorithms.

We have conducted experiments using BNS and IG with SVMs and Naive Bayes
classifiers on the training and the tuning datasets. The algorithms performed always
better with all the features. We have also attempted to use BNS and IG for features
selection, prior to using the Tri-Training algorithm (which yielded the best results on the
tuning data). In this case also the algorithm performed superiorly when all the features
were retained.

3.2 Feature Normalization

In the context of text classification, it has been suggested by many authors (i.e. [14],[15])
that feature normalization can significantly boost the performance of learning algo-
rithms and especially Support Vector Machines. This can be easily understood if we
consider that in the unnormalized case, the similarities between the emails will be af-
fected by the size of the emails (longer emails will contain terms with higher frequency
of occurrence).

In order to verify the appropriateness of normalization empirically we have exper-
imented using normalized and unnormalized features with Support Vector Machine in
the training and tuning data. The experiments have showed that normalization improves
the classification results and is thus appropriate in the context of the challenge.

4 Model Evaluation

In order to investigate the possible strategies for model evaluation, we will firstly re-
call some details concerning the datasets that were provided by the Discovery Chal-
lenge. The main training and test data consisted of a labeled training set (TrainData)
and three individual user’s inboxes (TestDataA,TestDataB,TestDataC), where the pre-
dictions should be made. For tuning the parameters of the algorithms the organizers
provided additionally, a labeled training set (TuneTrainData and an individual user’s
inbox where the labels were provided as well (TuneTestData).

Using these datasets it is straight forward to evaluate the performance of the super-
vised learning algoriths using k-fold cross validation on the TrainData and the Tune-
TrainData datasets. However, since we are interested in performing predictions on the
individual users inboxes, we should investigate possible model evaluation strategies
that involve the test data. A straight forward approach would be to simply construct
the models on TuneTrainData and then use the whole TuneTestData to estimate the
models’ performance. However, in order not to favor models that overfit the TuneTest-
Data, we have evaluated the algorithms using cross validation on the combination of
the training and the test set. More precisely, we have divided both the TuneTrainData
and the TuneTestData data in k folds. Then, the k fold cross validation result is de-
rived as the average AUC score of the k runs, where in each run we train the model

42

on TuneTrainData-{ Fold i of the TuneTrainData} and then measure the AUC of the
model on the TuneTestData-{ Fold i of the TuneTestData }.

5 Learning Algorithms

5.1 Supervised

As we have mentioned in the introductory section, the Discovery Challenge was con-
cerned with the construction of “personalized” spam filters for individual users based
on a centrally constructed labeled training set. This implied that semi-supervised and
transductive algorithms were appropriate. However since such algorithms are not guar-
anteed to achieve better performance than standard supervised inductive classifiers, we
have initially conducted experiments using two popular classifiers, Naive Bayes (with
a kernel density estimator, to address the problem of numeric features) and SVM. For
breverity, we do not present here the details of these algorithms. The interested reader
can find detailed descriptions in any standard Data Mining textbook (i.e. [16]).

Concerning SVM, we have experimented using a linear kernel, feature normaliza-
tion and logistic regression models for producing continuous outputs. It has to be men-
tioned that the use of logistic regression derives proper probabilistic output for the al-
gorithm, however it does not affect the AUC performance (compared to using decision
function values). We have explored the effect of using various values for the complexity
parameter C. The values we have used were powers of the 2, ranging from 2 −6 until
21. The results of the 10 fold cross validation on the TrainData and the TuneTrainData,
did not vary significantly for the different values of C and the mean AUC was consis-
tently above 0.98. The mean AUC scores of the 10 fold cross validation of the combined
TuneTrainData and TuneTestData (as described in section 4), are reported on Figure 1.

Concerning the Naive Bayes, we have used Kernel Density estimator in order to
address the problem of numeric features. The 10 fold cross validation results on the
TrainData produced and average AUC score of 0.76, and similarly 0.80 on TuneTrain-
Data. The average AUC derived by the 10 fold cross validation on the combined Tune-
TrainData and TuneTestData, was 0.37. This result signified that the distribution of the
individual user’s inbox was significantly different than the distribution of the centrally
collected training data, and that standard Naive Bayes is highly inappropriate in the
context of this challenge.

5.2 Transductive and Semi-Supervised

In our experimental evaluation of transductive and semi-supervised approaches, we
have concentrated on two algorithms, TSVMs and Tri-Training. The TSVMs present the
transductive version of the popular SVM classifier. The main intuition behind TSVM,
is that instead of searching for the separating hyperplane that maximizes the margin
between the two classes (as in SVM), it searches for the hyperplane that maximizes the
margin between both training (labeled) and test (unlabeled) data.

Concerning TSVM, we have used the SVM-Light implementation available on the
web site of T. Joachims (http://www.cs.cornell.edu/People/tj/). We have experimented

43

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

0,01 0,1 1 10

C values

m
ea

n
 A

U
C

Fig. 1. SVM performance

using both Linear (inner product) and RBF Kernels. Concerning the Linear kernel we
have used values that are powers of 2, ranging from 2−7 to 212. The 10 fold cross-
validation results (in the fashion described in Section 4) for the various values of C are
reported in Figure 2. Concerning the RBF kernel, we have experimented using values
of C ranging from 25 to 212 and γ values ranging from 2−4 to 212. The average AUC
scores for these parameters of the RBF kernel were very low (consistently under 0.55).
It has to be noted that in the TSVM experiments we had not normalized the feature
space. This is because in the time we have deduced that normalization was appropriate,
there was not adequate time for performing the normalized TSVM experiments.

We have also considered the Tri-Training algorithm, which has produced the best
result on the cross validated test data. Tri-Training uses as input a supervised learning
algorithm and a set of labeled and unlabeled instances. Subsequently, it uses bagging
in order to produce three diverse training sets-classifiers. The main Tri-Training algo-
rithm is based on an incremental procedure, where at each step, an instance is added
to the training set of a classifier, if the other two classifiers agree on its label, and cer-
tain theoretical criteria are met. The criteria used, provide theoretical guarantees that
the expected error of the classifier will be reduced when the new labeled example is
added. For breverity we do not reproduce here all the details of the Tri-training algo-
rithms, in [4], the interested reader can find the theoretical and empirical evidence for
the appropriateness of the Tri-Training algorithm for semi-supervised learning tasks.

In the experimental evaluation we have used the Tri-Training implementation that is
available on the web site of Ming Li, (http://lamda.nju.edu.cn/lim/), the second author
of [4]. Prior to using Tri-Training, we have normalized the feature space. The classifier
used for Tri-Training was an SVM and more precisely the SMO [7] implementation
of WEKA [8]. Moreover, we have used logistic regression models for producing con-
tinuous outputs. It has to be noted that the use of logistic regression derives proper

44

0,79

0,8

0,81

0,82

0,83

0,84

0,85

0,86

0,001 0,01 0,1 1 10 100 1000 10000

C values

m
ea

n
 A

U
C

Fig. 2. TSVM performance

probabilistic output for the algorithm, however it does not affect the AUC performance
(compared to using decision function values). In the experiments we have used a Linear
Kernel (inner product) with various values of C. The values of C were again powers of
2, ranging from 2−7 to 23. In Figure 3, we report the average AUC scores derived from
10-fold cross validation (in the fashion described in Section 4). The best AUC score:
0.96 was achieved with the value C = 0.015.

6 Discussion - Conclusions

Based on the experimental results, an interesting observation that can be made concerns
the kernel function, we have used in the submitted model. The Linear Kernel (inner
product), yielded the best results on the tuning data among the algorithms we have
experimented with and achieved 5th place on Task A of the discovery challenge. Linear
kernels are known to suffer from underfitting and it is general appreciated that they are
not expressive enough for modeling complex real world data. Our experiments serve as
an indication, that with the appropriate choice of C, linear kernels can be successfully
applied in real world text classification problems.

Moreover, our experimental results have verified that Normalization can signifi-
cantly improve classification performance of learning algorithms and that feature selec-
tion may not always be appropriate. Although these observations are widely known and
have been discussed in various research papers (i.e. in [14, 15, 12]), our experimental
results provide additional empirical verification.

Concerning the experimental results of the Tri-Training algorithm, it can be ob-
served that the average AUC is more sensitive with respect to the C parameter than
when using SVM and TSVM. An argument that can be used for explaining the sensi-
tivity of Tri-Training, is that since in Tri-Training the results of the classifier are used

45

Tri Training perfromance with SVM and Linear Kernel

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0,001 0,01 0,1 1 10

C values

m
ea

n
 A

U
C

Fig. 3. Tri-Training performance

for adding unlabeled instance into the training set, small changes in the performance
of the classifier may result in the addition of noise in the training set. Thus, a small
reduction in the performance of the classifier may result in a much larger reduction of
the performance of the Tri-Training algorithm. This signifies the importance of param-
eter tuning for semi-supervised algorithms that work by using a classifier to add the
unlabeled instance into the training set (i.e. self-training).

In conclusion, we consider that the Discovery Challenge organized within the ECML
- PKDD 2006, provided an excellent opportunity for the empirical evaluation of semi
supervised algorithms. The experimental results can be useful both for theoretical and
applied research, for understanding the properties of semi-supervised algorithms and
identifying situations under which they should be expected to perform well.

References

1. Chapelle, O., Schölkopf, B., Zien, A., eds.: Semi-Supervised Learning. MIT Press, Cam-
bridge (2006)

2. Vapnik, V.: Statistical Learning Theory. Wiley (1998)
3. Joachims, T.: Transductive inference for text classification using support vector machines.

In: ICML. (1999) 200–209
4. Zhou, Z.H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE

Trans. Knowl. Data Eng. 17(11) (2005) 1529–1541
5. Joachims, T.: Transductive learning via spectral graph partitioning. In: ICML. (2003) 290–

297
6. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
7. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In

Scholkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel Methods - Support Vector
Learning, MIT Press (1998)

46

8. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann (2005)

9. Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Machine Learn-
ing 42(3) (2001) 203–231

10. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Improving the auc of probabilistic estimation
trees. In: ECML. (2003) 121–132

11. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.: Word sense
disambiguation for exploiting hierarchical thesauri in text classification. In: PKDD. (2005)
181–192

12. Forman, G.: An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research 3 (2003) 1289–1305

13. Hanley, J.: The robustness of the binormal assumptions used in fitting roc curves. Medical
Decision Making 8 (1998) 197–203

14. Herbrich, R., Graepel, T.: A pac-bayesian margin bound for linear classifiers: Why svms
work. In: NIPS. (2000) 224–230

15. A.B.A. Graf, A.S., Borer, S.: Classification in a normalized feature space using support
vector machines. IEEE Transactions on Neural Networks 14 (2003) 597–605

16. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press (2001)

47

A semi-supervised Spam mail detector

Bernhard Pfahringer

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract. This document describes a novel semi-supervised approach
to spam classification, which was successful at the ECML/PKDD 2006
spam classification challenge. A local learning method based on lazy
projections was successfully combined with a variant of a standard semi-
supervised learning algorithm.

1 Introduction

This ECML/PKDD 2006 spam classification challenge[1] comprised two different
setups, which both were setup in specific way encouraging especially the use of
semi-supervised learning methods.

The setup for Task A comprised two mailboxes for tuning, one containing
4000 labeled email messages, the other one containing another 2500 labeled
emails. Predictions were sought for another set of three un-labeled mailboxes of
2500 emails each, together with a labeled set of 4000 emails. The tuning set and
the evaluation set were also distinct, i.e. they could not be fused to form a larger
set of examples to learn from.

The setup for Task B problem comprised three much smaller mailboxes for
tuning, one containing 100 labeled emails, the other two containing another 400
labeled emails each. Predictions were sought for another set of 15 un-labeled
mailboxes of 400 emails each, together with a labeled set of 100 emails. The
tuning sets and the evaluation sets again are distinct, i.e. again they could not
be fused to form a larger set of examples to learn from.

Furthermore, all messages were already fully pre-processed and represented
in SVMlight format, so no specific additional pre-processing was possibly. As
proper pre-processing can be essential for learning success, this setup somewhat
limited the possibilities, but also ensured a level playing field for all learning
approaches. Generally in text classification, and especially in Spam classifica-
tion, smart preprocessing can greatly simplify the problem, e.g. one can include
attributes representing meta-information like sender names and servers, or other
header-fields, or make a distinction between text coming from the subject and
text coming from the message body and so on. None of that was possible for the
fully pre-processed data given here.

2 Initial experiments

Initial experiments with standard (i.e. non semi-supervised) learning algorithms
like multinomial Naive Bayes or support vector machines looked very promising

48

in cross-validation estimation on the labeled 4000 messages tuning box, but re-
sults did not transfer well over to the 2500 messages tuning box. Table 1 shows
these somewhat surprising and more importantly disappointing results. A possi-
ble explanation might be the huge number of available attributes and potentially
quite different usage patterns for these attributes in the two mailboxes. There-
fore the learning algorithm could be focusing on a particular subset which works
well for one mailbox, but not so for the other.

Table 1. Error rates (in percentages) on the tuning data of Task A for standard
support vector machine (SMO) and multinomial NaiveBayes (MNB)

Algorithm Crossvalidation: 4000 emails Train/Test split 4000/2500 emails

MNB 3.075 51.20
SMO 0.950 20.56

Generally some form of feature subset selection should be able solve such
an overfitting problem, but successful feature subset selection can be a very ex-
pensive and time-consuming process. Therefore an alternative lazy method was
employed: whenever a prediction for some email is needed, transform the whole
training set by only selecting those features which are actually present in the
test-example (i.e. have a non-zero value). Essentially the training data is pro-
jected onto the subset of those features which are actually present in the testing
email at hand. Then some model is trained using this transformed training set
and that model’s prediction is used for the test example in question. This trans-
formation has some interesting properties: it forces the learner to concentrate
on the features that are actually present in the test example. The number of
such features is considerably smaller than the total number of features available,
ranging from a dozen to about 2000, with the majority being in the low hundreds
– instead of the more than a hundred thousand attributes in the full training set.
Thus a larger range of classifiers becomes feasible, e.g. logistic regression. Still,
linear support vector machines usually were among the best performing clas-
sifiers. Generally, using this lazy approach, results in terms of both estimated
accuracies and estimated AUC values seemed to improve over the standard non-
lazy approach described above. But even these improved estimates still left some
clear room for improvement, which is why a proper semi-supervised approach
building on this lazy projection idea was developed next.

3 Semi-supervised learning: a LLGC variant

Semi-supervised learning approaches have been shown in general to be able to
improve over standard learning approaches when given plenty of unlabeled data.
The given challenge problem does not quite fit the standard assumptions of semi-
supervised learning, as actually more labeled than unlabeled data is given, at
least in Task A: 4000 vs 2500.

49

A standard semi-supervised learning algorithm is the so-called LLGC algo-
rithm [4], which tries to balance two potentially conflicting goals: locally, simi-
lar examples should have similar class labels, and globally, the predicted labels
should agree well with the given training labels. We applied a scalable variant
[3] of the standard LLGC algorithm to the challenge data. These experiments
resulted in rather modest gains for predictive accuracies, but AUC values usually
improved much more. As AUC was the criterion of choice for this challenge, this
approach looked most promising and was chosen as the final solution. Here is a
short summary of the three main modifications to the original LLGC algorithm:

– Allow different similarity measures: LLGC is based on a so-called affinity ma-
trix capturing all pair-wise similarities over both labeled and unlabeled data.
Originally, LLGC uses RBF kernels, but for text a cosine-based similarity
measure is a much more appropriate, and is consequently used here.

– Allow pre-labeling of the unlabeled data: LLGC starts with all-zero class-
distributions for the unlabeled data. We allow pre-labeling by using class-
distributions for unlabeled data that have been computed in some way using
the training data. The user can shrink the magnitude of these predictions
relative to the hard class-labels of the supplied training set by way of a user-
settable parameter. This shrinkage seems to improve results considerably
when the number of unlabeled examples is much larger than the number of
labeled examples. This is not the case for the current problem, and experi-
ments on the tuning mailboxes returned best results when no shrinkage was
employed. The pre-labels were computed by the lazy feature subset selec-
tion process described in the previous section together with a linear support
vector machine as implemented in Weka.

– Reduce complexity by sparsifying the affinity matrix: the standard LLGC
algorithm would need to compute the inverse of a dense 6500x6500 matrix
to solve the mailbox classification problem. To save both space and time,
we sparsify the affinity matrix by only including the k nearest neighbours in
the matrix. We do make sure that the matrix is still symmetric in a post-
processing step after the kNN computation. The sparsification allows for a
reduction in computational complexity from O(n3) to O(n∗k∗ iter) where n
is the total number of examples, k << n is the number of nearest neighbours,
and iter is the number of iterations performed by the iterative relaxation
algorithm which is used instead of matrix inversion.

4 The final setup

An extensive grid search over the tuning setup was used to find the following
suitable values for all user-settable parameters for Task A:

– k = 100, the number of neighbours
– iter = 10, the number of iterations in the LLGC algorithm
– α = 0.8, the mixing proportion of original labels to propagated information

50

– shrinkage = 1.0 (i.e. effectively no shrinkage), the trade-off factor for hard
training labels versus estimated pre-labels.

The alpha parameter controls the balance between local and global consis-
tency inside LLGC. Its range is [0, 1], with higher values favouring local consis-
tency over global consistency.

The three mailboxes of Task A were predicted in isolation of each other. It
might be possible to improve the final results by actually fusing them all together
into one big semi-supervised problem comprising 11500 examples. We did not
attempt to do that as only one 2500 box for tuning was available. Therefore it
was not possible to assess which of the two setup would perform better, so we
chose the safe option of predicting each of the three mailboxes in isolation.

This final setup might seem to be rather expensive to compute, as we use a
lazy approach for pre-labeling, and potentially expensive LLGC computation as
a kind of post-processing step. In practise the computation is dominated by the
pre-labeling effort, and takes about 90 minutes per mailbox, on an average Linux
PC from 2005. It should therefore still be feasible in practise to run a similar
setup on a client PC (but not a mail server itself) to rank a batch of emails for
a particular user according to their degree of spamness.

A similar grid search over the tuning setup for Task B yielded almost identical
values for all user-settable parameters:

– k = 100
– iter = 10
– α = 0.95
– shrinkage = 1.0 (i.e. effectively no shrinkage)

It is interesting to note that for Task B an even more extreme alpha value
(0.95 instead 0.8) was selected by this search, putting even more emphasis on
the local neighbourhood of each example. Given the scarcity of labeled data
in this setup this is probably a reasonable choice. It is also surprising to see
that no shrinkage was chosen, even though Task B is more in line with the
standard assumption of semi-supervised learning, having an order of magnitude
more unlabeled than labeled examples available for learning.

As tests on the tuning setup showed slightly better AUC values for fusing
all data into one big problem instead of predicting each mailbox in isolation, we
chose this option for the final prediction task as well (again this is different to
the Task A setup). So the final model used all 100 labeled training examples
plus 15 times 400 unlabeled examples in one go. Even though this is about the
same size as for one mailbox of Task A, computation was still much faster, as the
computationally dominant pre-labeling step is a lot cheaper in this setting. We
have to compute pre-labels for 6000 instead of 2500 examples, but each feature
subset-selected training set has only 100 training instances instead of 4000 such
instances, which makes for a big difference given the non-linear behaviour of
support vector machine learning.

Therefore we conjecture that such joint processing of a number of relatively
small mailboxes together with a carefully selected small training set could be
feasible on a mail server for a small to medium-sized work group.

51

5 Conclusion and further research

This paper has introduced a successful combination of two new ideas for the
detection of Spam messages: lazy projection of the training data to single mes-
sages to combat overfitting of the training data due to an abundance of features;
and an efficient semi-supervised learning algorithm variant that can be viewed
as a kind of post-processing step for smoothing out potentially conflicting pre-
dictions over similar messages. Pragmatically the most important direction for
future work is the issue of pre-labeling. The current approach is effective, but
also computationally expensive. An alternative to the lazy projection and train-
ing of a full classifier per unlabeled message would be projection of the training
data to the set of all attributes being used in one full unlabeled mailbox. The
next most expensive computational step after pre-labeling is the formation of
the sparse affinity matrix, which is currently done in a naive linear full nearest
neighbourhood search. More advanced methods like ball or cover trees should
be able to speed up this step. More generally, we would like to investigate meta-
approaches that would combine the architecture described in this paper with
totally different ones like spam filters based on dynamic markov models [2].

Acknowledgments This work has been funded by a Marsden Grant of the
Royal Society of New Zealand.

References

1. S. Bickel. Discovery challenge, 2006. http://www.ecmlpkdd2006.org/challenge.html.
2. A. Bratko, G.V. Cormack, B. Filipic, T.R. Lynam, and B. Zupan. Spam filter-

ing using statistical data compression models, 2006. Journal of Machine Learning
Research, in press.

3. B. Pfahringer, C. Leschi, and P. Reutemann. Scaling up semi-supervised learning:
an efficient and effective llgc variant, 2006. in preparation.

4. D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency, 2003. In 18th Annual Conf. on Neural Information Processing
Systems.

52

Identifying SPAM with Predictive Models

Dan Steinberg and Mikhaylo Golovnya

Salford Systems

1 Introduction

The ECML-PKDD 2006 Discovery Challenge posed a topical problem for predictive
modelers: how to separate SPAM from non-SPAM email using classic word count
descriptions of email messages. The data for the challenge were released around
March 1, 2006 and submissions were due June 7, 2006, allowing entrants to devote as
much as three months to preparing and modeling the data. We devoted two calendar
weeks and three person weeks to this project, the maximum we could spare given
other commitments. We found the project appealing for several reasons. First, we
started with the belief that modern data mining methods and specifically boosted trees
in the form of Jerome Friedman's MART (Multiple Additive Regression Trees) would
perform well. Second, our industrial experience at Salford Systems has to date been
focused on the analysis of numeric (non-text) data and were eager to gain more
experience in the field of text mining. Third, the project organizers had already
completed the initial mapping of the text documents to the word count "term vectors"
allowing challenge participants to focus on the use of numerical tools and bypass the
messy preprocessing of raw text data. Note that the challenge data contained no
information regarding the original text; we do not even know the language of the
emails let alone the nature of the triggers that could signal SPAM.
The challenge consisted of two tasks, Task A and Task B. As we addressed only Task
A we confine our discussion accordingly.

2 Data

We include a brief description of the data here to allow this paper to be self-
contained. Additional information may be found in the companion workshop papers
and the challenge website http://www.ecmlpkdd2006.org/challenge.html. As the goal
was SPAM detection, every email message in the data sets had been tagged as SPAM
or not-SPAM (although the class label was not always made available to the
modelers). The main training data set consisted of 4,000 email messages evenly
divided between the SPAM and not-SPAM classes. The project documents suggest
that the SPAM messages were collected from a public "spam trap" (an email address
visible only to crawlers and bots, but invisible to humans) but there is no explicit
confirmation of this. The not-SPAM emails were also (apparently) collected from
"publicly available sources". Confining training data to public sources was a key
component of the stated challenge as automatically generated SPAM filters would

53

ideally not rely on users to manually label their email messages for the purpose of
training a SPAM filter. The challenge required participants to develop predictive
models that would perform well on individual user email inboxes, and three such
inboxes of 2500 unlabeled messages each were provided. Naturally, the distributions
of the words used in the public source training data and the individual email boxes are
quite different, and this is a major source of the difficulty for machine generated
SPAM filters. We have to allow for the fact that individual users vary considerably in
their tastes and interests and so what might look like SPAM in the inbox of user #1
might be an explicitly requested message in the inbox of user #2. In addition to the
primary data, some "practice" or tuning data was provided. This data consisted of
4000 labeled training emails from public sources and an additional 2500 labeled
emails from a single user inbox. The tuning data was supplied with scrambled word
indices so that this data could not be pooled with the primary training data. The
scrambling ensures that word number 3 in the tuning data does not correspond to
word number 3 in the training data, etc. The tuning data could thus be used only to
assess the performance of alternative modeling strategies; no specific detail extracted
from a tuning data model could be used to improve the models generating the final
challenge predictions. It is worth emphasizing that the tuning email inbox was the
only example of labeled user data and that the tuning data provided us the only way to
learn anything about adapting public source data to individual user SPAM detection.

3 First Stage Data Preparation

The raw data was delivered in a compressed form often used for sparse matrices. Thus
a typical line of data might look like:

 -1 2:3 9:8 17:3 35:7 71:3 74:2 77:6 85:5 86:1 92:2 94:2 95:6 99:2

This record corresponds to not-SPAM as the first element is -1, and it contains 3
occurrences of word #2, 8 occurrences of word #9, ..., and 2 occurrences of word #99.
All words in the master vocabulary not listed on the record do not appear in the
original email (i.e. they have a frequency or word count of zero). As our analytical
and data preparation tools are not equipped to work with such data directly our first
task was to expand the data into a complete non-sparse format with zero elements
explicitly listed. When the master training data file is so expanded we find a total of
more than 150,000 words. The expansion was also performed on all the other data
sets. The evaluation data consisted of three user inboxes containing 2500 unlabelled
rows of data, with 26580, 27523, and 20227 non-zero word counts respectively. The
tuning data consisted of completely labeled data. The public source training data
consisted of 4,000 rows and 39967 word counts, and the tuning user inbox consisted
of 2,500 rows and 23070 word counts. The next step required combining data from
the separate files. For the challenge training and evaluation data one option was to
form the union of all words appearing in any file and using this as a master
vocabulary. Given the size and cumbersomeness of the resulting files we elected
instead to work with intersections. Thus, the intersection of words appearing in both

54

the training data and a given user inbox formed the master vocabulary for our work on
that specific inbox. The number of words in each intersection was 16333, 17791, and
16399 respectively. For the tuning data the word counts were 46219 in the union and
16818 in the intersection of the two files.

Given the large vocabularies some form of attribute selection was advisable and we
used a simple statistical test popular in bioinformatics. We first limited the
vocabularies separately for each inbox, selecting the subset of words found in both the
inbox and the training data. For each attribute so selected we calculated a modified t-
test due to Tibshirani et. al (2001) for the difference of means between the SPAM and
not-SPAM classes in the training data and then ranked the attributes by the absolute
value of this t-statistic. The tests were organized separately for each user inbox and
restricted to the vocabulary common to the train data and the inbox in question. An
example graph of results appears below for the first user inbox. It plots the statistics
against the rank order of the attribute.

ABSDIFF

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 224 447 670 893 1116 1339 1562 1785 2008 2231 2454 2677 2900

This is not our preferred approach to attribute selection as it is based on a myopic
univariate discriminant analysis but it was easiest to deploy. The t-tests rank the
predictors and it was up to us to select a cut-off for attribute selection. We
experimented with several different cutoffs in our initial modeling, trying as few as
1,000 and as many as 8,000 attributes to arrive at a preferred total of 3,000 predictors.
All further data preparation and model generation reported below was based on an
inbox-specific selection of the top 3,000 attributes.

4 Second Stage Data Preparation

As email messages can vary greatly in length it is difficult to compare or cluster
records based on the raw word frequencies. To adjust for the email length we
converted the counts to relative frequencies by dividing each term count by the email
total word count (so that the sum of relative frequencies is 1 for all records).

55

Following the text mining literature we also added the following summary document
features describing each email:

• LEN: document size, total number of words,
• NNZ: number of unique words (Number NonZero),
• MAXF: count of most often used word,
• ENTR: document entropy, calculated over words,
• KL: distance to the target class training data centroids (Kullback-Leibler

statistic)

Each feature was constructed in two versions: on the original document vocabulary
(version 1) and on the restricted vocabulary found in the intersection between the
training data and the specific inbox (version 2 or version R).

Previous research (Dumais et. al. 1988) has suggested that some form of data
compression or summarization is vital for the analysis of word count data and we
decided to follow this practice, compressing the data with a Singular Value
Decomposition (SVD). The transform was applied to the subset of the best 3,000
relative word counts discussed above. The SVD is similar to Principal Components
Analysis (PCA); it creates linear combinations of the original data (whether in raw
count or relative frequency form) and effectively captures information on joint
patterns of occurrences of individual words. The SVD transformation allows us to
capture some types of relationships between words which is precisely what is missing
in the raw word count data. One should expect such transformed data to yield better
predictive performance than the raw (or normalized) counts. The SVD transformation
usually allows a radical reduction in the number of predictors required as much of the
information content of the raw data is captured in the leading SVD vectors. We
experimented with keeping different numbers of SVD vectors and settled on 20 for
most of our modeling work. (We have heard text mining practitioners recommend 40
as a rule of thumb). The screen plot below of the first 100 singular vectors plots the
Singular Value against the singular vector number is representative of the results we
obtained separately for each user inbox.

56

 SV

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Note that the SVD transformation is a second stage of data reduction and follows the
first stage of raw attribute selection. The SVD decomposition makes no reference to
the target; it is based only on the predictors and can be generated from the training
data or from the pooled training and unlabeled user inbox data. Below we report that
restricting the SVD to the training data alone yields slightly better results. The SVD
can also be computed with or without the summary document features listed in the
table above, and the summary document features can also appear as separate
predictors in their own right. We experimented to identify the best combination of
predictors and inputs into the SVD.

5 General Modeling Methodology

We elected to use TreeNet(tm), the commercial release of Friedman's stochastic
gradient boosting as it has performed well in a broad range of real world predictive
modeling challenges. Early exploratory runs were based on small ensembles of 200
trees constructed with a moderate learning rate of 0.10 to reduce run times. Our final
models were run with a slow learning rate of 0.01, using the binary logistic loss
function, and growing 1000 6-node trees. Parameter settings were chosen via
experiments on the tuning data described below.

6 Modeling Details

The results we report here are based on what was known to us at the time of the
challenge, namely the tuning data. A revised analysis based on the labeled evaluation
data would be a desirable undertaking but is not included here. We began with a
simple experiment to determine how well a model built entirely on the public source

57

data would perform on an individual inbox. We divided the training portion of the
Tune sample into random halves and built a quick TreeNet model using only the top
3000 ranked raw word counts as predictors and then used the “optimal” model to
score the data from the Tune sample inbox. The graph below displays the ROC curves
for the two test samples.

Note that the performance on public source data (the upper curve) is excellent. Even a
crude 200-tree ensemble reaches an area under the ROC curve (AUC) of .991 on test
data. But when the same model is applied to the rather different distribution of emails
and vocabulary found in a real individual’s inbox the AUC drops dramatically to .778.
While .778 is a value that could be welcomed with enthusiasm in some applications it
is far too low for SPAM detection and most email users would find the corresponding
classification error rates of such a model annoying.

If we take the 2500 email individual user inbox tuning data, randomly set aside 1/3 of
the data for test and develop a model on this individual user’s data we again obtain
excellent results with an AUC on test data better than .99: In the graph below the two
ROC curves correspond to the training and test portions of the individual user’s data.
This tells us that successful inbox-specific models can be developed using naïve raw
word counts as predictors. But the model is completely customized to this user’s
inbox.

58

The Challenge requires us to build predictive models from data that are somewhat less
relevant than can be found in an individual’s inbox, and we turn now to the models
built in this way.

The models we report here are all based on the Tune data and were used to guide the
parameter settings we used in the final challenge submission. The graph below
displays the ROC curves and AUC values achieved on the single user tune inbox.

The lowest ROC curve (over the lower half of the graph) corresponds to the naïve raw
word count model. The better models are based on various combinations of SVDs as
predictors and document summary features. The best results were obtained when the
SVD vectors were based only on the training data instances, but with the document

59

summary features included in the SVD construction, and with the document summary
features also included as separate predictors. These results are very similar to those
we obtained on the evaluation data.

7 Comments on Results

As the details of the data are hidden from us we cannot discuss specific indicators
predicting SPAM other than the meaningful features we constructed from the abstract
data. We can extract some useful but limited insights and we present those here.
Based on the TreeNet variable importance ranking we see that the 2nd SVD vector is
ranked most important, and that top 4 variables are all SVD vectors. The document
summary features do play a role however, with the 3 such features appearing in the
top 10 predictors.

TreeNet Variable Importance
Variable Score

S2 100.00 ||
S9 49.11 ||||||||||||||||||||
S3 33.89 ||||||||||||||
S5 33.27 |||||||||||||
ENTR1 25.53 ||||||||||
S13 22.85 |||||||||
S4 19.85 ||||||||
S29 19.30 |||||||
KL2P 18.64 |||||||
NNZ1 16.46 ||||||
S12 15.52 ||||||
S21 13.51 |||||
S27 12.83 |||||
S25 12.03 ||||
LEN1 11.89 ||||
S10 10.81 ||||
S17 9.79 |||
S23 9.61 |||
S1 8.58 |||
S26 8.30 |||
MAXF2 8.22 |||
S14 8.04 ||
S28 7.26 ||
KL2M 7.16 ||
S11 7.08 ||
S16 6.96 ||
S18 6.04 ||
S24 5.87 ||
S8 5.37 |
S20 5.25 |
S22 4.14 |
S6 4.13 |
S15 2.46
NNZR 2.41
S19 0.00
S7 0.00

60

ENTR2 0.00
MAXF1 0.00
LENR 0.00
S30 0.00

The TreeNet dependency plots for the top variables are almost all sigmoids or ramp
functions, similar to that shown below for the most important predictor S2 (of course
some have a negative effect and are thus downward sloping from left to right). There
are evidently powerful interactions captured in the model as illustrated in the 3D
graph below showing the dependency of the target on ENTR1 and S13. :

61

8 Improving the Results

During the challenge we conjectured that there were at least two additional ways to
improve the models. First, our list of features is rather small and others could be
created, in particular features based on the prevalence of words appearing in each
target class. Second, we suspect that reweighting the training data to make it more
similar in word distribution to any individual inbox might also be helpful.

References

1. Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression
Trees. Wadsworth & Brooks/Cole, California.

2. Dumais S. T. , and G. W. Furnas and T. K. Landauer and S. Deerwester and R. Harshman
(1988). Using Latent Semantic Analysis To Improve Access To Textual Information. CHI
'88: Proceedings of the SIGCHI conference on Human factors in computing systems,
281—285, Washington, D.C.

3. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 29:1189–1232.

4. Tibshirani, Robert, Trevor Hastie, Balasubramanian Narasimhan, Michael Eisen,
Gavin Sherlock, Pat Brown, and David Botstein. (2001). Exploratory screening
of genes and clusters from microarray experiments. http://www-
stat.stanford.edu/~tibs/ftp/samclus.pdf.

62

TPN2: Using positive-only learning to deal with the
heterogeneity of labeled and unlabeled data

Nikolaos Trogkanis 1, Georgios Paliouras 2

1 School of Electrical and Computer Engineering, NTUA, Greece
tronikos@gmail.com

2 Inst. of Informatics and Telecommunications, NCSR “Demokritos”, Greece
paliourg@iit.demokritos.gr

Abstract. This paper introduces TPN2, the runner up method in both tasks of
the ECML-PKDD Discovery Challenge 2006 on personalized spam filtering.
TPN2 is a classifier training method that bootstraps positive-only learning with
fully-supervised learning, in order to make the most of labeled and unlabeled
data, under the assumption that the two are drawn from significantly different
distributions. Furthermore, the unlabeled data themselves are separated into
subsets that are assumed to be drawn from multiple distributions. For that
reason, TPN2 trains a different classifier for each subset, making use of all
unlabeled data each time.

Keywords: one-class learning, positive-only learning, semi-supervised
learning, multi-strategy learning, spam filtering

1 Introduction

The topic of the ECML-PKDD Discovery Challenge 2006 was personalized spam
filtering. The goal was to train a personalized spam/ham classifier for each user that
correctly classifies the emails in the user’s inbox. Despite their personalization, it was
assumed that the classifiers will be trained and used on the mailing server. Therefore,
training cannot rely on messages labeled by the individual users. An obvious
surrogate for training data is the use of publicly available sources, such as mailing
lists and newsgroups and emails received through "spam traps"1. Such data have been
used for benchmarking spam filters in the past, e.g. the Ling-spam2 corpus. In
addition to these labeled data, the personal emails of the users are assumed to be
available for training, but without labels. These unlabeled data are available in large
volumes and can be used to improve the classifiers in a semi-supervised fashion.

In semi-supervised learning a small set of labeled examples of every class and a
large unlabeled set are used for building the classifier. Semi-supervised learning has
been shown to be particularly beneficial in training text classifiers, such as spam

1 Spam traps are email addresses published visually invisible for humans but get collected by

the web crawlers of spammers.
2 Ling-spam is available at: http://www.iit.demokritos.gr/skel/i-config/downloads/

63

mailto:tronikos@gmail.com
mailto:paliourg@iit.demokritos.gr
http://www.iit.demokritos.gr/skel/i-config/downloads/

filters, e.g. [1], [3], [9]. However, all of these techniques assume that labeled and
unlabeled examples are generated from the same distribution. This assumption may
be violated in practice, and when this happens these methods perform poorly.

One such example is the ECML-PKDD 2006 competition, where the labeled public
data are very different from the emails received by individual users. Clearly, the
unlabeled data are closer to the data expected to be processed by the filter in
operation. Therefore, their use is even more important than in the usual semi-
supervised learning scenario. At the same time, the use of the labeled data is essential,
but has to be done with care, in order to avoid misleading the training process.

Addressing this dual problem, we chose to rely mostly on the large amounts of
unlabeled emails in the user's inboxes. We used the labeled training data only to help
us label a small part of the unlabeled data, sufficient to bootstrap the semi-supervised
learning process. In doing that, we also took into account a natural asymmetry
between the spam and the ham classes, namely that spam is much less personal than
ham. Therefore, the discrepancy between the labeled and the unlabeled data is
expected to be much higher for ham than for spam. Thus, we named spam the positive
class and applied a positive-only learning approach on the unlabeled data.

To solve the problem of learning from positive and unlabeled examples, a few
algorithms have been proposed in the past few years. One class of algorithms is based
on a two-step strategy. This class includes SEM (Spy Expectation Maximization) [6],
PEBL (Positive Example Based Learning) [11] and Roc-SVM (Rocchio – Support
Vector Machines) [4]. These algorithms aim to iteratively discover the true negative
examples, while maintaining correctly-classified the positive ones. It has been shown
theoretically that this approach can lead to a good classifier [6]. In addition to these
two-step algorithms, there are other methods that aim to estimate the proportion of
negative to positive examples in unlabeled data and use that to bias the training
process, e.g. PNB (Positive Naive Bayes) [2] and biased-SVM [5].

One final aspect of our approach was the utilization of multiple different subsets of
unlabeled data. These subsets correspond to the inboxes of different users. Clearly the
inbox of a user should weigh more in the training of that user’s personalized filter.
However, the inboxes of other users can also provide useful information. For that
reason, we performed a weighted aggregation of the inboxes, giving more weight to
the inbox of the current user. The inbox of the current user is taken as “foreground”
and the other inboxes as “background” data. The weight of foreground data varied
according to the dissimilarity of the user’s inbox from other inboxes.

In summary the contribution of our TPN2 method comprises:
• the use of fully-supervised learning to bootstrap positive-only learning on data

from a different distribution;
• the weighted aggregation of foreground and background unlabeled data.

The rest of the paper is organized as follows. After presenting in section 2 the
algorithms that we used, in section 3 we present the TPN2 method. Then, in section 4,
we empirically evaluate the proposed technique on the two tasks of the ECML-PKDD
Discovery Challenge 2006. Finally, we provide our conclusions from this work,
together with suggestions for future work in section 5.

64

2 Description of Existing Algorithms

As explained in section 1, the proposed method combines both fully-supervised and
semi-supervised learning. In the fully-supervised stage, the common Naive Bayes
algorithm, following the multinomial model was used, while in the semi-supervised
stages a version of PNB (Positive Naive Bayes) was combined with PEBL (Positive
Example Based Learning) and Roc-SVM (Rocchio – Support Vector Machines).
These four algorithms are presented briefly in this section.

2.1 Naive Bayes Multinomial (NBM)

Given a set D of labeled documents, let us denote by PD (respectively ND) the set of
positive documents (respectively negative documents) in the set D. Considering bag-
of-words representation of the documents, each document is represented as the vector

1...t t V
d x

=
= , where |V| the size of the vector of features Xt taking values xt. Each

feature corresponds to a word and the value that it takes in a vector is a function of the
number of occurrences of the word in document d. In the simplest case, the feature
function indicates only the presence or absence of a word from a document. In that
case the document vector contains binary features.

Bayes classifiers assign an unclassified document to the most probable class, using
Bayes theorem:

arg max{ (|)} arg max{ () (|)}j j
j

p c d p c p d c j= (1)

Naive Bayes calculates the required a-posteriori and a-priori probabilities as
frequencies on the training data, under the simplifying assumption that the probability
of a document given a class can be expressed as the product of the individual
probabilities of its feature values xt given the class. In other words, features are
assumed to be independent given the class.

According to [7], there are two models of the Naive Bayes classifier that are
mostly used for text classification. These are the multi-variate Bernoulli and the
multinomial. Despite its initial use for handling word frequencies, the multinomial
model has recently been shown to perform better than the multi-variate Bernoulli
even when ignoring frequencies and translating the document vectors into binary
ones, e.g. [10] and [8]. For this reason, we have opted for the multinomial model,
which elaborates equation 1 as follows:

(){ } () () ()
1

|
arg max | arg max !

!

tx
V

t j
j j

j j t t

p w c
p c d p c p d d

x=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏ (2)

where class and word probability estimates were calculated as frequencies on the
training data, using Laplace smoothing to avoid zero probabilities. We have tested the
method with both types of document vector, i.e., frequencies and binary, and arrived
at similar conclusions to what has been reported in the literature, i.e. that binary
document vectors lead to better performance. Therefore, we focus on binary vectors
in the rest of the paper.

65

2.2 Naive Bayes Multinomial Positive (Positive Naive Bayes – PNB)

The second algorithm that we used is a representative of the second class of positive-
only learning methods mentioned in section 1, i.e. those that estimate the proportion
of negative to positive examples in unlabeled data and use that to bias the training
process. In particular, we adopt the approach proposed in [2] for PNB (Positive Naive
Bayes), using the multinomial model for Naive Bayes.

According to PNB, we assume to be given an estimate of the positive
class probability , a set PD of positive documents together with a set UD of
unlabeled documents, the Naive Bayes Multinomial Positive classifier classifies a
document

ˆ (p pos)

)(p pos

1...t t V
d x

=
= as explained in section 2.1, calculating the class probabilities

as follows:
()0 ˆ ()p c pos p pos≡ = , ()1 ˆ1 (p c neg p pos≡ = −) (3)

and the word probability estimates, using Laplace smoothing as follows:

() ()
()

1 # ,
|

#
t

t

w PD
p w pos

V PD
+

=
+

 (4)

() () () ()
()

ˆ |
|

1
t t

t

p w p w pos pr pos
p w neg

pr pos
− ⋅

=
−

 (5)

where () ()
()

,
ˆ

#
t

t

w UD
p w

UD
= .

2.3 Positive Example Based Learning (PEBL)

PNB was combined with two positive-only learners belonging in the first class
mentioned in section 1, i.e. those that iteratively search for the true negative examples
in the unlabeled ones, while maintaining correctly-classified the positive examples.
The first of the two algorithms that we tested was PEBL [11], which adopts the
following strategy:
1. identify a set of reliable negative documents from the unlabeled set (strong

negative);
2. apply a common classifier learning algorithm, such as SVM, on the positive and

the strong negative to obtain a classifier;
3. apply the classifier on the unseen data that are not in the strong-negative set;
4. add the new negatives to the strong-negative set and retrain the SVM;
5. stop the iterative process when no new negatives are found by the classifier and

consider the remaining examples as positive.
In the first step, i.e. the one that identifies the first set of strong negatives, PEBL uses
the 1-DNF method. This method rejects any unlabeled examples that contain words
that appear very commonly in the positive examples. Clearly, this is a very strict
criterion, but also one that reduces the chances of mislabeling positive examples as
negative in the first step.

66

2.4 Roc-SVM

The second of the two-step algorithms that we used was Roc-SVM [4], which follows
a similar approach to PEBL, consisting of two steps: (1) extracting some reliable
negative documents from the unlabeled set, (2) applying SVM iteratively to build a
classifier.

In the first step Roc-SVM uses a more elaborate method than PEBL, a Rocchio
classifier is built on the positive and unlabeled data, assuming that all unlabeled are
negative, and then this classifier is applied on the unlabeled data to identify strong
negative. The resulting labeled data are used to train the SVM classifier in step 2,
following the same iterative procedure as in PEBL.

The second difference of Roc-SVM to PEBL is that it does not trust the final SVM
in the iterative process to be the best-trained one, as this classifier is often affected by
noise. Instead it chooses either that, or the one produced in the first iteration,
depending on how well the final one classifies the positive examples. The SVM
produced in the first iteration is often a very good one, due to the way in which the
strong negative examples are chosen.

3 Proposed Method

The TPN2 method addresses the problem of training a classifier in the presence of
some labeled and many unlabeled data derived from different distributions. An
example of that is the use of labeled public email and personal mailboxes in the
Challenge. The method deals with this problem, by training a fully-supervised
classifier on the labeled data and using that to select a small number of good positive
examples in the unlabeled. These strong positives are used to bootstrap a positive-
only learner. An implicit assumption made here is that the positive examples are less
different in the labeled and the unlabeled data than the negative ones. This is likely to
be the case with spam (positive) vs. ham (negative) emails.

The unlabeled data may also comprise a number of similar but different subsets,
such as the mailboxes of different users. In order to make the best use of the unlabeled
data, TPN2 trains a separate classifier for each subset, e.g. each user, using at the same
time all unlabeled data. However, it weighs the current subset more, treating that as
“foreground” data, while treating the rest of the unlabeled data as “background” data.

Our method consists of four stages: (1) creating a weighted mixture of the different
subsets of unlabeled data, (2) training a fully-supervised classifier to select the
strongest positive from the unlabeled examples, (3) iteratively extend the positive set
with a positive-only learner, and (4) using a two-step positive-only learner to refine
the final classifier. The four stages are described in more detail below, while the
pseudocode for TPN2 is presented in table 1.

Stage 1: Weighted mixture of foreground and background unlabeled data
In this stage the set of unlabeled data is weighted. The method focuses on one of the
distinct subsets in the dataset, treating that as foreground data and awarding its
members with w times more weight than the rest of the unlabeled (background) data.

67

This is implemented by simply using each example of the foreground data w times,
instead of just once. The value of the weight w is user-defined, but we will show a
heuristic method for choosing it at the end of this section.

Stage 2: Selection of strong positives from the unlabeled examples
In this stage, fully-supervised learning is used to train a classifier on the labeled data.
After experimentation, we chose the Naive Bayes classifier, using the multinomial
model (NBM) for this purpose. Once the classifier is trained, it is applied on the
unlabeled data, allowing us to choose a small number of strong positive examples.
Strong positives are the examples classified as positive by NBM with confidence
greater than a user-defined threshold.

Stage 3: Iterative extension of the strong positive set
Given a set of good positive examples and many unlabeled ones, we apply a positive-
only learner (PNB) to identify more positive. We assume here that the labeled data
have provided more information about the positive class and there are thus very few
false positives among the selected set of strong positive examples.3 Using the initial
set of strong positive examples, PNB builds a classifier that is applied on all unlabeled
examples. Those examples that are classified as positive will make the new positive
set, which is used in turn by PNB to build a new classifier. At the end of stage 3, we
will have a positive set containing most of the positive examples of the unlabeled set
and very few false positives.

Stage 4: Refine the positive-only trained classifier
Having identified most of the positive examples, we refine the classifier using a
different positive-only learner that focuses on finding strong negative examples. We
have tested both PEBL and Roc-SVM in that role.

The algorithm presented in table 1, has three parameters that need to be defined by

the user:
1. Positive class probability p. This was provided for the challenge and it is p=0.5.
2. Confidence threshold for NBM, above which a positive example is considered

strong positive. Given the fact that Naive Bayes tends to push probabilities
estimates to 0 and 1, we have opted for a strict value for this threshold, i.e. 0.99.

3. Foreground data weight w. For the selection of this parameter the following
heuristic is proposed: Test for increasing values of w and keep the lowest value
that leads to the maximum number of identified positive emails in Ei just before
entering the final stage. This heuristic pushes the assumption of minimum false
positive rate to the extreme.

3 This was actually proven when we were given the true labels of the challenge data. About half
of the messages identified as ham by the initial classifier were false.

68

Table 1. Pseudocode description of the TPN2 method.

Input:
• labeled training emails, T
• unlabeled subsets, E1, …, En
• foreground subset, Ei
• foreground weight, w
• positive (spam) class probability, p

Output:
• classifier

Algorithm:

j i
; // ...(1)

NBM := construct_NBM (T); // ...(2)
POS := NBM.classify(E); // ...(3)
do {
 POS_OLD := POS;
 U := E – POS; // ...(4)

j i
E : E w E

≠

= + ⋅∑

 PNB := construct_PNB(POS, U, p); // ...(5)
 POS := PNB.classify(E); // ...(6)
} while (POS ≠ POS_OLD); // …(7)
U := E – POS;
PEBL := construct_PEBL(POS, U); // ...(8)
return PEBL;

Notes:
…(1) E is a weighted mixture of all unlabeled data (the foreground data Ei is added w times)
…(2) Naive Bayes Multinomial (NBM) learns from T
…(3) NBM is used to extract the strongest positive examples from the unlabeled ones
…(4) remove the strong positives from the unlabeled examples
…(5) train PNB on strong positives and remaining unlabeled, using positive class probability4

…(6) use the trained PNB to classify all unlabeled and keep the positive
…(7) continue iteratively, until no more positive can be found
…(8) run PEBL (or Roc-SVM) on positive and remaining unlabeled

4 In the version of the algorithm that participated in the challenge, we used a more pessimistic

estimate of the positive class probability for PNB. The use of p, as shown here, led to
considerably better results than all of the reported results in the challenge. We would like to
thank the reviewer of the paper for this simplifying suggestion.

69

4 Experimental Results

4.1 Experimental Set-up

This section uses the Challenge data to study the behavior of TPN2 under varying
conditions and parameter values. In particular we wanted to study:
1. The performance of TPN2 in the two different tasks of the challenge. Table 2

presents the main properties of the two tasks. In Task A, the size of labeled training
data from public corpora is large and so is the size of unlabeled data per user. The
aim here is to be able to train a personalized filter from each user’s data separately.
In contrast, Task B requires the use of information from the unlabeled data of other
users. The labeled data is very limited and so is the number of emails available for
each user. Presumably, the users share enough common characteristics to be able to
utilize unlabeled data from all inboxes when training a personalized filter.

2. The choice of value for the parameter w, i.e. the relative weight of the user’s own
data (foreground data) to the rest of the unlabeled data (background data). This
value is expected to be smaller and closer to 1, the closer the user’s data are to the
norm.

3. The effect of the various training stages and corresponding algorithms that we
used.

Table 2. Number of emails and inboxes for each task of the challenge.

 Task A Task B
Number of labeled training emails 4000 100
Number of emails within one evaluation inbox 2500 400
Number of inboxes for evaluation 3 15

The data was provided in feature vector format and therefore the use of text

analysis or heuristics that are commonly used in spam filtering was not possible. The
performance of the methods was assessed by the AUC (Area Under Curve) method,
which measures the area under the ROC (Receiver Operating Characteristics) curve.
The ROC curve is usually a plot of sensitivity against 1-specifity. In this case it was a
plot of the true positive rate (correctly identified spam) against the false positive rate
(incorrectly identified spam).

4.2 Choosing the Weight of Foreground Data

In section 3, we presented a heuristic for choosing the value of w, based on the
unlabeled data only. This section presents the results of this heuristic (Tables 3 and 4).
The tables present the value of w chosen by the heuristic, the optimal, according to
the AUC score, choice of w in the range [1,30] if we were given the labels of all
unlabeled data, the number of unlabeled examples assigned to the positive class by
the method trained with the heuristic w: |POS|=(TP+FP) in Ei just before entering the

70

final stage, the number of false positive examples: FP in Ei, and the performance of
TPN2 using PEBL with the heuristic and the optimal values of w.

Table 3. Task A performance of the method, using PEBL in stage 4 and setting the value of w
with the proposed heuristic vs. the optimal value.

Inbox w (heur) w (opt) |POS| FP AUC (heur) AUC (opt)
task_a_u00 5 27 905 2 0.936654 0.939847
task_a_u01 13 19 992 2 0.948652 0.949384
task_a_u02 21 15 1157 8 0.991288 0.991479
Average 0.958865 0.960237

Table 4. Task B performance of the method, using PEBL in stage 4 and setting the value of w
with the proposed heuristic vs. the optimal value.

Inbox w (heur) w (opt) |POS| FP AUC (heur) AUC (opt)
task_b_u00 1 4 181 2 0.9852 0.9915
task_b_u01 9 25 181 1 0.986375 0.9904
task_b_u02 27 2 183 1 0.9857 0.9876
task_b_u03 1 9 197 16 0.981 0.9945
task_b_u04 1 26 144 9 0.929975 0.94415
task_b_u05 1 1 122 16 0.853175 0.853175
task_b_u06 18 28 122 5 0.87295 0.88445
task_b_u07 1 1 184 4 0.98505 0.98505
task_b_u08 8 5 198 7 0.99365 0.995975
task_b_u09 1 19 187 4 0.976325 0.985975
task_b_u10 1 26 165 13 0.925125 0.970925
task_b_u11 1 20 158 4 0.939425 0.9521
task_b_u12 1 17 188 1 0.9861 0.9921
task_b_u13 1 1 124 5 0.946575 0.946575
task_b_u14 3 3 159 2 0.9404 0.9404
Average 0.952468 0.960992

The first observation is that the chosen value of w is much more variable in task A,

than task B. In task B, in 10 out of the 15 mailboxes the heuristic chooses to give the
same weight to foreground and background data. Practically, this means that 10 out of
the 15 classifiers in task B are identical. This is an indication of the similarity between
the unlabeled data of different users in task B. In contrast, the values of w chosen in
task A are high, focusing the training process on the data of the user, rather than the
background data.

Another observation is that the choice of w with the heuristic method is quite good
in most cases. Although the choices are not so close to the ones we would choose if
we were given the labels of unlabeled data, the optimal w does not lead to much better
performance.

In order to study the sensitivity of TPN2 to the choice of w, figure 1 presents the
AUC performance using PEBL for varying w in the two tasks. For the sake of
comprehensibility, figure 1 presents results for only four indicative datasets of task B.

71

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

0 5 10 15 20 25 30
w

A
U

C

task_a_u00
task_a_u01
task_a_u02

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30
w

A
U

C

task_b_u00
task_b_u06
task_b_u08
task_b_u13

Fig. 1. Performance for inboxes of Task A and Task B varying w.

The figure shows that the method is relatively insensitive to the choice of w in
most of the datasets. This is also confirmed by most of task B datasets that are not
shown here. Nevertheless, a careful examination of the curves shows that the choice
of w is important. One obvious argument for that is the steep and sudden change
decrease in performance for dataset task_b_u08 when w changes from 8 to 9. More
importantly, the shape of the curves is very different in task A than task B. Choosing
a low value for w in task A could hurt the performance seriously.

Finally, it is also not always true that a large value of w is better, as shown by the
performance in task_b_u08. Even in task A, where the curves in figure 1 seem to
indicate that there is no difference for any big value of w, the performance slightly
decreases after the optimal value of w. For w → infinity, which means no influence of
the background inboxes (E=Ei), we have the following values of AUC for each inbox:
0.895408, 0.909718, and 0.875867, which are much lower than the best we achieved.

Therefore, one needs to choose w carefully, although its exact value can vary
without significant loss of performance in most cases. The proposed heuristic works
reasonably well, although there could be room for improvement.

4.3 Performance of the Algorithms used in Different Stages

This subsection examines the contribution of each of the three learning stages to the
performance of TPN2. Tables 5 and 6 present the results obtained in each stage for
each dataset. All of the results are obtained using the value of w chosen by the
heuristic of section 3.

Table 5. Performance in the three learning stages for Task A.

 Stage 2 Stage 3 Stage 4
Inbox NBM PNB PEBL Roc-SVM
task_a_u00 0.818971 0.864881 0.936654 0.924884
task_a_u01 0.874001 0.901113 0.948652 0.945581
task_a_u02 0.897548 0.967851 0.991288 0.987226
Average 0.863507 0.911282 0.958865 0.952564

72

Table 6. Performance in the three learning stages for Task B.

 Stage 2 Stage 3 Stage 4
Inbox NBM PNB PEBL Roc-SVM
task_b_u00 0.493075 0.948963 0.9852 0.981825
task_b_u01 0.456338 0.952325 0.986375 0.980175
task_b_u02 0.7228 0.954787 0.9857 0.9856
task_b_u03 0.707225 0.984637 0.981 0.980975
task_b_u04 0.77165 0.878 0.929975 0.926025
task_b_u05 0.617887 0.761825 0.853175 0.830475
task_b_u06 0.569925 0.768138 0.87295 0.8687
task_b_u07 0.563175 0.974075 0.98505 0.986025
task_b_u08 0.520763 0.986625 0.99365 0.9943
task_b_u09 0.431412 0.964063 0.976325 0.9776
task_b_u10 0.6655 0.9127 0.925125 0.936025
task_b_u11 0.714988 0.905338 0.939425 0.9368
task_b_u12 0.634975 0.967538 0.9861 0.988375
task_b_u13 0.66315 0.853562 0.946575 0.942425
task_b_u14 0.56955 0.904675 0.9404 0.9378
Average 0.606828 0.914483 0.952468 0.950208

As expected, the performance of the fully-supervised classifier (NBM) is much

better in task A than task B, since the labeled dataset available in task A is larger.
However, with the use of PNB, our method is able to reach approximately the same
level of performance in stage 3. Then, the improvement in the fourth stage is
essentially the same for both tasks and both of the algorithms that we tested. Thus, the
main conclusion is that the proposed method can compensate for the lack of labeled
data, by iteratively searching for strong positive examples in the unlabeled data set.
Furthermore, the use of a two-step positive-only learner in the last stage is important,
when a substantial set of strong positives has been established.

5 Conclusions

In this paper, we introduced the TPN2 method, which tackles the problem of learning
from labeled and unlabeled that are derived from different distributions. The method
adopts a four-stage approach combining fully-supervised and positive-only learning
methods. The underlying assumption is that the positive examples are more similar in
the labeled and unlabeled data than the negative ones. Based on this assumption, the
core of the method iteratively selects strong positive examples from the unlabeled
data, starting from the ones most confidently identified by a classifier trained on the
labeled data. Furthermore, the method handles unlabeled data comprising of different
subsets. In that case, the method builds a separate classifier for each subset, using the
whole set of unlabeled data, but focusing more on the current subset.

The proposed method participated in the ECML/PKDD Discovery Challenge 2006,
the subject of which was the construction of personalized spam filters. The challenge

73

defined two tasks, in which a set of public email data was given as labeled and a
number of personal inboxes as unlabeled data. The two tasks posed a different
proportion of labeled and unlabeled data, as well as a different number of personal
inboxes. The proposed method obtained the second place in both tasks, as it is
particularly suitable for the scenario of the challenge, i.e. spam (positive) email is
more homogeneous in the two datasets (public and private) than ham (negative)
email.

The paper contains a selection of the results obtained in the various experiments
with the parameters of the method, focusing particularly on the choice of algorithms
for the four stages of the method and the choice of weight for the foreground data.
Despite the good results, a number of extensions seem interesting, such as the use of
different weights for different subsets of the unlabeled background data. Additionally,
a different configuration of the positive-only learners could be used to reduce the risk
of error amplification by the iterative use of the same search bias. Finally, the method
should be tested on other problems, which may violate its underlying assumptions.

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. Proceedings
of the Workshop on Computational Learning Theory, COLT-98, (1998) 92-100.

2. Denis, F., Gilleron, R., Tommasi, M.: Text classification from positive and unlabeled
examples. Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, IPMU, (2002).

3. Joachims, T.: Transductive inference for text classification using support vector machines.
Proceedings of ICML-99, 16th International Conference on Machine Learning, (1999) 200-
209.

4. Li, X., Liu, B.: Learning to classify text using positive and unlabeled data. Proceedings of the
18th International Joint Conference on Artificial Intelligence, IJCAI-03, (2003).

5. Liu B., Dai Y., Li X., Lee W., Yu P.: Building text classifiers using positive and unlabeled
examples. Proceedings of the Third IEEE International Conference on Data Mining, ICDM-
03, (2003).

6. Liu, B., Lee, W. S., Yu, P., Li, X.: Partially supervised classification of text documents.
Proceedings of the Nineteenth International Conference on Machine Learning, ICML-02,
(2002).

7. McCallum, A., Nigam, K.: A comparison of event models for naïve Bayes text classification.
AAAI-98 Workshop on Learning for Text Categorization, (1998).

8. Metsis V., Androutsopoulos I., Paliouras G.: Spam Filtering with Naive Bayes - Which
Naive Bayes?. Proceedings of the 3rd Conference on Email and Anti-Spam, CEAS-06,
(2006).

9. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text Classification from Labeled and
Unlabeled Documents using EM. Machine Learning, 39(2/3), (2000) 103-134.

10. Schneider, K.-M.: On Word Frequency Information and Negative Evidence in Naive Bayes
Text Classification. España for Natural Language Processing, EsTAL, (2004).

11. Yu, H., Han, J., Chang, K.: PEBL: Positive example based learning for Web page
classification using SVM. Proc. ACM SIGKDD International Conference on Knowledge
Discovery in Databases, KDD-02, (2002).

74

